presentation 7 thin film

Upload: sammarkhin

Post on 14-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Presentation 7 Thin Film

    1/28

    Historical Development and Basic Concepts

    Two main de osition methods are used toda :1. Chemical Vapor Deposition (CVD) 2. Physical Vapor Deposition (PVD)

    - APCVD, LPCVD, PECVD, HDPCVD - evaporation, sputter deposition

    Chemical Vapor Deposition (CVD)

    Quartz reaction chamberRF induction (heating) coils

    Exhaust scrubber

    Furnace - with resistance heaters

    Standup wafers

    Silicon wafersGraphite susceptor

    vent

    VaccumPumpSiH 4 + O 2SiO 2 + 2H2

    H2Ar

    H2+PH3

    H2+B2H6

    HCl4 H2

    SiCl 4 + 2H2 Si + 4HCl

    Gas controland

    sequencerSiH 4

    O2

    Source GasesAPCVD - Atmospheric Pressure CVD

    LPCVD - Low Pressure CVD

    30-250 Pa

  • 7/27/2019 Presentation 7 Thin Film

    2/28

    Chemical Vapor Deposition

    12 6

    7

    Gas stream

    Susceptor

    Wafer

    3 4 5

    1. Transport of reactants to the deposition region.

    *2. Transport of reactants from the main gas stream through the boundary.

    *3. Adsorption of reactants on the wafer surface.

    *4. Surface reactions, including: chemical decomposition or reaction,

    surface migration to attachment sites (kinks and ledges); site

    incorporation; and other surface reactions (emission and redepositionfor example).

    *5. Desorption of byproducts.

    . .

    7. Transport of byproducts away from the deposition region.

  • 7/27/2019 Presentation 7 Thin Film

    3/28

    = =D

    g

    =

    Chemical Vapor Deposition

    S S S g

    g S g g S

    JS = Jg

    J k h N

    rowt ate v =

    N

    =

    kS + hg N

    Mass Transfer Limited : v hgg

    Nfor kS >> hg

    Nwhere N is the number of atoms per22 -3Surface Reaction Limited : v kS

    Nfor hg >> kS

    for the case of epitaxial Sideposition)

    Exam le: Calculate the de osition rate for a CVD s stem h =1.0 cm/s k =10

    cm/s, Ptotal= 760 torr, Psi=1 torr, T=1000oC.

  • 7/27/2019 Presentation 7 Thin Film

    4/28

    CVD Calculation( ) ( ) ( ) ( )

    24

    o

    42

    C1200atProcessDepositionReversible

    gasHClsolidSigasHgasSiCl ++

    ks term withks = k0exp(-Ea/kT)

    ale) ReactionEtchingCompeting

    SurfaceCleantoUsedbecanStreamInputinHCl

    G G =

    Net growth velocity

    (lo

    gsc ) ) )

    24

    SilaneofionDecompositPyrolytic-eAlternativ

    2 gasSiClsolidSigasSiCl +

    Reactioncontrolled

    Mass transfercontrolled Mixed

    2

    600

    42 HSiSiH C

    o

    +

    The surface term is Arrhenius

    with EA depending on the

    .single crystal silicon deposition).

    hG is constant (diffusion

    through boundary layer).

  • 7/27/2019 Presentation 7 Thin Film

    5/28

    Epitaxial Growth

    ReactionEtchinCom etinC1200atProcessDe ositionReversibleo

    ( ) ( ) ( )gasSiClsolidSigasSiCl24

    2 +( ) ( ) ( ) ( )

    SurfaceCleantoUsedbecanStreamInputinHCl

    4224

    gasHClsolidSigasHgasSiCl ++

  • 7/27/2019 Presentation 7 Thin Film

    6/28

    Epitaxial Growth

  • 7/27/2019 Presentation 7 Thin Film

    7/28

    RateGrowthEpitaxial Growth

    ep epos on o en one a g o

    get high quality single crystal growth.

    hG controlled. horizontal reactorconfiguration.

    +== g

    gS

    gSS

    NhkNv

    hG

    corresponds to diffusion through a

    boundary layer of thickness .

    >>gS

    g

    ghk

    Nhv for

    :LimitedTransferMassS

    = g

    g

    D

    h

    But typically is notS

    along a surface.

    special geometry isrequired for uniform

    deposition.

  • 7/27/2019 Presentation 7 Thin Film

    8/28

    Epitaxial Growth

    DV

    =e

  • 7/27/2019 Presentation 7 Thin Film

    9/28

    Epitaxial Growth

    u o op ng Out-diffusion

    Pattern Shift During EpitaxialGrowth Over an n+ Buried Layer.

    Pattern is Both Shifted andDistorted in Shape

  • 7/27/2019 Presentation 7 Thin Film

    10/28

    Epitaxial Growth

    apor ase p axy 0.1-10 m/min

    Liquid Phase Epitaxy (LPE) Compound Semiconductors . .

    Molecular Beam Epitaxy (MBE) ompoun em con uc ors 0.001-0.3 m/min, 400-900oC, Pvac=10

    -8 Pa

    III-V Compound Semiconductors GaAs, InP, GaInAs, InAs

  • 7/27/2019 Presentation 7 Thin Film

    11/28

    CVD Polysilicon Deposition

    25-150 Pa

    Thermal Decomposition of Silane 100% Silane

    20-30% Silane in Nitrogen

    SiH600o C Si + 2H

    100-200 /min at 600-650o C

  • 7/27/2019 Presentation 7 Thin Film

    12/28

    )500-(300AluminumoverDioxideSiliconofDeposition C

    CVD Silicon Dioxide Deposition

    LPCVDorPressurecAtmospheri-SiODopedPhosphous

    577T2

    2

    o

    2224++ CHSiOOSiH

    ionMetallizatPrior toeTemperaturHigher

    625425223

    ++ HOPOPH

    SiO2 containing 6-8% phosphoruswill soften and flow at 1000-1100o C.

    222

    900atReactionlaneDichlorosi

    22222

    o

    +++ HClNSiOONHSiCl

    C

    P-glass reflow can be used to

    smooth surface topology.

    ( ) byproducts+SiOOCSi

    C750-650TEOSofionDecompositLPCVD

    2452

    o

    H

  • 7/27/2019 Presentation 7 Thin Film

    13/28

    CVD Silicon Nitride Deposition

    Oxidation Mask for Recessed Oxidation

    Final Passivation Layer Over Die Surface

    Silane Reaction with Ammonia - 700 - 900oCat Atmospheric Pressure

    3SiH4 + 4NH3 Si3N4 +12H2

    Dichlorosilane Reaction - LPCVD at 700 - 800o C

    2 2 3 3 4 2

    Plasma Reaction of Silane with Nitrogen

    4 + 2 + 2

    Plasma Reaction of Silane with Ammonia (Argon Plasma)

    SiH4 + NH3 SiNH+ 3H2

  • 7/27/2019 Presentation 7 Thin Film

    14/28

    Plasma Enhanced CVD (PECVD)

  • 7/27/2019 Presentation 7 Thin Film

    15/28

    Plasma Enhanced CVD (PECVD)

    RF ower in ut

    Electrode

    Electrode

    Wafers

    Plasma

    Gas outlet, pump

    Heater

    Gas inletSiH O

    Non-thermal energy to enhance processes at lower temperatures. Plasma consists of electrons, ionized molecules, neutral molecules, neutral and

    - , . Free radicals are electrically neutral species that have incomplete bonding andare extremely reactive. (e.g. SiO, SiH3, F)

    The net result from the fragmentation, the free radicals, and the ion bombardmentis that the surface processes and deposition occur at much lower temperature

    than in non-plasma systems.

  • 7/27/2019 Presentation 7 Thin Film

    16/28

    Plasma Enhanced CVD (PECVD)

    A radio frequency (13.56MHz) voltage isapplied between the two electrodes causes

    gas molecules, leading sustainable plasma

    at lower pressure than dc plasma.

  • 7/27/2019 Presentation 7 Thin Film

    17/28

    Chemical Vapor Deposition

  • 7/27/2019 Presentation 7 Thin Film

    18/28

    -

    CVD Metal Deposition

    FWWF 3,

    26

    6

    +

    HFWHWF

    WF

    63

    HydrogenwithofReduction-Tungsten

    26

    6

    ++

    HClMHMCl 10252

    HydrogenithReaction wLPCVD-TiandTaMo,

    25 ++

  • 7/27/2019 Presentation 7 Thin Film

    19/28

    Physical Vapor Deposition

    Definitions of Vacuum Regimes:

    1.) Rough Vacuum: ~0.1-760 torr2.) Medium Vacuum: ~ 0.1 to 10-4 torr

    ~ -8 -4.4.) Ultrahigh Vacuum: < 10-8 torr

    Molecular flow regime: gas densityu v y w, w u -

    molecule collisions occur andmolecule-chamber wall collisionsdominate the flow process (moleculesare held back by walls)

    Mean Free Path (MFP)

    At room temperature, is 78 um for 1 torr (typical plasma process pressure) and

    7.8106 meters for 110-11 torr (typical Molecular Beam Epitaxy systems).

  • 7/27/2019 Presentation 7 Thin Film

    20/28

    Kinetic Theory of Gas

    Avera e velocit of as molecule:

    m

    kTzyx

    2===

    At RT, is 60 m for 100 Pa (sputter, Argon)and 60 meters for 110-4 Pa Eva oration .

    ean ree a

    Molecule Flux

    PkTnn x 22 P

    kTmmn

    222===

    kTn =

    Mass Evaporation Rate

    TP

    kmP

    kTmR

    ME 22

    ==

    A

    T

    P

    k

    mR

    ML

    2

    =

  • 7/27/2019 Presentation 7 Thin Film

    21/28

    Physical Vapor Deposition(a) Filament Evaporation with Loops of

    Wire Hanging from a Heated Filament

    (b) Electron Beam is Focused on MetalCharge by a Magnetic Field

  • 7/27/2019 Presentation 7 Thin Film

    22/28

    Filament & Electron Beam Eva oration

    Physical Vapor Deposition

    2

    coscos

    r

    =

    coscos2

    =r

    G ML AT

    P

    k

    mR

    ML2

    =

    coscos2

    22

    =rTk

    G

    r

    or2coscos ==

    APm

    42

    2

    0

    2rTk

  • 7/27/2019 Presentation 7 Thin Film

    23/28

    Example: An evaporator is used to deposit aluminum. The aluminum charge ismaintained at a uniform temperature of 1100oC. If the evaporator planetary has a

    42

    2

    0

    2r

    A

    T

    P

    k

    mG

    =

    ,rate of aluminum?

    27)( =Alm22 6.197854.0 cmRA

    crucible==

    3

    /2700)( mkgAl =

    torrAlP3101)( =

    APm=

    10022.6/)/(027.0

    42

    2323

    23

    2

    0

    2

    molkg

    rTk

    =

    )4.0(4

    00196.0

    1373

    760/101325100.1

    .

    2

    23

    m

    m

    min

    A8.17102.9 11

    o

    s

    m==

  • 7/27/2019 Presentation 7 Thin Film

    24/28

    Shadowin and Ste Covera e Problems

    Physical Vapor Deposition

    Reason: Low Pressure Vacuum Deposition in which the Mean Free

    a s arge. Solution:(a) High Pressure: smaller mean free path.

    ea e wa er: o ac a e sur ace us on, amp(c) Rotate the wafer: continuously rotate the hemispherical cage

  • 7/27/2019 Presentation 7 Thin Film

    25/28

    S utterin

    Physical Vapor Deposition_

    Al target

    Dark spaceor sheath

    Al

    Ar+

    Al

    Aro

    -

    Ar+

    e-

    O

    Negative glow

    r

    Ar+

    e-

    e-

    Wafer surface

    Al Al

    Al

    Uses plasma to sputter target, dislodging atoms which then deposit on

    wafers to form film.

    - - .

    Better at depositing alloys and compounds than evaporation.

    The plasma contains equal numbers of positive argon ions and electrons

    as well as neutral argon atoms.

  • 7/27/2019 Presentation 7 Thin Film

    26/28

    DC S utterin

    Physical Vapor Deposition Most of voltage drop of the system

    CathodeAnode

    _

    (V c)

    Wafers(due to applied DC voltage, Vc)occurs over cathode sheath.

    Argon plasma, ornegative glow

    Cathodeglow

    Cathodedark spaceor sheath

    Anode sheath

    sputtering yield, Y, defined as the

    number of atoms or molecules

    ejected from the target per incident

    V

    oltage

    +

    -

    0Distance

    V p0

    on. s a unc on o e energy

    and mass of ions, target material,

    and incident angle.

    V c

    Ark+ ions are accelerated across

    charged cathode, striking thatelectrode (the target) and

    sputtering off atoms (e.g. Al). These

    travel through plasma and deposit

    on wafers sitting on anode.

  • 7/27/2019 Presentation 7 Thin Film

    27/28

    Thin Film DepositionStep Coverage

    0.5

    1.0

    1.5

    2.0a)

    0.5

    1.0

    1.5

    2.0

    microns

    c)

    microns-2.0 -1.0 0.0 1.0 2.

    -0.5

    0.0

    .i

    microns-2.0 -1.0 0.0 1.0 2.0

    -0.5

    0.0

    1.0

    1.5

    2.0

    1.0

    1.5

    2.0

    1.0

    1.5

    2.0

    -1.00 1.000.0-0.5

    0.0

    0.5microns

    -1.00 1.000.0-0.5

    0.0

    0.5microns

    -1.00 1.000.0-0.5

    0.0

    0.5microns

    Intrinsic Stress

  • 7/27/2019 Presentation 7 Thin Film

    28/28

    Deposition