preparation of biodiesel from castor oil catalyzed by novel basic ionic.pdf

Upload: karpanai

Post on 14-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Preparation of Biodiesel from Castor Oil Catalyzed by Novel Basic Ionic.pdf

    1/5

    DOI: 10.1002/ente.201200026

    Preparation of Biodiesel from Castor Oil Catalyzed by Novel Basic Ionic

    Liquid

    Dong Fang,*[a] Chenning Jiang,[b] and Jinming Yang[b]

    As a result of the shortage of fossil fuels and the demands on

    the control of environmental pollution, it is increasingly nec-

    essary to develop clean, alternative renewable energy sources

    and technology. Fatty acid methyl ester (FAME), as one of

    the most important biodiesel fuels, is a well-known for being

    clean, biodegradable, and renewable. Biodiesel is generally

    prepared from animal fats or vegetable oils through the

    transesterification of triglycerides (TGs) and methanol in the

    presence of catalysts such as inorganic acids (e.g., sulfuric

    acid) or alkali compounds (e.g., KOH, NaOH).[1] These cata-

    lysts have significant disadvantages such as being corrosive,

    nonrenewable, prone to saponification, and producing envi-

    ronmental pollution.[2] Hence, it is urgent to develop new en-vironmentally benign catalysts for biodiesel production. For

    these reasons, the replacement of the current transesterifica-

    tion procedure with a more environmentally benign process

    involving the use of ionic liquids is an area worthy of investi-

    gation.[3] Functional basic ionic liquids (FBILs) combine the

    advantageous characteristics of organic and inorganic bases

    and are designed to replace traditional inorganic bases in

    clean processes.[4] Recently, FBILs containing the imidazoli-

    um cation have also been used for the synthesis of biodie-

    sel.[5]

    The raw materials used to produce biodiesel can be ob-

    tained from a wide variety of bioresources, however, the fac-tors of technical and economic feasibility, environmental ef-

    fects, accessibility, and national policy concerns must also be

    considered.[6] It is practical to prepare biodiesel with nonedi-

    ble oil,[7] and governmental policy currently states that all

    edible oils, such as rapeseed oil and soybean oil, are forbid-

    den to be used as raw materials to produce biodiesel in

    China. As one of the most important renewable, nonedible

    oils, castor oil has potential for use in biodiesel production at

    a large scale.

    In view of the importance of biodiesel for energy technolo-

    gy, the limitations of the present synthetic methods, and the

    continuation of our previous explorations in green catalytic

    preparation of biodiesel with ionic liquids,[8] a basic ionic

    liquid 1-butyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene hydroxide

    ([BTBD]OH) was synthesized in this work (Scheme 1), and

    its use as a novel catalyst for the preparation of biodiesel by

    transesterification of castor oil with methanol was also inves-

    tigated. To the best of our knowledge, the synthesis of bio-

    diesel from castor oil catalyzed by [BTBD]OH has not been

    reported.

    The procedure for preparation of [BTBD]OH involves

    a two-step atom-efficient reaction, and the new catalyst ob-

    tained was a somewhat-viscous light yellow liquid. The ionic-

    liquid product did not fume or manifest any noticeable

    degree of vapor pressure. It is worthwhile to note that the

    treatment of the [BTBD]OH under vacuum at 2508C for

    72 h resulted in no loss of mass, which proved that

    [BTBD]OH possesses thermostability. This characteristic

    could help to recover and reuse the catalyst in the post-pro-

    cedure. A solubility experiment showed that [BTBD]OH ismiscible with water, partly soluble in polar solvents (such as

    methanol, ethanol, and acetone), and nearly insoluble in

    nonpolar solvents such as alkanes, aromatic hydrocarbons

    (such as toluene, benzene, and cyclohexane), and mineral or

    vegetable oils.

    To begin screening the potential catalysts, castor oil and

    methanol were employed as the model reactants at specific

    temperatures and times to compare their catalytic perform-

    ances. In this study, tetrabutylammonium hydroxide

    ([TBA]OH), 1-butyl-3-methyl-imidazolium hydroxide

    ([Bmim]OH), and KOH were selected to compare with

    [BTBD]OH (Table 1).

    Scheme 1. Structure of [BTBD][OH] as the catalyst.

    Table 1. Effect of different catalytic system on transesterification.[a]

    Entry Catalyst[c] t [h] T [8C] Yield [%][b]

    1 6.0 60 trace

    2 KOH 1.0 40 82

    3 [TBA]OH 1.0 40 65

    4 [Bmim]OH 1.0 40 88

    5 [BTBD]OH 1.0 40 96

    [a] Reaction conditions: n (methanol)/n (castor oil)=6:1. [b] Isolated

    yield. [c] All catalyst loadings were 0.9 wt%.

    [a] Prof. Dr. D. Fang

    Jiangsu Provincial Key Laboratory of Coastal Wetland

    Bioresources & Environmental Protection

    50 Kai Fang Da Dao, Yancheng 224002 (P R China)

    E-mail: [email protected]

    [b] C. Jiang, Prof. J. Yang

    School of Chemistry and Chemical Engineering

    Yancheng Normal University

    Yancheng 224002 (P R China)

    Supporting information for this article is available on the WWW under

    http://dx.doi.org/10.1002/ente.201200026.

    Energy Technol. 0000, 00, 1 4 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim &1&

    These are not the final page numbers!

  • 7/27/2019 Preparation of Biodiesel from Castor Oil Catalyzed by Novel Basic Ionic.pdf

    2/5

    It was found that no measureable biodiesel could be de-

    tected if a mixture of castor oil and methanol was stirred at

    60 8C in the absence of a catalyst (entry 1, Table 1), indicat-

    ing that the catalyst was absolutely necessary for this transes-

    terification procedure. KOH was used as a standard basic

    catalyst for comparison with other FBILs as it showed rela-

    tively good catalytic performance in the transesterification

    reaction. All three FBILs (entries 35) were proved to be ef-

    ficient (6596% yields) in comparison with KOH. In case of

    FBILs, differing yields were obtained even though the anions

    of these FBILs were the same (OH). The order of catalytic

    performance was consistent with the number of nitrogen

    atom in the cations.

    The recycling performances of [TBA]OH, [Bmim]OH, and

    [BTBD]OH were also explored using the above reaction

    conditions. After completion of the reaction, the products

    were isolated from the catalytic system by decantation; the

    catalyst was reused in the next run after the removal of

    methanol and glycerol under atmospheric distillation and

    vacuum distillation (400 Pa), respectively.As shown in Figure 1, the [BTBD]OH could be reused at

    least six times and the decrease in yields was approximately

    1%. The very small degradation after each cycle might be

    the result of a slight loss of the catalyst after each cycle. This

    further indicated that [BTBD]OH was stable at relatively

    higher temperatures than ([Bmim]OH) and [TBA]OH. Com-

    bined with the use of traditional solvents and the simple cat-

    alytic procedure, the easy recycling nature is also an attrac-

    tive property of the [BTBD]OH catalyst if environmentaland economic factors are considered. Hence, [BTBD]OH

    should be the best catalyst for this procedure among the

    three FBILs.

    An excess of reactant (methanol) is usually necessary for

    the preparation of biodiesel by transesterification. To explore

    the catalyst behavior more fully, the mole ratio of methanol

    to castor oil was varied from 3:1 to 8:1, and the yields of

    FAME are listed in Table 2. As expected, as additional meth-

    anol was added to the reactant mixture, a higher the yield of

    target product was obtained under the same reaction condi-

    tions. The highest yield of biodiesel achieved was 96% with

    a methanol/castor oil mole ratio of 6:1 in 1 h. However, the

    use of too much methanol did not bring an additional in-

    crease in the yields, probably because the concentration of

    catalyst was diluted by the excess methanol and some prod-

    uct was lost in the discarded liquid layer after the reaction.

    Additionally, the use of excess methanol would not facilitate

    scaling up this catalyst procedure.

    It is well known that reaction time has a significant effect

    on the equilibrium of the transesterification reaction, andtherefore, the effect of reaction time on this procedure was

    also explored (Figure 2). From Figure 2 it is clear that

    [BTBD]OH was a very efficient catalyst for the transesterifi-

    cation reaction: initially, a drastic increase in yield could be

    observed with longer reaction times. Further increasing of re-

    action time did not improve the yields significantly as thetransesterification reaction approached equilibrium, with an

    isolated yield over 96% in 1.0 h, after which no additional bi-

    odiesel product formed when the reaction time was pro-

    longed to 80 min. Hence, the optimal reaction time was 1.0 h

    for this procedure.

    The previous results indicated that the amount of catalyst

    also had a significant influence on the transesterification re-

    action. The effect of the of the catalyst/castor oil ratio

    (wt%) on the reaction (Figure 3) illustrated that there was

    an insufficient number of active sites for the transesterifica-

    tion reaction if the catalyst amount was too low. The yield in-

    creased with increasing amount of catalyst over the range

    Figure 1. Reusability of FBILs for transesterification, & [TBA]OH; &

    [Bmim]OH; & [BTBD]OH.

    Table 2. Effect of the molar ratio of methanol to castor oil on the transes-

    terification.[a]

    Entry Molar ratio (methanol:castor oil) t [h] T [8C] Yield [%][a]

    1 3:1 1.0 40 76

    2 4:1 1.0 40 84

    3 5:1 1.0 40 88

    4 6:1 1.0 40 965 7:1 1.0 40 96

    6 8:1 1.0 40 93

    [a] Isolated yield.

    Figure 2. Effect of the reaction time on the transesterification reaction yield.

    &2& www.entechnol.de 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Energy Technol. 0000, 00, 1 4 These are not the final page numbers!

    http://www.entechnol.de/http://www.entechnol.de/
  • 7/27/2019 Preparation of Biodiesel from Castor Oil Catalyzed by Novel Basic Ionic.pdf

    3/5

    from 0.1 to 0.9% before flattening at higher catalyst load-

    ings. Thus, considering the reaction results and the cost ofcatalyst, the optimum catalyst amount was 0.9% in this pro-

    cedure.

    The effect of reaction temperature on the transesterifica-

    tion reaction is shown in Figure 4. A reaction yield of 56%

    of biodiesel was obtained in 1.0 h at 20 8C, and the yield rose

    as the reaction temperature was increased from 20 to 50 8C.

    However, this increase became more gradual as the tempera-

    ture was increased further, and a maximum isolated yield of

    96% was obtained for biodiesel product in 1.0 h at 408C,

    after which increasing the temperature further did not pro-

    duce additional product.

    In conclusion, the basic ionic liquid [BTBD]OH was pre-

    pared and proved to be an efficient catalyst for the synthesis

    of biodiesel from castor oil and methanol, exhibiting a high

    yield of 96% under optimal reaction conditions. The utilized

    procedure has the advantages of mild reaction conditions

    and a practical method for separation of the product from

    the catalyst. The ionic liquid can be recycled and reused for

    many times, and this procedure has the potential to be ap-

    plied in for industrial biofuel production.

    Experimental Section

    Melting points were determined using an X-6 microscope melt-

    ing apparatus and reported uncorrected. 1H NMR spectra wererecorded using a Bruker DRX300 spectrometer (300 MHz) and13C NMR spectra were acquired using a Bruker DRX300

    (75.5 MHz) spectrometer. Mass spectra were obtained with an

    automated Finnigan TSQ Quantum Ultra AM (Thermal) LC/MS

    spectrometer. Elemental analyses were recorded using a Perkin-

    Elmer 240C spectrometer. The concentration of the product was

    directly measured by using a Finnigan Trace DSQ GC-MS by

    quantifying the area under each chromatographic peak.

    The catalyst was synthesized by gradually adding n-butyl bro-

    mide (13.7 g, 0.10 mol) to a solution of 1,5,7-triazabicyclo-

    [4.4.0]dec-5-ene (13.9 g, 0.10 mol) in 20 mL cyclohexane within

    30 min under stirring. The mixture was then stirred under nitro-

    gen atmosphere for 2 h at 80 8C. After reaction completion and

    cooling to room temperature, a white precipitate formed, whichwas then isolated by filtration, washed with cyclohexane, and

    dried under vacuum to give 94% yield of the desired bromide

    product of 1-butyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene bromide

    (white solid, mp 3003038C (dec)). KOH (2.81 g, 0.05 mol) and

    and 30 mL ethanol were added to the above bromide product

    (13.8 g, 0.05 mol), and the mixture was then stirred for 24 h at

    room temperature before filtering to remove the KBr. The fil-

    trate was distilled to remove the ethanol solvent. The crude

    product (1-butyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene hydroxide)

    was washed repeatedly with dichloromethane to remove unreact-

    ed starting material and the further dried under vacuum.1H NMR (300 MHz, D2O): d=0.96 (t, 3 H, J=7.02 Hz), 1.30

    1.33 (m, 4H), 1.491.51 (m, 2H), 1.962.15 (m, 4H), 2.532.57

    (m, 4 H), 3.313.35 ppm (m, 4 H); 13C NMR (75.5 MHz): d=14.4,

    21.0, 22.0, 25.2, 30.5, 40.2, 41.7, 45.1, 45.7, 48.2, 152.7 ppm. Then,

    the castor oil was dehydrated at 140 8C under vacuum in a rotary

    evaporator for 2 h. Dehydrated castor oil, methanol, and

    [BTBD]OH were added to a flask charged with a reflux con-

    denser and a magnetic stirring bar. The transesterification reac-

    tion was then performed for a length of time at the specific tem-

    perature with vigorous stirring. After reaction, the mixture was

    rapidly cooled to room temperature, transferred to a separator,

    and then held still to allow the reaction mixture to become bi-

    phasic. The upper phase mainly containing the desired biodiesel

    product could be isolated by simple liquid/liquid separation and

    decantation. The product was washed with water, dried under

    vacuum to give the target product, and the concentration of the

    product was directly measured by GC-MS. The bottom phase

    was a mixture of the ionic liquid with methanol and glycerol gen-

    erated from the reaction; the catalyst could be recovered and

    reused by atmospheric distillation and vacuum distillation

    (400 Pa) to remove the methanol and glycerol respectively.

    Acknowledgements

    This work was financially supported by the Ministry of Sci-

    ence and Technology of P. R. Chinaand the Professional

    Talent Foundation of Yancheng Normal University.

    Figure 3. Effect of the catalyst amount on the transesterification reaction

    yield.

    Figure 4. Effect of reaction temperature on the transesterification reaction

    yield.

    Energy Technol. 0000, 00, 1 4 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.entechnol.de &3&

    These are not the final page numbers!

    http://www.entechnol.de/http://www.entechnol.de/
  • 7/27/2019 Preparation of Biodiesel from Castor Oil Catalyzed by Novel Basic Ionic.pdf

    4/5

    Keywords: catalysis fuel methanol synthesis

    transesterification

    [1] a) A. E. Farrell, R. J. Plevin, B. T. Tumer, A. D. Jones, M. Ohare,

    D. M. Kammen, Science 2006, 311, 506508; b) D. E. Lpez, J. G.

    Goodwin, D. A. Bruce, E. Lotero, Appl. Catal. A 2005, 295, 97 105 ;

    c) J. M. Marchetti, V. U. Miguel, A. F. Errazu, Fuel 2007, 86, 906 910 ;

    d) S. Pinzi, I. L. Garcia, F. J. Lopez-Gimenez, M. D. Luque de Castro,G. Dorado, M. P. Dorado, Energy Fuels 2009, 23, 23252341; e) S.

    Yan, C. DiMaggio, S. Mohan, M. Kim, S. O. Salley, K. Y. S. Ng, Top

    Catal. 2010, 53, 721 736 ; f) A. A. Kiss, C. S. Bildea, J. Chem. Technol.

    Biotechnol. 2012, 87, 861879; g) V. B. Borugadda, V. V. Goud, Re-

    newable Sustainable Energy Rev. 2012, 16, 47634784.

    [2] a) B. A. D. Neto, M. B. Alves, A. A. M. Lapis, F. M. Nachtigall, M. N.

    Eberlin, J. Dupont, P. A. Z. Suarez, J. Catal. 2007, 249, 154 161;

    b) A. C. Dimian, Z. W. Srokol, M. C. Mittelmeijer-Hazeleger, G. Roth-

    enberg, Top Catal. 2010, 53, 11971201; c) Y. C. Sharma, B. Singh, J.

    Korstad, Biofuels Bioprod. Biorefin. 2011, 5, 6992; d) R. Chakrabor-

    ty, S. K. Das, Ind. Eng. Chem. Res. 2012, 51, 84048414.

    [3] a) S. H. Ha, M. N. Lan, S. H. Lee, S. M. Hwang, Y. M. Koo, Enzyme

    Microb. Technol. 2007, 41, 480483; b) M. Gamba, A. A. M. Lapis, J.

    Dupont, Adv. Synth. Catal. 2008, 350, 160164; c) M. M. Soumanou,

    S. T. Djenontin, F. P. Tchobo, D. C. K. Sohounhlou e, U. T. Bornsche-

    uer, Lipid Technol. 2012, 24, 158160; d) B. S. Souza, D. M. M. Pinho,

    E. C. Liopoldino, P. A. Z. Suarez, F. Nome, Appl. Catal. A 2012, 433/

    434, 109114; e) T. Long, Y. Deng, S. Gan, J. Chen, Chin. J. Chem.

    Eng. 2010, 18, 322327; f) M. H. Han, W. L. Yi, Q. Wu, Y. Liu, Y. C.

    Hong, D. Z. Wang, Renew. Biores. Techol. 2009, 100, 2308 2310;

    g) X. Z. Liang, J. G. Yang, Green Chem. 2010, 12, 201204; h) N. I.

    Ruzich, A. S. Basi, Energy Fuels 2010, 24, 32143222; i) B. L. A. P.

    Devi, Z. Guo, X. Xu, AIChE J. 2011, 57, 1628 1637; j) A. H. M.

    Fauzi, N. A. S. Amin, Renewable Sustainable Energy Rev. 2012, 16,

    5770 5786; k) B. Zhen, H. Li, Q. Jiao, Y. Li, Q, Wu, Y. Zhagn, Ind.

    Eng. Chem. Res. 2012, 51, 1037410380; l) P. Lozano, E. Garcia-Ver-

    dugo, J. M. Bernal, D. F. Izquierdo, M. I. Burguete, G. Sanchez-

    Gomez, S. V. Lius, ChemSusChem. 2012, 5, 790798.

    [4] a) B. C. Ranu, S. Banerjee, Org. Lett. 2005, 7, 30493052; b) K. Guo,

    B. N. Chen, J. Org. Chem. 2009, 74, 6999 7003; c) Y. Peng, G. Li, J.

    Li, S. Yu, Tetrahedron Lett. 2009, 50, 42864288; d) F. P. Yi, X. Zhang,

    H. Y. Sun, S. H. Chen, Acta Chim. Sinica 2012, 70, 741 746.

    [5] a) A. A. M. Lapis, L. F. de Oliveria, B. A. D. Neto, J. Dupont, Chem-SusChem 2008, 1, 759762; b) J. H. Liang, X. Q. Ren, J. T. Wang, M.

    Jiang, Z. J. Li, J. Fuel Chem. Technol. 2010, 38, 275280; c) X. F. Li,

    Y. Wang, H. Zhao, C. H. Li, Acta Petrolei Sin. 2012, 28, 200206; d) S.

    Zhou, L. Liu, B. Wang, F. Xu, R. C. Sun, Chin. Chem. Lett. 2012, 23,

    379382.

    [6] a) D. Y. C. Leung, Y. Gao, Fuel Process. Technol. 2006, 87, 883890;

    b) H. J. Berchmans, S. Hirata, Bioresour. Technol. 2008, 99, 1716

    1721; c) R. Luque, J. H. Clark, ChemCatChem. 2011, 3, 594 597;

    d) M. Snchez-Cantffl, L. M. Prez-Daz, R. Rosales, E. Ramirez, A.

    Apreza-Sies, I. Pala-Rosas, E. Rubio-Rosas, M. Aguilar-Franco, J. S.

    Valente, Energy Fuels 2011, 25, 32753282; e) V. B. Veljkovic, J. M.

    Avramovic, O. S. Stamenkovic, Renewable Sustainable Energy Rev.

    2012, 16, 11931209; f) L. Daz, M. E. Borges, J. Agric. Food Chem.

    2012, 60, 79287933.

    [7] a) M. L. Wang, J. B. Morris, B. Tonnis, D. Pinnow, J. Davis, P. Raymer,

    G. A. Pederson, J. Agric. Food Chem. 2011, 59, 92509256; b) V. L.Gole, P. R. Gogate, Ind. Eng. Chem. Res. 2012, 51, 1186611874.

    [8] D. Fang, J. M. Yang, C. M. Jiao, ACS Catal. 2011, 1, 4247.

    Received: October 14, 2012

    Revised: December 3, 2012

    Published online on&& &&, 0000

    &4& www.entechnol.de 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Energy Technol. 0000, 00, 1 4 These are not the final page numbers!

    http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/cs100026qhttp://www.entechnol.de/http://www.entechnol.de/http://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/cs100026qhttp://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/ie2029442http://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf202949vhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1021/jf301886dhttp://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1002/cctc.201000280http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.biortech.2007.03.051http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.fuproc.2006.06.003http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/j.cclet.2012.01.034http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1016/S1872-5813(10)60033-3http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.1002/cssc.200800077http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.6023/A1110105http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1016/j.tetlet.2009.05.015http://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/jo901232bhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1021/ol051004hhttp://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1002/cssc.201100692http://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1021/ie301453chttp://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1002/aic.12355http://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1021/ef901428khttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1039/b922966nhttp://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/j.biortech.2008.10.046http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/S1004-9541(08)60359-6http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1016/j.apcata.2012.05.006http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/lite.201200210http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1002/adsc.200700303http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1016/j.enzmictec.2007.03.017http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1021/ie2030745http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1002/bbb.253http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1007/s11244-010-9562-0http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1016/j.rser.2012.04.010http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1002/jctb.3785http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1007/s11244-010-9460-5http://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1021/ef801098ahttp://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.fuel.2006.09.006http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1016/j.apcata.2005.07.055http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1126/science.1121416http://dx.doi.org/10.1126/science.1121416
  • 7/27/2019 Preparation of Biodiesel from Castor Oil Catalyzed by Novel Basic Ionic.pdf

    5/5

    COMMUNICATIONS

    D. Fang,* C. Jiang, J. Yang

    &&&&

    Preparation of Biodiesel from Castor

    Oil Catalyzed by Novel Basic IonicLiquid

    Ionic powers: A basic ionic liquid is

    used as a catalyst for the preparation

    of biodiesel by transesterification of

    castor oil with methanol, the catalytic

    performance is compared with conven-tional catalysts and ionic liquids. A

    high yield of 96% is achieved under

    optimal reaction conditions, and the

    green reaction procedure shows prom-

    ise for industrial application.

    Energy Technol. 0000, 00, 1 4 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.entechnol.de &5&

    These are not the final page numbers!

    http://www.entechnol.de/http://www.entechnol.de/