preliminary modeling of ch 3 d from 4000 to 4550 cm -1 a.v. nikitin 1, l. r. brown 2, k. sung 2, m....

16
Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1 , L. R. Brown 2 , K. Sung 2 , M. Rey 3 , Vl. G. Tyuterev 3 , M. A. H. Smith 4 , and A.W. Mantz 5 1. Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, Academician Zuev square, 634021, Tomsk, Russia 2. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA 3. Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, 4. U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France 4. Science Directorate, NASA Langley Research Center, Hampton, VA 23681, USA 5. Dept. of Physics, Astronomy and Geophysics, Connecticut College, 270 Mohegan Avenue, New London, CT 06320, USA 1 Molecular Spectroscopy Symposium June 2012 RB-07

Upload: sheila-hunt

Post on 06-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

The Enneadecad Polyad of CH 3 D 3 Molecular Spectroscopy Symposium June 2012 RB-07 Prior Ennea work Nikitin – 3700 cm -1 for outer planets Predicted upper state levels by extrapolating ro-vibrational constants from Triad and Nonad. Ulenikov et al (assigned positions to 33 Ennea sub-vibs) using cold data from Zurich (ETH) FTS

TRANSCRIPT

Page 1: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Preliminary modeling of CH3D from 4000 to 4550 cm-1

A.V. Nikitin1, L. R. Brown2, K. Sung2, M. Rey3, Vl. G. Tyuterev3,

M. A. H. Smith4, and A.W. Mantz5

1. Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB RAS, Academician Zuev square, 634021, Tomsk, Russia2. Jet Propulsion Laboratory, California Institute of Technology,

4800 Oak Grove Drive, Pasadena, CA 91109, USA3. Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331,

Université de Reims, 4. U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France4. Science Directorate, NASA Langley Research Center, Hampton, VA 23681, USA5. Dept. of Physics, Astronomy and Geophysics, Connecticut College, 270 Mohegan Avenue, New London, CT 06320, USA

 

1Molecular Spectroscopy Symposium June 2012 RB-07

Page 2: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

CH3D Vibrational States: Polyads

 

2Molecular Spectroscopy Symposium June 2012 RB-07

a) Enneadecad: 19 overtone & combination bands

b) Nonad: 3 fundamentals 6 (overtone & combo) c) Triad: 3 fundamentals a) Nikitin et al. 2006 b) Nikitin et al. 2002 c) Nikitin et al. 1997

Focus of this study Upper part = Polyad3

12 bands, 23 sub-vibs

Page 3: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

The Enneadecad Polyad of CH3D

 

3Molecular Spectroscopy Symposium June 2012 RB-07

Prior Ennea workNikitin 2006

3250 – 3700 cm-1

for outer planets

Predicted upper state levels by extrapolating

ro-vibrational constants from Triad

and Nonad.

Ulenikov et al. 2010 (assigned positions to

33 Ennea sub-vibs)using cold data from

Zurich (ETH) FTS

Page 4: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Modeling CH3D Ennea Intensities

 

4Molecular Spectroscopy Symposium June 2012 RB-07

Lower Ennea:Nikitin et al. 2006measured and modeled 874

intensities of 6 bands

New goal:Measure more intensities and provide initial

prediction for the Upper Ennea

(Polyad3)

Page 5: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

CH3D Experimental Spectra

5Molecular Spectroscopy Symposium June 2012 RB-07

Page 6: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

CH3D at 291 K and 80 K

 

6Molecular Spectroscopy Symposium June 2012 RB-07

Kitt Peak FTS2.4 m and 4.88 torr at 291 K

Used for Nonad (2002) and lower Enneadecad (2006)

Positions and intensities retrieved by Nikitin et al.

withTomsk software

JPL Bruker0.204 m and 3.35 torr at 80 K

Positions and intensities retrieved by Brown with JPL software

Page 7: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

CH3D: retrieve line intensities one spectrum at a time

 

7Molecular Spectroscopy Symposium June 2012 RB-07

Q branch of ν3+ν4 at 4313 cm-1 (T=80 K)

Top panel: observed – synthetic

spectra

Lower panel:Red: synthetic

Black: observed

In total over 4000 features measured

at 80 K by non-linear least squares

Page 8: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Assigning CH3D Quantum Numbers

 

8Molecular Spectroscopy Symposium June 2012 RB-07

4074 cm-1 4077Tomsk analysis software: retrieves positions & intensities,

and finds quantum assignments by combination differences

Page 9: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Average CH3D intensities: (80 K JPL) + (291 K Tomsk)

 

9Molecular Spectroscopy Symposium June 2012 RB-07

Obs Pos quantaa E" E'obs(+E") Sobs(296K) Averaged cm-1 J” C” α” J’ C’ α’ cm-1 cm-1 cm/molecule %rms ===============================================================================4050.931106 2 E 1 1 E 28 24.649117 4075.580223 5.343E-23 . 4066.449698 1 E 1 1 E 28 9.130579 4075.580277 7.056E-23 .

4103.031972 2 A1 1 1 A2 19 23.279194 4126.311166 6.512E-23 .4126.311111 0 A1 1 1 A2 19 0.000000 4126.311292 1.861E-22 2.1

4112.752281 6 E 1 5 E 127 164.240493 4276.992774 5.302E-23 0.3 4126.414250 5 E 4 5 E 127 150.578239 4276.992489 7.671E-23 2.0 4193.936614 4 E 2 5 E 127 83.056222 4276.992836 9.333E-23 3.6 4079.934893 6 E 4 5 E 127 197.057437 4276.992450 3.024E-22 0.5

4145.772883 7 A1 1 7 A2 87 229.404232 4375.177115 1.143E-22 .4096.075326 8 A1 1 7 A2 87 279.101330 4375.177512 6.068E-23 1.94212.302061 6 A1 1 7 A2 87 162.875088 4375.177363 7.902E-23 2.0

4156.055376 9 E 2 9 E 213 354.230581 4510.286206 9.970E-23 0.24225.737777 8 E 2 9 E 213 284.548935 4510.286235 3.884E-23 2.94229.823556 8 E 1 9 E 213 280.462997 4510.286418 9.407E-23 1.8

4167.196358 13 A2 1 14 A1 115 704.460648 4871.657006 8.776E-23 .4155.126082 13 E 3 14 E 232 726.049202 4881.175284 6.513E-23 .

Page 10: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

1308 selected CH3D Intensities: (in units of cm/molecule at 296 K)

 

10Molecular Spectroscopy Symposium June 2012 RB-07

(2v5+v6)(2v3+v5)(v1+ v6) (v4+ v6)

(v3+ 2v5) (v3+ v4) (2v2 ) (3v5)

(v1+v5) (v4+ v5)

(v2+2v6)

Page 11: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

 

11Molecular Spectroscopy Symposium June 2012 RB-07

CH3D Vibrational sublevels

Center obs (cm-1) Number of

fitted positionsSt. Dev (10-3 cm-1)

# fitted intensities St.Dev (%)

2v5+v6 1E 4058.69288 399 1.05 215 7.32v3+v5 E 4067.85425 251 6.70 83 8.8

2v5+v6 A1 4081.32898 114 7.57 21 12.72v5+v6 A2 48 7.75 11 12.32v5+v6 2E 4102.43880 175 7.39 41 11.5

v1+v6 E 4122.58929 290 1.08 155 9.1v4+v6 A1 4163.49100 237 5.55 90 9.3v4+v6 E 4170.35959 439 6.11 201 6.7v4+v6 A2 109 6.73 28 9.2v3+2v5 A1 4215.28429 104 8.89 32 8.1v3+2v5 E 4241.74412 190 6.53 9 14.2v1+v3 A1 0 0v3+ v4 E 4313.42477 387 9.08 161 7.82v2 A1 4344.12459 178 4.93 85 6.83v5 E 4356.88614 180 7.13 7 25.43v5 A2 0 03v5 A1 4404.35936 25 8.52 1 6.6v1+v5 E 4439.73017 253 8.68 44 13.3v4+v5 A2 104 1.54 14 19.0v4+v5 E 4472.64849 352 7.73 140 10.5

v2+2v6 A1 34 6.93 4 14.6v4+v5 A1 4484.82316 131 6.31 13 14.3v2+2v6 E 4486.88302 85 9.16 7 14.9

Page 12: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

∑ Line Intensities: 11 CH3D bands

 

12Molecular Spectroscopy Symposium June 2012 RB-07

Vibrational Bands ∑ intensities calc at 296 K

#dipoles (=0)

Interactions (=1)

# lines fitted

2v3+v5 E 2.1 E-20 1 0 83 2v5+v6 A1, A2, 1E, 2E 13.0 E-20 3 2 288

v1+ v6 E 7.8 E-20 1 1 155v4+ v6 A1, A2, E 12.0 E-20 2 5 319

v3+2v5 A1, E 1.1 E-20 2 4 41v3+ v4 E 5.9 E-20 1 2 1612v2 A1 1.5 E-20 1 0 85

3v5 A1, A2, E 0.7 E-20 1 0 8v1+v5 E 1.7 E-20 1 2 44

v4+v5 A1, A2, E 8.6 E-20 2 3 167v2+2v6 A1, E 0.6 E-20 1 0 11

Page 13: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Measured (top) & Calc. (bottom) CH3DLog (intensity) vs. cm-1

 

13Molecular Spectroscopy Symposium June 2012 RB-07

4000 cm-1 4550

Page 14: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Preliminary modeling of CH3D

 

14Molecular Spectroscopy Symposium June 2012 RB-07

Page 15: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Modeling the CH3D Enneadecad

 

15Molecular Spectroscopy Symposium June 2012 RB-07

► This work has been submitted to JQSRT with a supplemental linelist of ~4000 measured positions, intensities

and known quantum assignments.More to come : HITRAN/ASA

► New measurements and analyses of line positions and intensities of CH3D in the infrared

A. Nikitin1, L. Brown2, K. Sung2, M. A. Smith4, A. Mantz5

X. Thomas3, L. Regalia3, L. Daumont3, R. Kochanov3,1, M. Rey3, V. Tyuterev3,

In order to extend the knowledge of 12CH3D weak lines, new long path FTS measurements are recorded in Reims between 1850 and 9200 cm-1 at 290 K, 2.58 Torr with path lengths of 201, 302 and 1603 m. In this work we focus particularly on the full spectral range of this polyad (3300-4550 cm-1). The aim is to complete the previous study [1] by intensity measurements of lines corresponding to higher J transitions and to improve the modelling in the 3300-4700 cm-1 range using new theoretical predictions for band centers and resonance coupling parameters.

Page 16: Preliminary modeling of CH 3 D from 4000 to 4550 cm -1 A.V. Nikitin 1, L. R. Brown 2, K. Sung 2, M. Rey 3, Vl. G. Tyuterev 3, M. A. H. Smith 4, and A.W

Acknowledgements: This work is supported by

 

16Molecular Spectroscopy Symposium June 2012 RB-07

► The ANR project “CH4@Titan” (ref: BLAN08-2_321467).

► Groupement de Recherche International SAMIA between CNRS (France),

RFBR (Russia) and CAS (China).

► IDRIS computer centre of CNRS France and of the computer centre Reims-

Champagne-Ardenne.

► LEFE-CHAT INSU project APOA1 (CNRS, France).

► Program Number 22 ‘‘The fundamental problems of investigation and

exploration of the Solar System’’ of Russian academia of science.

► Part of the research at the Jet Propulsion Laboratory, California Institute of

Technology, the NASA Langley Research Center and Connecticut College was

performed under contracts /grants with the National Aeronautics and Space

Administration.

A. Nikitin. thanks the ICM@MG SB RAS (Novosibirsk) and SKIF Siberia (Tomsk).