prediction of temperature distribution of steady state rolling tires e. ledbury, l. wang, d....

12
Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Upload: april-atkinson

Post on 11-Jan-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Prediction of Temperature Distribution of Steady State Rolling Tires

E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli

Mississippi State University

Page 2: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Introduction

Diagram of an example of a coupled thermo-mechanical model including three modules

Page 3: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Deformation Module

• Use ABAQUS tire analysis capability

• Hyperelastic material

• Steady-state rolling analysis

• Input: weight, speed, inflation pressure, road friction

• Output: Strain – Stress

Page 4: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Mechanical Analysis Sequence

Page 5: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Dissipation Module

total

loss

U

UH

The energy dissipated in the tire by viscoelastic effects can be obtained from the hysteresis of the material

totalU

lossU Strain energy lost by dissipation

Total strain energy in tire (obtained from Mechanical Module)

H Hysteresis (obtained from DMA testing)

)( totalUH

Heat generationD

VUq Lloss

LV Vehicle speed

D Tire diameter

Page 6: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

2D Axi-symmetric Tire Model

Tire (185/60 R15) Geometry and Meshing

Page 7: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Material Properties(Lin and Hwang, 2004)

Components Apex InnerLiner Bead Rubber, Ply SideWall TreadMaterial Apex InnerLiner Rebar Rubber SideWall

CompoundTread

Properties Hyperelastic Hyperelastic Elastic Hyperelastic Hyperelastic HyperelasticDensity (kg/m³) 1200 1200 6500 1200 1200 1200

Poison's Ratio - - 0.3 - -

Young's Modulus (Pa)

- - 207×109 - -

Mooney-Rivlin Constants (MPa)

C10 = 118.9C01= -71.8D1 = 0.003

C10 = 118.9C01= -71.8D1 = 0.01

- C10 = 118.9C01= -71.8D1 = 0.03

C10 = 118.9C01= -71.8D1 = 0.01

C10 = 118.9C01= -71.8D1 = 0.04

Page 8: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Displacement Contour

Displacement for half-tire static modeling (6 kN, 50 psi)

Page 9: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Displacement vs. Loading

Comparison between model prediction and experiments (Lin and Hwang, 2004)

Page 10: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

3D Full-Tire Steady State Rolling

Displacement

Displacement for 3D full-tire steady state rolling modeling (6kN, 50 psi, 80 km/h)

Page 11: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Strain Energy Density

ESEDEN at the cross-section connecting to the road contact for 3D full tire steady state

rolling modeling (6kN, 50 psi, 80 km/h)

Page 12: Prediction of Temperature Distribution of Steady State Rolling Tires E. Ledbury, L. Wang, D. Johnson, C. Bouvard, S.D. Felicelli Mississippi State University

Temperature Distribution (50 psi, 60 km/h)

Max Temp. in Tire Shoulder