predicting the fraction of mixing between latex particles · pdf filepy-pbma-latex-2 1.8 120...

21
Predicting the Fraction of Mixing Between Latex Particles Remi Casier Profs. Jean Duhamel and Mario Gauthier Department of Chemistry, University of Waterloo, Waterloo, Ontario 1

Upload: nguyenquynh

Post on 07-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

PredictingtheFractionofMixingBetweenLatexParticles

RemiCasierProfs.JeanDuhamelandMarioGauthier

DepartmentofChemistry,UniversityofWaterloo,Waterloo,Ontario

1

• Latex:

o Stabledispersionofpolymerparticlesinanaqueoussolution

• Applications:

o Products:glovesandtires

o Additives:adhesivesandpapercoatings

o Films:paintsandcoatings

2

Introduction

Tiretread,<http://mrg.bz/q7fSMj>.

Paintedboards,<http://mrg.bz/q7fSMj>.

Film FormationfromaLatexDispersion

3

• Theminimumfilmformationtemperature(MFT)mustbereachedbeforepolymerchainscaninterdiffuse (MFT≈Tg)1

• Interparticlepolymerdiffusion(IPD)duringthecoalescenceoflatexparticlesproducesahomogeneousfilm

• MechanicalpropertiesarehighlydependentontheextentofIPD2

1. Zhao,C.,Wang,Y.,Hruska,Z.,Winnik,M.MolecularAspectsofLatexFilmFormation:AnEnergy-TransferStudy;Macromolecules 1990,23,4082-4087.

2. Gauthier,C.;Guyot,A.;Perez,J.;Sindt,O.FilmFormationandMechanicalBehaviorofPolymerLaticies.FilmFormationinWaterborneCoatings, Chapter10, 1996, 163-178.Washington,DC:AmericanChemicalSociety.

• GoodMechanicalProperties

• PoorMechanicalProperties

T>MFTT>MFT

Stage1:WaterEvaporation

Stage2:ParticleDeformation

Stage3:Coalescence

T>MFT

SmallAngleNeutronScattering(SANS)

• Deuteratedpolymersareexpensive• Requiresaneutronsource• Smallparticlesonly

FluorescenceResonanceEnergyTransfer(FRET)

• Bothlatexesmustbelabeledwithdyes• Requirestime-resolvedfluorescence

4

QuantificationofIPD

D

D DD

DDA

AAA D

AA

AIPD

IPD

ProbingIPD:

PyreneExcimerFluorescence(PEF)

5

• Asimplermethodtoprobethedegreeofinterparticlepolymerdiffusion(IPD)inlatexfilms1

• Usingafluorescently-labeledlatexwithanemissionthatchangesdependingonthedegreeofIPD

• Asinglefluorophorepyrene(Py)canbeused• Onlyonefluorescently-labeledlatexisrequired

• Steady-statefluorescencecanbeused

1. Casier,R.;Gauthier,M.;Duhamel,J.UsingPyreneExcimerFluorescencetoProbePolymerDiffusioninLatexFilms.Macromolecules 2017,50,1635–1644.

PyreneFluorescence

0.0

0.2

0.4

0.6

0.8

1.0

350 400 450 500 550 600

Fluo

.Int.(a.u.)

Wavelength(nm)

IM

IEExcimer

Monomer

IE/IM – ameasureoftheamountofexcimerformed

6

* *( ) ( )h hPy Py Py Py PyPy PyPyn n+ ¾¾® + ¾¾® ¬¾¾MonomerEmission ExcimerEmission

7

InterparticlePolymerDiffusionusingPEF

t=0 t˃0

•HighCpy •LowCPy

•Lotsofexcimerformation •Littleexcimerformation

•HighIE/IM ratio •LowIE/IM ratio

PyPyPy

Py Py

PyPy

Py

PyPy

Py

PyPy

Py

Py

Py

Py

Py Py

Py

Py

8

PyreneLabeledLatex

PyEG3MA

• Hydrophobicityofthemonomerwascontrolledbyvaryingthelengthoftheoligo(ethyleneglycol)unit

OO

O

3

• Semi-batchemulsionprocess

• Copolymerizedwithn-butylmethacrylate(BMA)toyieldapoly(n-butylmethacrylate)randomlylabeledwithpyrene(Py-PBMA)

Py-PBMALatex

x 1-x

9

Sample PyLM PyLMIncorporated

(mol%)

ParticleSize(nm)

PSD Mw(kg/mol)

Ð

Py-PBMA-Latex-1 PyEG3MA 1.9 118 1.04 820 1.9

Py-PBMA-Latex-2 PyEG3MA 1.8 120 1.04 360 1.8

GPC:Py-PBMA-Latex-1

• Afilmwaspreparedfromamixtureof5wt%Py-PBMA-latexin95wt%PBMA-latex

10

FilmPreparationandAnnealing

Film LatexLatexPyrene

Content (mol%)

ParticleSize

(nm)PSD

Mw

(kg/mol)Đ

Weight

Fraction

1Py-PBMA-Latex-1 1.9 118 1.04 820 1.9 0.05

PBMA-Latex-1 0 95 1.04 1,000 2.0 0.95

2Py-PBMA-Latex-2 1.8 120 1.04 360 1.8 0.05

PBMA-Latex-2 0 119 1.04 320 1.7 0.95

···1)Anneal2)Freeze

1)Anneal2)Freeze

FluorescenceMeasurements FluorescenceMeasurements FluorescenceMeasurements

1)Anneal2)Freeze

0.0

0.2

0.4

0.6

0.8

1.0

1.2

350 400 450 500 550 600

Flu

ores

cenc

e In

tens

ity (a

.u.)

Wavelength (nm)

0

0.01

0.02

0.03

0.04

0.05

500 510 520 530

11

Steady-StateFluorescence:Film1

Annealing Time (min.)

IE/IM

0 0.1325 0.10110 0.08560 0.07t∞ 0.04

IncreasingAnnealingTime

Tan=102°C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800

f m(a

.u.)

Annealing Time (min.)

FractionofMixing

12

𝑓" 𝑡 =

𝐼&𝐼' ())

− 𝐼&𝐼' (),-)

𝐼&𝐼' ().)

− 𝐼&𝐼' (),-)

Film1:Mw =820kg/mol Film2:Mw =360kg/mol

119 °C

112 °C111 °C

119 °C 112 °C111 °C 102 °C

88 °C

84 °C

75 °C

98 °C94 °C

102 °C

88 °C84 °C

75 °C

98 °C94 °C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800

f m(a

.u.)

Annealing Time (min.)

FractionofMixing:LinearTrend

13

Film1:Mw =820kg/mol Film2:Mw =360kg/mol

0.00.10.20.30.40.50.60.70.80.91.0

1 10 100 1000 10000f m

(a.u

.)

Annealing Time (min.)

0.00.10.20.30.40.50.60.70.80.91.0

1 10 100 1000 10000

f m(a

.u.)

Annealing Time (min.)

( ) ( ) ( ), ln( )m an anf T t A T t B T= × +

119 °C

75 °C

119 °C

75 °C

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

340 360 380 400

A(T

) (K

-1)

Annealing Temperature (K)

fm:SlopesandIntercepts

14

( ) ( ) ( ), ln( )m an anf T t A T t B T= +

( ) ( ) ( ) ( )4 3, 6.71 10 0.184 ln 7.74 10 2.65m an anf T t T t T- -= ´ - + ´ -

( ) ( ) ( ) ( )4 2, 0.172 10 0.144 ln 1.16 10 4.05m an anf T t T t T- -= - ´ + + ´ -

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

340 360 380 400

B(T

)

Annealing Temperature (K)

Film1

Film 2

Film1

Film 2

Film1:

Film 2:

Predictingfm:TimeandTemperature

15

0.00.10.20.30.40.50.60.70.80.91.0

1 10 100 1000 10000

f m(a

.u.)

Annealing Time (min.)

0.00.10.20.30.40.50.60.70.80.91.0

1 10 100 1000 10000

f m(a

.u.)

Annealing Time (min.)

Film1:Mw =820kg/mol Film2:Mw =360kg/mol

( ) ( ) ( )

( )

4

3

, 6.71 10 0.184 ln

7.74 10 2.65

m an anf T t T t

T

-

-

= ´ -

+ ´ -

( ) ( ) ( )

( )

4

2

, 0.172 10 0.144 ln

1.16 10 4.05

m an anf T t T t

T

-

-

= - ´ +

+ ´ -

119 °C

75 °C

119 °C

75 °C

Applications

16

( ) ( ) ( ), ln( )m an anf T t A T t B T= +( )

( )exp

desiredm

an

f B Tt

A Tæ ö-

= ç ÷ç ÷è ø

• Theproperties ofafilmaredirectlyrelatedtotheextentofcoalescence1

1. Gauthier,C.;Guyot,A.;Perez,J.;Sindt,O.FilmFormationandMechanicalBehaviorofPolymerLaticies.FilmFormationinWaterborneCoatings, Chapter10, 1996, 163-178.Washington,DC:AmericanChemicalSociety.

• Predictthecoalescencetimerequiredtoreachaspecificfm.

Example:• Abrasionresistance

• Mechanicallyrobust• Lowfm ≈0.4

• Film1(102°C)tan =34min.• Corrosionresistance

• Void-free• Highfm ≈ 0.95

• Film1(102°C)tan =3months

T>MFT

H2O

H2O

H2OH2O

OnsetTimeforDiffusion

17

0.0001

0.001

0.01

0.1

1

10

2.5 2.6 2.7 2.8 2.9

t an(f

m=

0) (m

in.)

1000·T-1 (K-1)

Film1(Mw =820kg/mol):Ea =109± 13kJ/mol

Film2(Mw =360kg/mol):Ea =169± 21kJ/mol

Film1

Film 2

WhydothechainsinFilm1flowsooner?

0.0

0.2

0.4

0.6

0.8

1.0

0.01 10 10000

f m(a

.u.)

tan (min.)

ReleaseofStrainT>MFT

FutureWork

Probethediffusionbetweenasymmetriclatexnanoparticles:

•Particlesize•Molecularweight•PolymerType•PlasticizerContent

Increasepyrenemonomerincorporationtoenhanceexcimerformation18

Py

Py

Py

PyPy

Py

Py

Py

Zehou You:PosterSession

Supervisors:Prof.JeanDuhamelProf.MarioGauthier

AllmembersoftheDuhamelandGauthiergroups.

Thankyouforyourattention!

19

Acknowledgements

20

WhyUsePyreneExcimerFormation?

21

Requirement FRET PyreneExcimerFormation

InstrumentationTime-resolvedfluorometer

(complex andexpensive)

Steady-statefluorometer

(simpleandinexpensive)

DataAcquisition ~10minutesperdecay ~30secondsperspectrum

FluorescenceAnalysisDecaymustbemodeled,fitted,and

thenintegratedIE/IM ratio

Fluorescently-LabeledLatex2

(donorlabeled,acceptorlabeled)

1

(pyrenelabeled)

Film Composition 100wt%labeled-latex≤5wt%labeled-latex

≥95wt%native-latex

LatexNanoparticles Symmetrical SymmetricalorAsymmetrical