predicting local geometric properties of dna from ...arbogast/cam397/gonzalez1.pdf · introduction...

47
Introduction Geometric model Diffusion model Numerical method Preliminary results Predicting local geometric properties of DNA from hydrodynamic diffusion data O. Gonzalez and J. Li UT-Austin 27 October 2008 O. Gonzalez and J. Li UT-Austin Hydrodynamic modeling of DNA

Upload: others

Post on 03-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Predicting local geometric properties of DNAfrom hydrodynamic diffusion data

O. Gonzalez and J. Li

UT-Austin

27 October 2008

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 2: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Introduction

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 3: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Goal

To obtain improved estimates of the material parameters thatdescribe sequence-dependent shape of DNA.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 4: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Approach

Refine parameters through hydrodynamic diffusion modeling.

GGTAATGCTTAACACCTGTACGTTAATTCGTAGGA

TACCCGTA

geometric

modeldiffusion

step modelrefinement

diffusionexperiment predicted

behavior

test shapesmeasuredbehavior

parameters

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 5: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Outline

1 Geometric model

2 Diffusion model

3 Numerical method

4 Preliminary results

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 6: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Geometric model

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 7: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Basepair model

DNA can be represented as a tube formed by oriented discs.

T A

CG

CG

GC

AT r

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 8: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Model parameters

XX

YYXY XY

X X

Y Y

η θ

T

A

C

G

(*,*,*)

X

(*,*,*) (*,*,*) (*,*,*)

CGA T

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

(*,*,*)

Y

ηXY = relative displacement for dimer step XY.

θXY = relative rotation for dimer step XY.

r = radius of tubular surface.

η = ηXY ∈ R26, θ = θXY ∈ R26, r ∈ R.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 9: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Parameter estimates

Tilt | Roll | Twist×10−1 (deg)†

X X

Y Y

Twist

RollTilt Slide

Rise

Shift

r

T A C G

A 0.0|1.1|2.9 −1.4|0.7|3.5 −0.1|0.7|3.2 −1.7|4.5|3.2T −1.4|0.7|3.5 0.0|3.3|3.8 −1.5|1.9|3.6 0.5|4.7|3.7G −0.1|0.7|3.2 −1.5|1.9|3.6 0.0|0.3|3.4 −0.1|3.6|3.3C −1.7|4.5|3.2 0.5|4.7|3.7 −0.1|3.6|3.3 0.0|5.4|3.6

†From x-ray data: Olson et al, PNAS 95 (1998) 11163.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 10: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Parameter estimates

Shift×10 | Slide×10 | Rise (A)†

X X

Y Y

Twist

RollTilt Slide

Rise

Shift

r

T A C G

A 0.0|−5.9|3.3 −0.3|−0.8|3.3 1.3|−5.8|3.4 0.9|−2.5|3.3T −0.3|−0.8|3.3 0.0| 0.5|3.4 −2.8| 0.9|3.4 0.9| 5.3|3.3G 1.3|−5.8|3.4 −2.8| 0.9|3.4 0.0|−3.8|3.4 0.5|−2.2|3.4C 0.9|−2.5|3.3 0.9| 5.3|3.3 0.5|−2.2|3.4 0.0| 4.1|3.4

†From x-ray data: Olson et al, PNAS 95 (1998) 11163.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 11: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Parameter estimates

Hydrated radius (A)‡

X X

Y Y

Twist

RollTilt Slide

Rise

Shift

r

r.= 13.

‡Using straight model: Tirado et al, J Chem Phys 81 (1984) 2047.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 12: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Model construction

X X X XX X X XS = X X X X

1 2 3 n1 2 3 n1 2 3 n

Points qa(S , η, θ), Curve γ(S , η, θ), Surface Γ(S , η, θ, r)∗.

* Assumed rigid.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 13: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Example 40-bp sequences

A=aqua, T=blue, G=gold, C=red

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 14: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Example 120-bp sequences

A=aqua, T=blue, G=gold, C=red

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 15: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Diffusion model

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 16: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Single molecule drift dynamics

Setup. Consider a single molecule in a fluid subject to externalloads.

v(t)

(t)

DNA

fluid

f τ

ω

ext ext

(v , ω)(t) = linear, angular velocities.

(f , τ)ext(t) = external force, torque.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 17: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Single molecule drift dynamics

Drift velocitiesωv ,

t

v , ω

t

v(t), ω(t) = 1T

∫ t+Tt v(s), ω(s) ds.

T = window size.

Governing eqns L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

.

L,M ∈ R6×6 Hydrodynamic drag,mobility matrices of molecule.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 18: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Single molecule drift dynamics

Drift velocitiesωv ,

t

v , ω

t

v(t), ω(t) = 1T

∫ t+Tt v(s), ω(s) ds.

T = window size.

Governing eqns L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

.

L,M ∈ R6×6 Hydrodynamic drag,mobility matrices of molecule.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 19: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Single molecule drift dynamics

Drift velocitiesωv ,

t

v , ω

t

v(t), ω(t) = 1T

∫ t+Tt v(s), ω(s) ds.

T = window size.

Governing eqns L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

.

L,M ∈ R6×6 Hydrodynamic drag,mobility matrices of molecule.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 20: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Definition of hydrodynamic matrices

Stokes eqns

µ∆u = ∇p in R3\B∇ · u = 0 in R3\B

u = U[v , ω] on ∂Bu, p → 0 as |x | → ∞.

BCs, loadsU[v , ω] = v + ω × (x − c)

σ[u, p] = −pI + µ(∇u +∇uT

)f [σ] =

∫∂B σn dA

τ [σ] =∫∂B(x − c)× σn dA.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 21: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Definition of hydrodynamic matrices

Stokes eqns

µ∆u = ∇p in R3\B∇ · u = 0 in R3\B

u = U[v , ω] on ∂Bu, p → 0 as |x | → ∞.

BCs, loadsU[v , ω] = v + ω × (x − c)

σ[u, p] = −pI + µ(∇u +∇uT

)f [σ] =

∫∂B σn dA

τ [σ] =∫∂B(x − c)× σn dA.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 22: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Definition of hydrodynamic matrices

Linearity result. The map from (v , ω) ∈ R6 to (f , τ) ∈ R6 islinear and invertible:

(v , ω)Stokes−→ (u, p)

∂−→ σ

∫−→ (f , τ).

Thus there exists L,M ∈ R6×6 such that[fτ

]= −

[L1 L3

L2 L4

]︸ ︷︷ ︸

L

[vω

],

[vω

]= −

[M1 M3

M2 M4

]︸ ︷︷ ︸

M

[fτ

].

L,M are called the Stokes drag, mobility matrices.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 23: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Definition of hydrodynamic matrices

Linearity result. The map from (v , ω) ∈ R6 to (f , τ) ∈ R6 islinear and invertible:

(v , ω)Stokes−→ (u, p)

∂−→ σ

∫−→ (f , τ).

Thus there exists L,M ∈ R6×6 such that[fτ

]= −

[L1 L3

L2 L4

]︸ ︷︷ ︸

L

[vω

],

[vω

]= −

[M1 M3

M2 M4

]︸ ︷︷ ︸

M

[fτ

].

L,M are called the Stokes drag, mobility matrices.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 24: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Properties of hydrodynamic matrices

L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

L,M are symmetric, positive-definite.

L,M depend on shape of ∂B and and ref point c .

Must solve Stokes equations in R3\B to determine.

Characterize velocities (v , ω) for given loads (f , τ)ext.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 25: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Properties of hydrodynamic matrices

L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

L,M are symmetric, positive-definite.

L,M depend on shape of ∂B and and ref point c .

Must solve Stokes equations in R3\B to determine.

Characterize velocities (v , ω) for given loads (f , τ)ext.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 26: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Properties of hydrodynamic matrices

L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

L,M are symmetric, positive-definite.

L,M depend on shape of ∂B and and ref point c .

Must solve Stokes equations in R3\B to determine.

Characterize velocities (v , ω) for given loads (f , τ)ext.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 27: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Properties of hydrodynamic matrices

L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

L,M are symmetric, positive-definite.

L,M depend on shape of ∂B and and ref point c .

Must solve Stokes equations in R3\B to determine.

Characterize velocities (v , ω) for given loads (f , τ)ext.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 28: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Properties of hydrodynamic matrices

L

[vω

]=

[fτ

]ext

or

[vω

]= M

[fτ

]ext

L,M are symmetric, positive-definite.

L,M depend on shape of ∂B and and ref point c .

Must solve Stokes equations in R3\B to determine.

Characterize velocities (v , ω) for given loads (f , τ)ext.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 29: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Collective drift dynamics

Setup. Consider a dilute solution of identical molecules in a fluidsubject to external loads.

Dom x SO3 Ω x A

Physicaldomain

(r,Q)

Configurationspace

Local coordspace

(q,η )

Dom

ext

extτ

f

σ = mass concentration in config space.

hext = (f , τ)ext = external loads.

M = Stokes mobility matrix.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 30: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Collective drift dynamics

Governing eqns

Dom x SO3 Ω x A

(r,Q) (q,η )

Dom

ext

extτ

f

σt + g−1∇ · (gJ) = 0 in Ω× A, t > 0J · n = 0 on (∂Ω)× A, t ≥ 0J · n periodic on Ω× (∂A), t ≥ 0σ = σ0 in Ω× A, t = 0.

J = −D∇σ + σChext, D = βbMbT , C = bMc .β = Boltzmann factor. g , b, c = geometric factors.

D,C ∈ R6×6 local diffusion, convection matrices.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 31: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Collective drift dynamics

Governing eqns

Dom x SO3 Ω x A

(r,Q) (q,η )

Dom

ext

extτ

f

σt + g−1∇ · (gJ) = 0 in Ω× A, t > 0J · n = 0 on (∂Ω)× A, t ≥ 0J · n periodic on Ω× (∂A), t ≥ 0σ = σ0 in Ω× A, t = 0.

J = −D∇σ + σChext, D = βbMbT , C = bMc .β = Boltzmann factor. g , b, c = geometric factors.

D,C ∈ R6×6 local diffusion, convection matrices.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 32: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Collective drift dynamics

Length, time scales

Dom x SO3Dom Molecule

ext

extτ

f

L

L

1

Trans: ttrn = time to drift across Dom

Rot: trot = time to drift across SO3

trotttrn

∼(`

L

)2

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 33: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Collective drift dynamics

Experimentsext

extτ

f

L

M =

»M1 M3M2 M4

–, trot

ttrn∼

(`L

)2

type scale measureable

ultracentrifugedyn light scattering

ttrn Dtrn =1

3tr(M1)

birefringencecircular dichroism

trot Drot =1

2tr(P⊥

d M4P⊥d )∗

* d=molecular axis of polarization

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 34: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 35: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

Stokes eqns

Γ= B

Bµ∆u = ∇p in R3\B∇ · u = 0 in R3\B

u = U[v , ω] on ∂Bu, p → 0 as |x | → ∞.

Gu,p(x , y),Hu,p(x , y) = stokeslet, stresslet (Green’s) functions.

Surface potentials

u(x) = λ∫

γGu(x , ξ)ψ(y(ξ)) dAξ + (1− λ)

∫ΓHu(x , y)ψ(y) dAy

p(x) = λ∫

γGp(x , ξ)ψ(y(ξ)) dAξ + (1− λ)

∫ΓHp(x , y)ψ(y) dAy .

ψ(y) = potential density. λ, φ = conditioning parameters.

(u, p) satisfy Stokes eqns w/o BC for any ψ, λ, φ.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 36: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

Stokes eqns

ξ γ

y

n(y) φ

Γ= B

µ∆u = ∇p in R3\B∇ · u = 0 in R3\B

u = U[v , ω] on ∂Bu, p → 0 as |x | → ∞.

Gu,p(x , y),Hu,p(x , y) = stokeslet, stresslet (Green’s) functions.

Surface potentials

u(x) = λ∫

γGu(x , ξ)ψ(y(ξ)) dAξ + (1− λ)

∫ΓHu(x , y)ψ(y) dAy

p(x) = λ∫

γGp(x , ξ)ψ(y(ξ)) dAξ + (1− λ)

∫ΓHp(x , y)ψ(y) dAy .

ψ(y) = potential density. λ, φ = conditioning parameters.

(u, p) satisfy Stokes eqns w/o BC for any ψ, λ, φ.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 37: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

Integral eqn for ψξ γ

y

n(y) φ

Γ= Bλ

∫γ

Gu(x , ξ)ψ(y(ξ)) dAξ

+ (1− λ)∫ΓHu(x , y)[ψ(y)− ψ(x)] dAy

= U[v , ω](x), ∀x ∈ Γ.

Operator has bounded inverse, integrands ∀λ ∈ (0, 1), φ ∈ (0, φΓ).

Approximation∑Nb=1 Kabψb = Ua[v , ω], a = 1, . . . ,N.

(v , ω) −→ ψ −→ (f , τ)︸ ︷︷ ︸6 times

−→ L −→ M −→ (Dtrn,Drot).

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 38: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

Integral eqn for ψξ γ

y

n(y) φ

Γ= Bλ

∫γ

Gu(x , ξ)ψ(y(ξ)) dAξ

+ (1− λ)∫ΓHu(x , y)[ψ(y)− ψ(x)] dAy

= U[v , ω](x), ∀x ∈ Γ.

Operator has bounded inverse, integrands ∀λ ∈ (0, 1), φ ∈ (0, φΓ).

Approximation∑Nb=1 Kabψb = Ua[v , ω], a = 1, . . . ,N.

(v , ω) −→ ψ −→ (f , τ)︸ ︷︷ ︸6 times

−→ L −→ M −→ (Dtrn,Drot).

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 39: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

Conditioning vs (λ, φ)

0 0.2 0.4 0.6 0.8 10

1

σ min

λ

1

7

13

σ max

0.1 0.3 0.5 0.7 0.90.5

1

1.5

2

2.5

3

λ

log 10

(σm

ax/σ

min

)φ/φΓ =

1

8(dots),

2

8(crosses),

3

8(pluses),

4

8(stars), . . ..

Condition numberσmax

σmin≤ 101.5 for (λ, φ/φΓ) near (

1

2,1

2).

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 40: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Numerical method

Accuracy vs h

4 8 12 16 2028.45

28.5

28.55

28.6

1/h

|F|

5 10 15 2065.3

65.4

65.5

65.6

1/h

|T|

|∆f ||f | ,

|∆τ ||τ | ≤ 0.1% over range of geometries of interest.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 41: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Preliminary results

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 42: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Application: radius estimation

Given: Measured values of Dtrn and Drot on various sequences.

Find: Radius r of hydrated DNA using two different geometricalmodels:

Classic straight model.

Sequence-dependent model.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 43: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Results for classic model: Dtrn vs length

0 20 40 60 80 100 120 140 1601

1.5

2

2.5

3

3.5

4

4.5

5

basepairs n

dim

ensi

onle

ss D

t x

n

Symbols: experiments (ultracentrifuge, light scattering,electrophoresis).

Curves: numerics w/r = 10, 11, . . . , 15A (top to bottom).

Results predict DNA radius of r = 10− 15A.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 44: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Results for sequence-dependent model: Dtrn vs length

0 20 40 60 80 100 1201

1.5

2

2.5

3

3.5

4

4.5

5

basepairs n

dim

ensi

onle

ss D

t x

n

Curves: numerics w/r = 10, 11, . . . , 15A (top to bottom).

Crosses, pluses: random sequences w/r = 10, 15A.

Results show systematic offset.

Results now predict DNA radius of r = 12− 17A.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 45: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Results for classic model: Drot vs length

0 20 40 60 80 100 120 140 1600

0.5

1

1.5

2

2.5

3

basepairs n

dim

ensi

onle

ss D

r x

n^3

Assume: polarization axis is long principal axis.

Symbols: experiments (birefringence, light scattering).

Curves: numerics w/r = 12, 11, . . . , 18A (top to bottom).

Results predict DNA radius of r = 13− 17A.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 46: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Results for sequence-dependent model: Drot vs length

0 20 40 60 80 100 1200

0.5

1

1.5

2

2.5

3

3.5

4

basepairs n

dim

ensi

onle

ss D

r x

n^3

Assume: polarization axis is long principal axis.

Curves: numerics w/r = 12, 11, . . . , 18A (top to bottom).

Crosses, pluses: random sequences w/r = 12, 18A.

Results show dramatic dependence on curvature.

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA

Page 47: Predicting local geometric properties of DNA from ...arbogast/cam397/gonzalez1.pdf · Introduction Geometric model Diffusion model Numerical method Preliminary results Collective

Introduction Geometric model Diffusion model Numerical method Preliminary results

Concluding remarks

Simplest model of sequence-dependent DNA geometry involves

many parameters (η ∈ R26, θ ∈ R26, r ∈ R).

Estimates for all parameters exist, but there is little consensus.

Hydrodynamic modeling offers promising approach to validate

and refine parameters.

Successful realization of approach poses many challenges.

Support

NSF

O. Gonzalez and J. Li UT-Austin

Hydrodynamic modeling of DNA