precision physics with inclusive b decays · 2002. 10. 9. · nuclear beta decay bd b d mixing...

48
Precision Physics with inclusive B decays Christian Bauer UC San Diego In collaboration with Ben Grinstein, Zoltan Ligeti, Mike Luke, Aneesh Manohar Christian Bauer @ SLAC, 8/9 2002 – p.1

Upload: others

Post on 19-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Precision Physics with inclusive Bdecays

Christian Bauer

UC San Diego

In collaboration with

Ben Grinstein, Zoltan Ligeti, Mike Luke, Aneesh Manohar

Christian Bauer @ SLAC, 8/9 2002 – p.1

Page 2: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Outline

Introduction

Fit to inclusive shape variablesDiscussion of available dataResults for mb and |Vcb|

Discussion of errorrs

BABAR hadronic momentOverview of measurementRelation between experiment and theorySome discussions

Conclusions

Christian Bauer @ SLAC, 8/9 2002 – p.2

Page 3: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Introduction

Christian Bauer @ SLAC, 8/9 2002 – p.3

Page 4: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

The Flavor Sector of the SM

Flavor changing processes at low energies

Interactions mediated by local 4-Fermion interactions

b b

dd_

_

b

c

c

s

_d

u

e

ν_

Nuclear Beta decay Bd − B̄d mixing B → ψKs

There are hundreds of different interactions

What do we know about them?

Christian Bauer @ SLAC, 8/9 2002 – p.4

Page 5: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

The Flavor Sector of the SM

Flavor changing processes in the Standard model

Interactions mediated by interactions with W boson

b b

dd_

_d u

e

ν_

Nuclear Beta decay Bd − B̄d mixing

There are 11 parameters:Fermi coupling constant GF

6 quark masses4 parameters in the CKM matrix (A, λ, ρ, η)

How to test this prediction?

Christian Bauer @ SLAC, 8/9 2002 – p.4

Page 6: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Information from B decays

Most of B decays can be described by

mt = 175± 5, mu,d,s = 0, |Vus| = 0.2169± 0.0026

GF = (1.16639± 0.00001)× 10−5GeV−2

In addition to

Two quark masses mc and mb

Three additional CKM parameters

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

=

1− λ2

2λ Aλ3(ρ− iη)

−λ 1− λ2

2Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

Precise measurement of |Vcb| crucial

Christian Bauer @ SLAC, 8/9 2002 – p.5

Page 7: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Information from B decays

Most of B decays can be described by

mt = 175± 5, mu,d,s = 0, |Vus| = 0.2169± 0.0026

GF = (1.16639± 0.00001)× 10−5GeV−2

In addition to

Two quark masses mc and mb

Three additional CKM parameters

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

=

1− λ2

2λ Aλ3(ρ− iη)

−λ 1− λ2

2Aλ2

Aλ3(1−ρ− iη) −Aλ2 1

Precise measurement of |Vcb| crucial

Christian Bauer @ SLAC, 8/9 2002 – p.5

Page 8: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

The Unitarity Triangle

K0L

νν0π K0

Lπ 0 e e+ -

ε /ε’

K νν+ +π

B lld

B llXd

B Xd νν

|V /V |ub cbη

ρ0-1 1 2

1

0.5

1.5

γ

α

β

A

C

B

ε

B -B0 0

Christian Bauer @ SLAC, 8/9 2002 – p.6

Page 9: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Checking this picture

Why is it hard to check this picture?

Relations are between parton model amplitudes

Measurements are done with hadrons

We have to understand the hadronization effects

Be very careful(Don’t believe everything theorists tell you)

Christian Bauer @ SLAC, 8/9 2002 – p.7

Page 10: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

What to believe?

Model dependent Results

Assume model to calculate strong interaction effect

How do we know whether to believe the model?

How to estimate uncertainties of model?

Model independent results

Strong interaction effect calculable in limit of QCD

Corrections are parametrically suppressed

〈O〉 = (calc)

[

1 +∑

k

(small parameter)k

]

Christian Bauer @ SLAC, 8/9 2002 – p.8

Page 11: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Model independent toolsNeed a parametrically small quantity ⇒ separated scales

Spin Flavor symmetry⇒ reduction of form factors

Non-relativistic QCD⇒ Quarkonium binding effects

Large Energy Expansion⇒ NP effects in heavy to light decays

Operator Product Expansion⇒ NP effects in inclusive processes

Christian Bauer @ SLAC, 8/9 2002 – p.9

Page 12: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Model independent toolsNeed a parametrically small quantity ⇒ separated scales

chiral limit mu,d � Λχ

heavy quark limit mb � ΛQCD

Spin Flavor symmetry⇒ reduction of form factors

Non-relativistic QCD⇒ Quarkonium binding effects

Large Energy Expansion⇒ NP effects in heavy to light decays

Operator Product Expansion⇒ NP effects in inclusive processes

Christian Bauer @ SLAC, 8/9 2002 – p.9

Page 13: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Model independent toolsNeed a parametrically small quantity ⇒ separated scales

chiral limit mu,d � Λχ

heavy quark limit mb � ΛQCD

Spin Flavor symmetry⇒ reduction of form factors

Non-relativistic QCD⇒ Quarkonium binding effects

Large Energy Expansion⇒ NP effects in heavy to light decays

Operator Product Expansion⇒ NP effects in inclusive processes

Christian Bauer @ SLAC, 8/9 2002 – p.9

Page 14: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Operator Product Expansion

Describe the decay B → X`ν̄ using optical theorem

Γ ∼∑

X

|〈B|Jµ|X〉|2 ∼

d4q e−iq·xIm〈B|T{Jµ†(x)Jν(0)}|B〉

Intermediate state off shell → propagates short distance

b b

q q

b b b b

1mb

2+

Expand in terms of local operators (OPE)Similar to Deep Inelastic Scattering

Christian Bauer @ SLAC, 8/9 2002 – p.10

Page 15: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Inclusive B decays

Typical OPE result for differential spectrum looks like

dX=

dΓpart

dX+

Λ̄

mMfΛ(X) +

λi

m2M

fλi(X) +

ρi

m3M

fρi(X) + . . .

Typical OPE result for moments of spectra looks like

〈X〉 = 〈X〉part +Λ̄

mMFΛ +

λi

m2M

Fλi+

ρi

m3M

Fρi+ . . .

All inclusive results given in terms of 9 parameters:{Λ̄, λ1, λ2, ρ1, ρ2, T1, T2, T3, T4}

Three relations amongst parameters ⇒ 6 parameters

Christian Bauer @ SLAC, 8/9 2002 – p.11

Page 16: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Differential Spectra in the OPE

Which quantities can be calculated in OPE?

To compare OPE resultswith data, have to smearresult

Smearing has to be over"many resonances"

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

Bacci et al.Cosme et al.Mark IPlutoCornell,DORISCrystal BallMD-1 VEPP-4VEPP-2M NDDM2BES 1999BES 2001BES 2001

Burkhardt, Pietrzyk 2001

15 % 5.9 % 6 % 1.4 %

rel. err. cont.

Rhad

ρ,ω,φ Ψ's Υ's

√s in GeV

Moments of distributions are calculable

Christian Bauer @ SLAC, 8/9 2002 – p.12

Page 17: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

CLEO analysis of Vcb

Measure total inclusivedecay rate Γsl

Measure Λ̄ and λ1 frommoments of the decayspectra

Determine |Vcb|

V CLEOcb = [40.4± 0.5Γ± 0.4mb,λ1

± 0.9th]× 10−3

Christian Bauer @ SLAC, 8/9 2002 – p.13

Page 18: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Issues with the OPE

To what accuracy can we trust the OPE?

Accuracy depends on size of higher order termsValue of the six parameters ρi, Ti unknownDimensional analysis: ρi, Ti ∼ Λ3

QCD

How big is ΛQCD?

How much do we trust the OPE itself?Duality violationSeparate from previous question?

Can we address this questionexperimentally?

Christian Bauer @ SLAC, 8/9 2002 – p.14

Page 19: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

A Global Fit

Christian Bauer @ SLAC, 8/9 2002 – p.15

Page 20: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Why do a Global Fit?

Use more data ⇒ reduce uncertainties

See inconsistencies between different measurments

Investigate the effect of theoretical uncertainties

Include theoretical correlations between differentobservables

Christian Bauer @ SLAC, 8/9 2002 – p.16

Page 21: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Available Data

Lepton energy moments from CLEOCLEO (’02)

RC0 = 0.6187± 0.0021

RC1 = (1.7810± 0.0011) GeV

RC2 = (3.1968± 0.0026) GeV2

Lepton energy moments from DELPHIDELPHI (’02)

RD1 = (1.383± 0.015) GeV

RD2 − (RD

1 )2 = (0.192± 0.009) GeV2

Christian Bauer @ SLAC, 8/9 2002 – p.17

Page 22: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Available Data

Hadron invariant mass moments from CLEOCLEO (’01)

S1(1.5 GeV) = (0.251± 0.066) GeV2

S2(1.5 GeV) = (0.576± 0.170) GeV4

Hadron invariant mass moments from DELPHIDELPHI (’02)

S1(0) = (0.553± 0.088) GeV2

S2(0) = (1.26± 0.23) GeV4

Christian Bauer @ SLAC, 8/9 2002 – p.18

Page 23: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Available Data

Hadron invariant mass moments from BABARBABAR (’02)

S1(1.5 GeV) = (0.354± 0.080) GeV2

S1(0.9 GeV) = (0.694± 0.114) GeV2

Photon energy moments from CLEOCLEO (’01)

T1(2 GeV) = (2.346± 0.034) GeV

T2(2 GeV) = (0.0226± 0.0069) GeV2

Avarage of semileptonic decay widthPDG (’02)

Γ(B → X`ν̄) = (42.7± 1.4)× 10−12 MeV

Christian Bauer @ SLAC, 8/9 2002 – p.19

Page 24: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Higher Hadron Moments

Second hadron moment seems to give orthogonalinformation to most other moments

Λ (GeV)

λ 1 (G

eV2 )

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Convergence of this moment questioned in literatureFalk, Luke (’97)

s2 − 〈s〉2⟩

= 0.73Λ̄2

Λ2QCD

− 0.96λ1

Λ2QCD

− 0.56ρ1

Λ3QCD

+ . . .

Christian Bauer @ SLAC, 8/9 2002 – p.20

Page 25: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Higher Hadron Moments

From dimensional analysis⟨

s2 − 〈s〉2⟩

m4B

= O(1)Λ̄2

m̄2B

+O(1)λ1

m̄2B

+O(1)ρ1

m̄3B

+ . . .

Breakdown of OPE: some coeffs � O(1), growing

The previous expression is⟨

s2 − 〈s〉2⟩

m4B

= 0.01Λ̄2

m̄2B

− 0.14λ1

m̄2B

− 0.86ρ1

m̄3B

+ . . .

Large cancellation from Λ̄ and λ1 term

Moment is well behaved, but sensitive to ρ1

Christian Bauer @ SLAC, 8/9 2002 – p.20

Page 26: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Comment on the BABAR measurement

0.80.0

0.2

0.4

0.6

0.8

1.0 1.2 1.4 1.6

BABAR Preliminary

CLEO First measurement of amoment as a function ofthe cut

Many more data pointsthan used in this analysis

Data points highlycorrelated, therefore onlyused two in fits

Much more in second half of talk

Christian Bauer @ SLAC, 8/9 2002 – p.21

Page 27: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Correlations in the Data

Obviously, different moments of the same spectrum arecorrelated

Since most measurements have some assumptions⇒ correlation between diefferent experiments

Only used publically available data

Worthwile do redo the fits with all correlations included

Central value and error in |Vcb| stable

Christian Bauer @ SLAC, 8/9 2002 – p.22

Page 28: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Theoretical UncertaintiesOriginate from unknown higher order terms in expansion

Two different kind of terms

Unknown 1/m3b matrix elements

generic size Λ3QCD

There is no favorite valueDon’t use Gaussian with width (0.5 GeV)3

In our fits we add

∆χ2(mχ, Mχ) =

0 , |〈O〉| ≤ m3χ

[

|〈O〉|−m3

χ

]

2

(0.5 GeV)6|〈O〉| > m3

χ0.2

0.4

0.6

0.8

1

-2m -m m 2m0χ χ χ χ

χ 2

We vary 0.5 GeV < mχ < 1 GeV

Christian Bauer @ SLAC, 8/9 2002 – p.23

Page 29: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Theoretical UncertaintiesOriginate from unknown higher order terms in expansion

Two different kind of terms

Uncomputed higher order termsFor quantity of mass dimension mn

B

(αs/4π)2 mnB ∼ 0.0003 mn

B

(αs/4π)Λ2QCD/m2

b mnB ∼ 0.0002 mn

B

Λ4QCD/(m2

bm2c) mn

B ∼ 0.001 mnB

Can underestimate perturbative uncertaintiesBetter estimate might be to relate to last termcomputed

We add√

(0.001mnB)2 + (last computed)2/4

Christian Bauer @ SLAC, 8/9 2002 – p.23

Page 30: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

The Result

One fit including and one fit excluding BABAR data

This allows to investigate effect of BABAR data

mχ [GeV] χ2 |Vcb| × 103 m1Sb

[GeV]

0.5 5.0 40.8± 0.9 4.74± 0.10

1.0 3.5 41.1± 0.9 4.74± 0.11

0.5 12.9 40.8± 0.7 4.74± 0.10

1.0 8.5 40.9± 0.8 4.76± 0.11

BABAR data makes fit considerably worse

More on this later

Christian Bauer @ SLAC, 8/9 2002 – p.24

Page 31: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Error analysis

What is included in error?

Best estimate of perturbative uncertainties

Best estimate of uncomputed 1/m4 and α2s/m

2 terms

Very conservative estimate of 1/m3 uncertainties

All publically available experimental uncertainties

What is not included in error?

Unknown experimental correlations

Uncertainties from "Duality violations"

Christian Bauer @ SLAC, 8/9 2002 – p.25

Page 32: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

More on Theoretical Error

1/m3b uncertainty

mχ [GeV] |Vcb| × 103 m1Sb

[GeV]

0.5 40.8± 0.9 4.74± 0.10

1.0 41.1± 0.9 4.74± 0.11

Theoretical correlationsδ(λ1) δ

(

λ1 + T1+3T2

mb

)

±0.38 ±0.22

Theoretical limitationsδ(|Vcb|)× 103 δ(m1S

b) [MeV]

±0.35 ±35

Christian Bauer @ SLAC, 8/9 2002 – p.26

Page 33: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Different mass schemestree level, order αs, order α2

sβ0

Better convergence for 1S and PS scheme

Christian Bauer @ SLAC, 8/9 2002 – p.27

Page 34: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Experimental correlations

How important are experimental correlations?

Remove DELPHI measurements from fit

Increase all errors (except Γsl) by 2

|Vcb| × 103 m1Sb

[GeV]

Original Fit 40.8± 0.9 4.74± 0.10

Excluding DELPHI 40.6± 0.9 4.79± 0.09

2 × errors 40.8± 1.2 4.74± 0.24

Fit should be good for |Vcb|, but for confidence in δ(mb) oneshould include all correlations

Christian Bauer @ SLAC, 8/9 2002 – p.28

Page 35: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Result once again

|Vcb| = (40.8± 0.9)× 10−3

m1Sb = (4.74± 0.10) GeV

mb(mb) = 4.22± 0.09 GeV

Christian Bauer @ SLAC, 8/9 2002 – p.29

Page 36: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

The BABAR hadronic moments

Christian Bauer @ SLAC, 8/9 2002 – p.30

Page 37: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Review of the measurement

The measured distibution

Uses one fully reconstructed B decay

Done as a function of the lepton energy cut

Christian Bauer @ SLAC, 8/9 2002 – p.31

Page 38: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Review of the measurement

Obtaining the hadronic moments

Fit to four distributions: D, D∗, XH , Background

Fit determines the fraction of D, D∗, XH distros

Christian Bauer @ SLAC, 8/9 2002 – p.31

Page 39: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Review of the measurement

Results

Significant disagreement with our fit results

Christian Bauer @ SLAC, 8/9 2002 – p.31

Page 40: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Why fit to the 3 distros?

The measured differential spectrum is

dsL=

dsL

{

PD(s, sL)dΓD

ds+ PD∗(s, sL)

dΓD∗

ds+ PX(s, sL)

dΓX

ds

}

What is calculated is

s− m̄2D

=

ds (s− m̄2D)

{

dΓD

ds+

dΓD∗

ds+

dΓX

ds

}

Can we take the detector resolution into accounttheoretically?

Christian Bauer @ SLAC, 8/9 2002 – p.32

Page 41: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Calculate the differential spectrum

Instead of just calculating moments, we can also calculatethe differential hadronic invariant mass spectrum

dΓD

ds=

Br(D)

τBδ(s−m2

D) ,dΓD

ds=

Br(D∗)

τBδ(s−m2

D∗)

ds= Γ(Ecut)

[

δ(s− m̄2D) + A(Ecut)δ

′(s− m̄2D)

+B(Ecut)δ′′(s− m̄2

D) + . . .]

+αs

πP (s, Ecut)

A(Ecut) ∼ ΛQCD/mb , B(Ecut) ∼ Λ2QCD/m2

b , . . .

Christian Bauer @ SLAC, 8/9 2002 – p.33

Page 42: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Convolute with detector resolution

Convolution formula was

dsL=

dsL

{

PD(s, sL)dΓD

ds+ PD∗(s, sL)

dΓD∗

ds+ PX(s, sL)

dΓX

ds

}

Can now be calculated using

dΓX

ds=

ds−

dΓD

ds−

dΓD∗

dsCareful

Theoretical distribution is singular

Smearing functions has to have width ∼√

ΛQCDmb

Need further smearing ⇒ Moments

Christian Bauer @ SLAC, 8/9 2002 – p.34

Page 43: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Facts about convolutions

Consider the simple convolution G(x) =∫

dy c(x− y)g(y)

GN =

dx xNG(x) =

dy g(y)

dx xNc(x− y)

=

dy g(y)

dz (z + y)Nc(z)

=

dy g(y)

dz

N∑

n=0

(

N

n

)

ynzN−nc(z)

=

N∑

n=0

(

N

n

)

c(N−n)gn

Moment of convolution is product of moments

Christian Bauer @ SLAC, 8/9 2002 – p.35

Page 44: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Implications for BABAR measurement

Measured spectrum is convolution of true spectrum anddetector resolution P (sL − s)

Moments of measured spectrum given in terms of truemoments

Take into account different resolution functions for D,D∗ and X

s− m̄2D

meas−

s− m̄2D

theo

= PX1 + (PD

1 − PX1 )Br(D) + (PD∗

1 − PX1 )Br(D∗)

Difference between calculated and measured moments isdetermined by mean of resolution functions

Christian Bauer @ SLAC, 8/9 2002 – p.36

Page 45: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Some numbersThanks to Oliver Buchmüller and Henning Flächer

A plot of⟨

s− m̄2D

("measured" moments, orig. data)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0

0.2

0.4

0.6

0.8

Corrections PD,D∗,X1 not yet included

Should be positive

Eliminating Goity-Roberts does not eliminate discreprancy

Christian Bauer @ SLAC, 8/9 2002 – p.37

Page 46: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Conclusions

OPE predicts all inclusive B meson shape variables interms of 6 parameters

Precise knowledge of these parameters required forinclusive determination of |Vcb|

Fit to all available data is best way to extract Vcb|

Fit should be done in well behaved mass scheme

Find |Vcb| = (40.8± 0.9)× 10−3

Recent measurements of BABAR show somedisagreement with fit predictions

Eliminating most of the model dependence frommeasurement does not solve the problem

Should be interesting times ahead of us

Christian Bauer @ SLAC, 8/9 2002 – p.38

Page 47: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Christian Bauer @ SLAC, 8/9 2002 – p.39

Page 48: Precision Physics with inclusive B decays · 2002. 10. 9. · Nuclear Beta decay Bd B d mixing There are 11 parameters: Fermi coupling constant GF 6 quark masses 4 parameters in the

Higher Moments?

The same trick works for higher moments.

Assume universal distribution function

(s− m̄2D)N

meas=

N∑

n=0

(

N

n

)

P(N−n)

(s− m̄2D)n

theo

Can easily take into account different resolutionfunctions

All measured higher moments can be related tocalculated moments and moments of resolution function

Christian Bauer @ SLAC, 8/9 2002 – p.40