practical soil moisture monitoring

3
Practical Use of Soil Moisture Sensors for Irrigation Scheduling R. Troy Peters, P.E., Ph.D. Good irrigation water management will increase yields, improve crop quality, conserve water, save energy, decrease fertilizer requirements, and reduce nonpoint source pollution. Using soil moisture measurements is one of the best and simplest ways to get feedback to help make improved water management decisions. However, the installation, calibration, and interpretation of the data from these instruments is often overwhelming for most busy growers. Here’s an attempt to provide practical recommendations for using these sensors to improve your operation. The major types of soil moisture sensors are listed in Table 1 and grouped according to the technology used to measure soil moisture. Research continues to show that these sensors are not always accurate. However, they all give trend lines that can be usable for irrigation scheduling. Although the technologies used by each sensor type are quite different, these sensors can be roughly categorized into two groups: those that give the soil water content, and those that give the soil water tension. Table 1. Major types of soil moisture sensors and their relative advantages and disadvantages. Sensor Type Advantages Disadvantages Soil Water Content Neutron Probe (Campbell Pacific Nuclear; CPN) Accurate. Repeatable. Samples a relatively large area. One sensor for all sites & depths. Government required paperwork and regulations. Can't leave in field. Relatively expensive (about $4,500). Time Domain Transmissivity (Acclima, GroPoint) Less expensive ($110/sensor). Easy to log data. Samples small area. Capacitance Sensors (Enviroscan, Echo Probes, Acclima, Vernier, etc..) Easy to set up to log and/or transmit data. Highly affected by soil conditions immediately next to the sensor. High variability. More expensive ($300 $1,200/system). Soil Water Tension Tensiometers Less expensive ($80/sensor) Maintenance issues. Granular Matrix Sensors (Watermark) Inexpensive ($40/sensor) Highly variable output. Less accurate. Sensitive to temperature and soil salinity. Soil Water Contentbased soil moisture sensors: (Capacitance, Neutron Probe, gravimetric) Soil water content measurements are much more meaningful for irrigation scheduling when they are compared to the maximum amount of water that the soil can hold long term, or field capacity. The simplest way to determine your soil’s field capacity is to use the sensor to take a soil water content

Upload: jin

Post on 01-Oct-2015

5 views

Category:

Documents


2 download

TRANSCRIPT

  • PracticalUseofSoilMoistureSensorsforIrrigationSchedulingR.TroyPeters,P.E.,Ph.D.

    Goodirrigationwatermanagementwillincreaseyields,improvecropquality,conservewater,saveenergy,decreasefertilizerrequirements,andreducenonpointsourcepollution.Usingsoilmoisturemeasurementsisoneofthebestandsimplestwaystogetfeedbacktohelpmakeimprovedwatermanagementdecisions.However,theinstallation,calibration,andinterpretationofthedatafromtheseinstrumentsisoftenoverwhelmingformostbusygrowers.Heresanattempttoprovidepracticalrecommendationsforusingthesesensorstoimproveyouroperation.ThemajortypesofsoilmoisturesensorsarelistedinTable1andgroupedaccordingtothetechnologyusedtomeasuresoilmoisture.Researchcontinuestoshowthatthesesensorsarenotalwaysaccurate.However,theyallgivetrendlinesthatcanbeusableforirrigationscheduling.Althoughthetechnologiesusedbyeachsensortypearequitedifferent,thesesensorscanberoughlycategorizedintotwogroups:thosethatgivethesoilwatercontent,andthosethatgivethesoilwatertension.Table1.Majortypesofsoilmoisturesensorsandtheirrelativeadvantagesanddisadvantages.

    SensorType Advantages Disadvantages

    Soil W

    ater C

    onten

    t

    NeutronProbe(CampbellPacificNuclear;CPN)

    Accurate.Repeatable.Samplesarelativelylargearea.Onesensorforallsites&depths.

    Governmentrequiredpaperworkandregulations.Can'tleaveinfield.Relativelyexpensive(about$4,500).

    TimeDomainTransmissivity(Acclima,GroPoint)

    Lessexpensive($110/sensor).Easytologdata.

    Samplessmallarea.

    CapacitanceSensors(Enviroscan,EchoProbes,Acclima,Vernier,etc..)

    Easytosetuptologand/ortransmitdata.

    Highlyaffectedbysoilconditionsimmediatelynexttothesensor.Highvariability.Moreexpensive($300$1,200/system).

    Soil W

    ater T

    ensio

    n Tensiometers Lessexpensive($80/sensor)

    Maintenanceissues.

    GranularMatrixSensors(Watermark)

    Inexpensive($40/sensor) Highlyvariableoutput.Lessaccurate.Sensitivetotemperatureandsoilsalinity.

    SoilWaterContentbasedsoilmoisturesensors:(Capacitance,NeutronProbe,gravimetric)Soilwatercontentmeasurementsaremuchmoremeaningfulforirrigationschedulingwhentheyarecomparedtothemaximumamountofwaterthatthesoilcanholdlongterm,orfieldcapacity.Thesimplestwaytodetermineyoursoilsfieldcapacityistousethesensortotakeasoilwatercontent

  • measurementatatimewhenyouareconfidentthatthesoilisfullofwater,yetfreewaterhashadtimetodrainthrough.Goodtimestotakethesemeasurementsareinthespringassoonassoilthaws(assumingadequatesoilmoisturerechargeoverthewinter),or12to24hoursafteraheavyirrigation.Rememberthatthesoilcontentmeasurementmustbemultipliedbythedepthofsoilintherootzonethatitrepresentstogivethetotalwatercontentinthatsoildepth.Italsohelpsgreatlytohaveanestimateofthesoilwatercontentatwhichtheplantsbegintoexperiencewaterstress.Thiscanbeestimatedfromthepreviouslymeasuredfieldcapacityandthesoilsavailablewatercapacity(AWC).ArangeofAWCsbysoiltextureisgiveninTable2(seehttp://websoilsurvey.nrcs.usda.govforamoreaccurateestimate).ThisAWCnumberisthenmultipliedbya3.5ftrootdepthformostfruittreesandvines(secondcolumnofnumbersinTable2)togettheinchesofwaterthatisheldbetweenfieldcapacityandwiltingpoint.Itmaybenecessarytouseadifferentrootdepthbeside3.5ftifthesoilisshallow.Tomanagefruittreesandvinesfornostressitisagoodideatolimitthesoilwaterdepletiontoonly50%(half)oftheAWCintherootzone.ThisisgivenasthelastcolumnofnumbersinTable2.Now,forexample,ifthetotalwaterheldintherootzoneatfieldcapacityismeasuredinthespringafterawetwintertobe7.0inchesofwaterinasandyloamsoil(maximumof2.5inchesdepletionfornostressfromTable2),wesetthemaximumdepletionpointto4.5inches(7.02.5in).Plantandsoilobservationsshouldalsobeusedasfeedbacktorefinetheseestimatesovertime.Forinstance,ifintheaboveexampleIsawthefirstsignsofvinewaterstressatameasured5inchesofwaterintherootzoneinsteadof4.5inches,Iwouldbesuretoirrigatebeforethesoilgotto5inchesofwaterinthefuture.Table2.Rangesofavailablewaterbysoiltexture.

    SoilTexture Avail.WaterCapacity(AWC)in/ft

    TotalWaterin3.5ftRootZone(in)

    Max.Depletionat50%ofAWC(in)

    CoarseSand 0.20.8 0.72.8 0.41.4FineSand 0.71.0 2.53.5 1.21.8LoamySand 0.81.3 2.84.6 1.42.3SandyLoam 1.11.6 3.95.6 1.92.8

    FineSandyLoam 1.22.0 4.27.0 2.13.5SiltLoam 1.82.5 6.38.8 3.24.4

    SiltyClayLoam 1.61.9 5.66.7 2.83.3SiltyClay 1.52.0 5.37.0 2.63.5Clay 1.31.8 4.66.3 2.33.2

    PeatMucks 1.92.9 6.710.2 3.35.1Usingthismethodtheabsoluteaccuracyofthesensorislessimportantbecausewearejustcomparingittoitself.Alsotheperiodicmeasurementsthroughouttheseasonnowtakeonmeaningaswecandeterminethesoilwaterdeficit(fieldcapacitythecurrentreading)andtheamountofwaterthatcanbedepletedbeforewaterstressoccurs.Goodirrigationmanagerswillmaintainthewatercontentwellbetweenfieldcapacityandthisstresspoint.

  • Tensionbasedsoilmoisturesensors:(GMS,Tensiometers)Whenusingtensionbasedsoilmoisturesensors,thesoilsfieldcapacity,wiltingpoint,andthemaximumdepletionpointaremostlyirrelevant.Asoilthatisfullofwaterwillhaveameasuredsoilwatertensionnearzero.Fruittreesandvinesshouldbeirrigatedbeforetheyreach4050centibars.Forregulateddeficitirrigation,thiscouldbeincreasedto80centibars.Again,sincethesemeasurementscanbeinaccurateandsoilspecific,refineyourlimitsusingcropobservationsovertime.Forexample,notethemeasuredsoilwatertensionattheearliestindicationsofwaterstress(thiswillappearfirstinsandy,orshallowsoilareas),andbesuretoirrigatebeforeyoureachthatpointinthefuture.Alsotakesomereadingsrightafteranirrigation.Ifthebottomsensorgoestozero,thenitspossibleyouputtoomuchwateron.Ifitshowsnomovementatall,applymorewaternexttimetopushwaterabitdeeper.AdditionalRecommendations:

    Avoidpreferentialflowofwatertothesensorduetoinstallationprocess. Flagthesensorwellsothatitcanbeeasilyfound. Graphicalrepresentationofthedatagreatlyhelpswithdatainterpretation. UsesoilwatermeasurementswithirrigationschedulingtoolssuchasKanschedanddailywater

    usedatafromAgWeatherNetorAgriMetformuchbetterwatermanagement(allthreeofthesewillbethetopsearchreturnonGoogle).

    Keeprecords.Correlatereadingswithobservations. Stayawayfromboththefieldcapacity,andwaterstresspointsifpossible. Realizethatsoilandsensorshavealotofvariability. Bepatientandstickwithit.Itmaytakeayearortwobeforeyouaregoodatinterpretingyour

    sensorreadings.