practical experience with stateof the art surge …...practical experience with state-of-the-art...

21
Practical Experience with State -of-the -Art Surge Arrester Monitoring Devices 2017 INMR World Congress, BarcelonaSitges, November 68, 2017 Philipp Raschke, Research and Development, Tridelta Meidensha GmbH. Abstract In regards to tests on the new surge arrester monitoring device “smartCOUNT”, Tridelta investigated different effects on surge arrester leakage current, which may lead to misunderstanding the measured data. Temperature and grid related influences like harmonics in the system voltage play a minor role since there are existing methods for rough compensation of them. Weather and pollution still influence the arrester current by adding surface currents and hence errors to the measured values. A humidity ingress or successive degradation of MOV blocks are the most common reasons for surge arrester failure and need to be detected early. Only proper understanding of measured leakage current values, preferably available as periodically logged long term data, guarantees early failure recognition and the making of a correct decision for replacing a surge arrester. Thus, the most frequent cases of leakage current behavior are explained and set in relation to the according practical scenario. 1. Introduction In the past 30 Years, numerous devices with different technologies for surge arrester monitoring were introduced to the market. Today, leakage current monitoring is a prevalent method for assessing the condition of surge arresters and most importantly for estimating their remaining lifetime. Nevertheless there are effects on the arrester leakage current, which lead to measurement errors, false interpretations and finally to unnecessary replacement or even to unexpected breakdown of an arrester. Utilizing leakage current for surge arrester monitoring often causes confusion since diverse leakage current behavior phenomena must be understood. This paper is based on the first field and testlab experiences with smartCOUNT Arrester Monitoring System which was initially introduced at INMR 2015. The paper shall give an overview of effects on the surge arrester leakage current and may be used as a guideline for interpretation of measurement results and accurate decision making in surge arrester maintenance.

Upload: others

Post on 03-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices

 2017  INMR  World  Congress,  Barcelona-­‐Sitges,  November  6-­‐8,  2017  

Philipp  Raschke,  Research  and  Development,  Tridelta  Meidensha  GmbH.  

 

Abstract    In   regards   to   tests   on   the   new   surge   arrester   monitoring   device   “smartCOUNT”,   Tridelta  investigated   different   effects   on   surge   arrester   leakage   current,   which   may   lead   to  misunderstanding   the   measured   data.   Temperature   and   grid   related   influences   like  harmonics  in  the  system  voltage  play  a  minor  role  since  there  are  existing  methods  for  rough  compensation  of  them.  Weather  and  pollution  still  influence  the  arrester  current  by  adding  surface  currents  and  hence  errors  to  the  measured  values.    A  humidity  ingress  or  successive  degradation   of  MOV   blocks   are   the  most   common   reasons   for   surge   arrester   failure   and  need  to  be  detected  early.  Only  proper  understanding  of  measured  leakage  current  values,  preferably   available   as   periodically   logged   long   term   data,   guarantees   early   failure  recognition   and   the  making   of   a   correct   decision   for   replacing   a   surge   arrester.   Thus,   the  most   frequent   cases   of   leakage   current   behavior   are   explained   and   set   in   relation   to   the  according  practical  scenario.    

1. Introduction  

In   the   past   30   Years,   numerous   devices   with   different   technologies   for   surge   arrester  monitoring   were   introduced   to   the   market.   Today,   leakage   current   monitoring   is   a  prevalent  method  for  assessing  the  condition  of  surge  arresters  and  most  importantly  for  estimating   their   remaining   lifetime.   Nevertheless   there   are   effects   on   the   arrester  leakage  current,  which   lead   to  measurement  errors,   false   interpretations  and   finally   to  unnecessary   replacement   or   even   to   unexpected   breakdown   of   an   arrester.   Utilizing  leakage   current   for   surge   arrester   monitoring   often   causes   confusion   since   diverse  leakage   current  behavior  phenomena  must  be  understood.   This  paper   is   based  on   the  first  field  and  test-­‐lab  experiences  with  smartCOUNT  Arrester  Monitoring  System  which  was  initially  introduced  at  INMR  2015.  The  paper  shall  give  an  overview  of  effects  on  the  surge   arrester   leakage   current   and   may   be   used   as   a   guideline   for   interpretation   of  measurement  results  and  accurate  decision  making  in  surge  arrester  maintenance.  

   

Page 2: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

2. Peak   current,   capacit ive   current   and   resist ive   current   –   the  agony  of  choice  

It´s  well   known,   that   ZnO  Surge  Arresters   have   a   complex   impedance,  which   consists   of   a  resistive  and  a   capacitive   component  due   to   the  molecular   structure  of   Zinc  Oxide.  Under  AC-­‐Voltage,   this   results   in   two   superimposed   currents:   One   sinusoidal   capacitive   current  phase  shifted  -­‐90°  to  the  voltage  signal  and  one  resistive  current  which  is  in  phase  with  the  voltage  and  is  not  sinusoidal  but  rather  shaped  as  a  periodic  pulse  signal  (Figure  1).    

 

Figure  1:  Capacitive  and  resistive  current  in  a  ZnO  surge  arrester  

Capacitive  and  resistive  current  are  superimposed  to  a   total   leakage  current,   in  which  two  important   values,   peak   current   and   3rd   harmonic   current   (for   example   at   150Hz),   can   be  determined  (Figure  2).  

   

Figure  2:  ZnO  leakage  current  (left)  and  current  spectrum  (right)  

The   peak   value   of   the   surge   arrester   current   is   always   orientated   on   the   predominating  component   (capacitive  or  resistive)  of   the  current.  At   low  voltage   levels   (approx.  <Uc),   the  

volta

ge  

curren

t  

cme    

Capacicve  current  

Resiscve  current  

Voltage  

50Hz   100Hz   150Hz   200Hz  

harm

onic  current    

mulcples  of  natural  frequency  

Page 3: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

peak  current  orients  itself  on  the  peak  value  of  the  capacitive  component.  At  higher  voltage  stresses,  primarily  in  a  range  above  Ur  (rated  voltage),  the  peak  current  orients  itself  on  the  peak   value   of   the   resistive   component.   Between   those   two   ranges,   the   peak   current   is  influenced   by   harmonic   distortion   due   to   the   growing   resistive   component   and   shows   a  behavior  with   low  sensitivity   to  changes   in   the  voltage,  or  more  appropriate  to  changes   in  the   V-­‐I-­‐characteristic   of   the   surge   arrester   (Figure   3).   This   qualifies   the   peak   current   as   a  good   indicator   for   pure   capacitive   or   resistive   currents,   but   not   for   mixed   current  components.    

 

Figure  3:  Peak  current  characteristic  of  a  surge  arrester  

The   capacitive   current   represents   the   current   flowing   through   the   series   capacity   of   the  surge  arrester.  It  behaves  proportional  to  changes  in  the  voltage  and  consequently  doesn´t  show   a   significant   sensitivity   in   the   non-­‐linear   area   of   the   V-­‐I-­‐Characteristic   of   the   surge  arrester.    

The  resistive  current   is  a  good  representative  value  for  the  surge  arrester  condition  due  to  its  high   sensitivity  and   logarithmic  growth  over   the  whole   leakage  current  area  of   the  V-­‐I-­‐Curve.    Metrologically,  the  resistive  current  is  often  based  on  the  third  harmonic  content  of  the  leakage  current,  which  is  extracted  from  the  leakage  current  spectrum  by  using  a  Fourier  Transformation  algorithm  (Figure  4).  

0.7   0.8   0.9   1   1.1   1.2   1.3  

curren

t  [µA

]  

Voltage  raco  U/Uc  

peak  current    

capacicve  current    

3rd  harm.  Current  

low  sensitivity  area

Page 4: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

 

Figure  4:  3rd  harmonic  current  and  resistive  current  

3. Surge  arrester  monitoring  –  test   lab  and  f ield  experiences  

3.1. smartCOUNT  f ield  test  

During   the   development   of   the   new   Tridelta   surge   arrester   monitoring   system  “smartCOUNT”,   an   extensive   test   program   was   conducted.   As   integral   part   of   the   test  program,  a   field   test  was  carried  out   to   test   the  behavior  of   the  monitoring   system  under  real  conditions.  The  first  stage  of  the  field  test  was  conducted  together  with  TEN  (Thüringer  Energie   Netze   GmbH   &   Co.   KG).   Three   porcelain   housed   surge   arresters,   situated   at   the  110kV   substation   in   Hermsdorf,   were   equipped   with   the   new  monitoring   system   in   April  2017   (Figure   5).   Since   that   time   diverse   effects   on   the   behavior   of   surge   arrester   leakage  current  in  the  field  were  observed  and  the  proper  function  of  the  monitoring  devices  could  be   proved.   The   results   presented   in   this   paper   are   based   on   experiences   with   the  smartCOUNT  Monitoring  system  from  this  field  test,  but  also  from  the  Tridelta  HV  test  lab.  

1  

10  

100  

1000  

0.40   0.50   0.60   0.70   0.80   0.90   1.00   1.10   1.20   1.30  

curren

t  [µA

]  

U/Uc  

3rd  harm.  current  

resiscve  current  

Page 5: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

 

Figure  5:  smartCOUNT  devices  in  TEN  substation  Hermsdorf    

3.2. Temperature   influence  and  compensation  

Temperature  is  an  important  factor  in  leakage  current  measurements,  because  ZnO  Varistors  are  semiconductors  and  their  resistance  is  highly  temperature  dependent.  Consequently  the  ambient  temperature  of  a  surge  arrester  has  an  influence  on  the  resistive  leakage  current  of  the  arrester  (Figure  6).  As  the  operators  of  substations  are  not  interested  in  external  effects  on   the   leakage   current,   but   in   effects   that   come   from   the   surge   arrester   itself,   ambient  temperature  influences  on  the  resistive  leakage  current  should  be  compensated.  

   

Figure  6:  Temperature  dependency  of  resistive  and  capacitive  leakage  current    

Figure  6  shows  the  difference  between  the  resistive  and  capacitive  current  characteristics  of  a  ZnO  Varistor  at  20°C  and  40°C.  From  20°C  to  40°C  the  resistive  current  rises  significantly  by  

0  50  100  150  200  250  300  350  400  450  500  

0  

20  

40  

60  

80  

100  

120  

0.40   0.50   0.60   0.70   0.80   0.90   1.00   1.10   1.20  

curren

t  [µA

]  

U/Uc  

Ir  (40°C)  

Ir  (20°C)  

Ic  (40°C)  

Ic  (20°C)  

smartCOUNT    Datalogger  

smartCOUNT    Transponder  Pad  

Page 6: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

factor  2,0  at  ratio  U/Uc  of  0,40  and  by  only  1,4  at  U/Uc  of  1,20.  The  capacitive  current  only  varies   slightly.   In   fact   the   temperature   influence   on   the   resistive   current   is   non-­‐linear,  depending  on  the  voltage  ratio.  Of  course  this  is  an  example  taken  from  one  specific  varistor  type,  other  varistor  brands  and  diameters  will  give  different  values.    

Usually  temperature  impacts  on  the  resistive  leakage  current  from  the  ambient  temperature  is   compensated   by  measuring   the   ambient   temperature   and   by  multiplying   the  measured  raw  value  with  a  correction  factor  based  on  a  temperature  compensation  model.  Of  course  temperature   models   also   differ   between   varistor   types   but   can   be   approximated   for   all  varistor   types   or   roughly   linearized   for   one   specific   ratio   U/Uc   in   order   to   simplify   the  compensation  procedure.  

There  is  another  influence  on  the  temperature  compensation  algorithm  that  arises  from  the  temperature   measurement   itself.   Usually   the   temperature   sensor   is   built   inside   the  monitoring   device   and   the   measured   temperature   differs   from   the   ambient   temperature  due   to   the   temperature  constant  of   the  monitoring  device  and  how   long   it   takes  until   the  ambient   temperature   has   been   conducted   to   the   temperature   sensor.   The   temperature  constant  of  the  monitoring  device  and  surge  arrester  should  be  roughly  the  same  in  order  to  replicate   the   same   temperature   impact   on   both.   Furthermore   the   influence   on   the  temperature  sensor  and  the  varistor  will  be  mismatched  due  to  differences  in  the  capability  of   the   arrester   housing   and   shell   of   the   monitoring   device   to   reflect   sunlight.   Varying  sunlight  radiation  angles  and  partial  shading  will  influence  temperature  calculations.  

These  factors  lead  to  an  effect  that  has  been  observed  on  surge  arresters  in  the  field,  called  over-­‐compensation,   where   a   compensation   value   is   subtracted,   that   is   larger   than   the  nominal   temperature   deviation.   Finally   with   rising   ambient   temperature,   the   resistive  leakage  current  neither  rises,  nor  stays  stable,  it  sinks.  This  leads  to  a  ripple  in  the  resistive  leakage  current,  due  to  night  and  daytime  temperature  fluctuations,  outlined  in  Figure  7.  

 

Figure  7:  Ripple  effect  due  to  temperature  over-­‐compensation  

This  problem  can  be  handled  by  optimizing  the  temperature  compensation  model  or  most  effective  by  measuring  at  night  to  mainly  eliminate  from  ambient  temperature  and  sunlight.  

0  

50  

100  

150  

200  

2017-­‐05-­‐16  

2017-­‐05-­‐17  

2017-­‐05-­‐18  

2017-­‐05-­‐19  

2017-­‐05-­‐20  

2017-­‐05-­‐21  

2017-­‐05-­‐22  

2017-­‐05-­‐23  

2017-­‐05-­‐24  

2017-­‐05-­‐25  

2017-­‐05-­‐26  

2017-­‐05-­‐27  

2017-­‐05-­‐28  

2017-­‐05-­‐29  

2017-­‐05-­‐30  

2017-­‐05-­‐31  

2017-­‐06-­‐01  

2017-­‐06-­‐02  

2017-­‐06-­‐03  

2017-­‐06-­‐04  

2017-­‐06-­‐05  

resiscve  current  [µA]   temperature  [°C]  

Page 7: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

A   precise   adjustment   of   the   temperature   models   in   the   smartCOUNT   system   based   on  varistor  measurements   as   well   as   switching   over   to  measurements   at   night   brought   very  stable  results  for  the  resistive  leakage  current  (Figure  8).      

 

Figure  8:  Steady  results  due  to  a  precise  temperature  model  and  nightly  measuring  

3.3. Grid  related  side  effects  and  compensation  

An  essential  point   that  has   to  be  taken   into  account  are   influences  on  the   leakage  current  due  to  grid  related  side  effects.  Due  to  the  strong  non-­‐linear  behavior  of  the  ZnO  Material,  small  changes  in  the  voltage  result  in  large  changes  in  the  peak  and  resistive  leakage  current,  like   pointed   out   in   Figure   3   and   4.   As   an   example,   if   the   maximum   permissible   voltage  deviation  is  ±10%  then  the  resistive  current  values  can  vary  in  a  range  from  less  than  -­‐40%  to  more   than   +80%   of   the   nominal   current.   Generally   the   error   due   to   positive   voltage  deviation  will  be  higher,  because  the  non-­‐linearity  of  the  current  rises  with  the  voltage  ratio  U/Uc  (Figure  9).    

 Figure  9:  Error  Range  of  resistive  current  due  to  voltage  deviation  

0  

50  

100  

150  

200  

250  

300  

2017-­‐06-­‐29  

2017-­‐07-­‐01  

2017-­‐07-­‐03  

2017-­‐07-­‐05  

2017-­‐07-­‐07  

2017-­‐07-­‐09  

2017-­‐07-­‐11  

2017-­‐07-­‐13  

2017-­‐07-­‐15  

2017-­‐07-­‐17  

2017-­‐07-­‐19  

2017-­‐07-­‐21  

2017-­‐07-­‐23  

2017-­‐07-­‐25  

2017-­‐07-­‐27  

2017-­‐07-­‐29  

2017-­‐07-­‐31  

2017-­‐08-­‐02  

2017-­‐08-­‐04  

2017-­‐08-­‐06  

2017-­‐08-­‐08  

2017-­‐08-­‐10  

2017-­‐08-­‐12  resiscve  curren

t  [µA

]  

-­‐60%  

-­‐40%  

-­‐20%  

0%  

20%  

40%  

60%  

80%  

100%  

0.50   0.60   0.70   0.80   0.90   1.00  

resiscve  curren

t  Error  

U/Uc  

Page 8: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

The   automatic   compensation   of   voltage   deviation   is   hard   to   realize   because   this   would  require   a   measurement   of   the   system   voltage.   To   solve   this   Problem,   the   smartCOUNT  monitoring  system  has  an  integrated  function,  where  the  actual  system  voltage  is  taken  into  account  to  compensate  voltage  fluctuations.  This  function  is  called  “single-­‐shot”,  where  one  particular   measurement   is   carried   out   and   the   information   about   the   system   voltage   is  entered  by  hand.    A  voltage  reading,  for  example  in  the  substation  control-­‐room,  should  be  taken  immediately  before  performing  a  single-­‐shot.  The  compensation  of  voltage  deviation  induced  measurement  errors  is  achieved  by  using  a  compensation  curve  which  exactly  fits  to  the  used  ZnO  Varistor   inside   the   specific   surge  arrester.  Measuring   values   that  have  been  taken  without  voltage  deviation  compensation   (like  automatically   logged   leakage  currents)  may  show  permanently  fluctuating  current  values  (Figure  10).      

 Figure  10:  fluctuating  leakage  current  due  to  voltage  deviation  on  test  lab  transformer  

Another   uncertainty   is   raised   by   harmonics   in   the   system   voltage   (Figure   11).   Those  harmonics   directly   influence   the   resistive   leakage   current,   because   it   is   based   on   the  measurement   of   3rd   harmonic   current   in   the   surge   arrester.   State-­‐of-­‐the-­‐art   monitoring  devices   contain   a   field   probe,  which  measures   the   percentage   of   the   3rd   harmonic   in   the  electrical   field.   So   a   correction   factor   can   be   calculated   for   roughly   compensating   the  influence  of  harmonic  voltage   to   the   leakage  current.   Frequencies  above   the  3rd  harmonic  are  filtered  by  the  Fourier  algorithm.    

 Figure  11:  electrical  field  plot  from  smartCOUNT  with  10%  3rd  harmonic  content  

0  50  100  150  200  250  300  

26-­‐04-­‐2017    

27-­‐04-­‐2017    

28-­‐04-­‐2017    

29-­‐04-­‐2017    

30-­‐04-­‐2017    

01-­‐05-­‐2017    

resiscve  curren

t  [µA

]  fie

ldprob

evoltage  

cme  

Page 9: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

 Outages   and   earth   faults   will   also   raise   questions,   when   they   are   recognized   by   the  monitoring  systems.  Outages  due  to  failure  or  maintenance  usually  manifest  leakage  current  values  of  0µA  (Figure  12).      

 Figure  12:  Outage  related  0µA  values  

If   an   earth   fault   occurs   on   solidly   grounded   transmission   lines,   the   affected   system   is  switched   off   immediately   and   produces   a   behavior   in   the   leakage   current   as   graphed   in  Figure  11.  On   isolated  neutral  networks,   the  affected   line  will   drop   to  earth  potential   and  both  other  phases  will  rise  by  factor  1.73  (phase-­‐to-­‐phase  voltage).  The  leakage  current  on  all  three  phases  will  behave  similarly  to  the  according  voltages  (Figure  13).  

 

 

0  50  100  150  200  250  300  350  400  450  

2017-­‐05-­‐24  

2017-­‐05-­‐31  

2017-­‐06-­‐07  

2017-­‐06-­‐14  

2017-­‐06-­‐21  

2017-­‐06-­‐28  

2017-­‐07-­‐05  

2017-­‐07-­‐12  

2017-­‐07-­‐19  

2017-­‐07-­‐26  

2017-­‐08-­‐02  

2017-­‐08-­‐09  peak  current  [µA]  

resiscve  current  [µA]  

0  100  200  300  400  500  600  700  800  

2017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐06-­‐02017-­‐06-­‐02017-­‐06-­‐12017-­‐06-­‐12017-­‐06-­‐12017-­‐06-­‐22017-­‐06-­‐22017-­‐06-­‐32017-­‐07-­‐0

peak  current  L1  [µA]  

resiscve  current  L1  [µA]  

0  100  200  300  400  500  600  700  800  

2017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐05-­‐22017-­‐06-­‐02017-­‐06-­‐02017-­‐06-­‐12017-­‐06-­‐12017-­‐06-­‐12017-­‐06-­‐22017-­‐06-­‐22017-­‐06-­‐32017-­‐07-­‐0

peak  current  L2  [µA]  

resiscve  current  L2  [µA]  

Page 10: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

 Figure  13:  Leakage  current  peaks  due  to  earth  failure  on  L1  in  a  compensated  grid    

3.4. Fog  and  rain  effects  

As  high  voltage   surge  arresters  are  usually   installed  outside,   they  are  affected  by   rain,   fog  and   humidity.   In   the   long   term   field   test   in   Hermsdorf   it  was   investigated,   that   there   are  differences  in  how  the  moistening  of  an  insulator  takes  place.  Effects  from  light  rain  on  the  leakage   current   were   never   recognized.   High   peak   currents   on   the   2nd   and   19th   of   May  correlated   directly   with   very   heavy   rain   and   storm,   which   was   figured   out   by   means   of  meteorological  data.  Unstable  peak  values  were  determined,  in  the  period  between  the  2nd  and   19th   of   May,   to   be   related   to   continuous,   steady   rain,   heavy   fog   and   high   humidity  (Figure  14  and  15).      

 

Figure  14:  Leakage  current  increased  by  rain,  humidity  and  fog  

These  high  peak  current  values  always  fell  back  to  their  nominal  value  under  dry  conditions.  The  resistive  current  was  influenced  only  marginally.  

0  100  200  300  400  500  600  700  800  

2017-­‐05-­‐22    2017-­‐05-­‐22    2017-­‐05-­‐22    2017-­‐05-­‐22    2017-­‐05-­‐22    2017-­‐05-­‐23    2017-­‐05-­‐23    2017-­‐05-­‐23    2017-­‐05-­‐23    2017-­‐05-­‐23    2017-­‐05-­‐24    2017-­‐05-­‐24    2017-­‐05-­‐25    2017-­‐05-­‐30    2017-­‐06-­‐04    2017-­‐06-­‐09    2017-­‐06-­‐14    2017-­‐06-­‐19    2017-­‐06-­‐24    2017-­‐06-­‐29    2017-­‐07-­‐04    

peak  current  L3  [µA]  

resiscve  current  L3  [µA]  

0  

100  

200  

300  

400  

500  

600  

2017-­‐04-­‐27  2017-­‐04-­‐28  2017-­‐04-­‐29  2017-­‐04-­‐30  2017-­‐04-­‐30  2017-­‐05-­‐01  2017-­‐05-­‐02  2017-­‐05-­‐03  2017-­‐05-­‐04  2017-­‐05-­‐05  2017-­‐05-­‐06  2017-­‐05-­‐06  2017-­‐05-­‐07  2017-­‐05-­‐08  2017-­‐05-­‐09  2017-­‐05-­‐10  2017-­‐05-­‐11  2017-­‐05-­‐12  2017-­‐05-­‐13  2017-­‐05-­‐13  2017-­‐05-­‐14  2017-­‐05-­‐15  2017-­‐05-­‐16  2017-­‐05-­‐17  2017-­‐05-­‐18  2017-­‐05-­‐19  2017-­‐05-­‐20  

peak  current  [µA]  

resiscve  current  [µA]  

Page 11: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

   

Figure  15:  rain  (left)  and  humidity  (right)  of  May  2017  (data  excerpt  from  weather  station)          

3.5. Polluted  arresters  

In   heavily   polluted   areas,   like   deserts,   industrial   parks   and   coastal   areas,   exposed   surge  arresters  often  show  deposits  of  conductive  sediments  on  their  housing  after  a  certain  time  period.  A  weather  test  was  performed,  simulating  growing  pollution  on  the  arrester  housing  in   order   to   gain   experience   on   the   impact   of   surface   current   on   the   measured   leakage  current  values  under  these  conditions.  One  porcelain  and  one  silicone  housed  arrester,  both  built  with  the  identical  electrical  design  and  equal  creepage  distances  were  used  to  research  the  differences  between  the  two  housing  technologies  (Figure  16  and  17).    

  SB30  (porcelain  housed)   SBKC30  (silicone  housed)  Rated  Voltage  [kV]   30   30  Test  Voltage  [kV]   24   24  Creepage  distance  [mm]   1187   1210  Spec.  creepage  distance  [mm/kV]   51,6     52,6  

Figure  16:  weather  test  properties  

     

Figure  17:  porcelain  and  silicone  housed  surge  arrester  in  weather  aging  chamber  

Page 12: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

The  test  comprises  a  procedure,  similar  to  ambient  conditions  in  coastal  desert  climate  with  salt   fog   as   well   as   humidity   in   the   morning   followed   by   hot   and   dry   ambient   conditions  (Figure  18).      

 

Figure  18:  weather  aging  chamber  test  procedure  

The  first  stage  of  the  test  was  carried  out  under  voltage  with  dry  air  conditions  and  without  salt   fog   and   heat.   This   was   required   to   analyze   the   arrester   leakage   current   without  influence  of  surface  current  to  create  a  benchmark  condition  for  comparison  to  the  results  with   surface  pollution.  Under  dry   conditions   the  peak   current    is  1000µA  and   the   resistive  current   is   130µA   for   the   porcelain   as  well   as   the   silicone   housed   surge   arrester  with   this  particular  electrical  setup.    

After   switching   salt   fog   spray   and   heating   on   in   the   weather   chamber,   the   peak   current  starts   rising.   After   switching   off   the   salt   fog,   the   peak   current   falls   back   to   a   level   that   is  lower   than   the  maximum  value  but   still  higher   than   the  benchmark  current.  This  behavior  repeats  with  every  daily   cycle  with  gradual   rise   in   the  daily  maximum  value  as  well  as   the  subsequent  drop-­‐off  value  to  which  the  peak  current  falls  back,  when  salt  fog  is  switched  off  and   the   arrester   housing   is   drying.   This   behavior   is   due   to   the   continuous   growth   of   a  pollution  layer  with  high  salinity  and  humidity  during  salt  fog  exposition.  (Figure  19)  

 

 

Figure  19:  high  leakage  current  due  to  accumulating  pollution  on  a  porcelain  housed  arrester  

Especially  wet  salt   layers  have  a  high  conductivity,   thus   the  prevailing  capacitive  current   is  superimposed  by  very  high  sinusoidal  currents  that  are  in  phase  with  the  voltage.  The  drop-­‐off   value   rises   and   the   dried   off   surface   pollution   layer   remains   partially   conductive.   The  conductivity  of  the  pollution  layer  rises  with  the  layer  thickness  and  thereby  with  the  cross  

hour 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24

Voltage  (24kV) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

saltfog  (conc.  10g/L) x x x

temperature  (50°C) x x x x x x x x x x x x x x x

0  

1000  

2000  

3000  

4000  

5000  

6000  

2017-­‐05-­‐08  

2017-­‐05-­‐08  

2017-­‐05-­‐09  

2017-­‐05-­‐10  

2017-­‐05-­‐10  

2017-­‐05-­‐11  

2017-­‐05-­‐11  

2017-­‐05-­‐12  

2017-­‐05-­‐13  

2017-­‐05-­‐13  

2017-­‐05-­‐14  

2017-­‐05-­‐14  

2017-­‐05-­‐15  

2017-­‐05-­‐15  

2017-­‐05-­‐16  

2017-­‐05-­‐17  

2017-­‐05-­‐17  

2017-­‐05-­‐18  

2017-­‐05-­‐18  

2017-­‐05-­‐19  

2017-­‐05-­‐20  

2017-­‐05-­‐20  

2017-­‐05-­‐21  

2017-­‐05-­‐21  

2017-­‐05-­‐22  

2017-­‐05-­‐22  

2017-­‐05-­‐23  

2017-­‐05-­‐24  

2017-­‐05-­‐24  

2017-­‐05-­‐25  

2017-­‐05-­‐25  

2017-­‐05-­‐26  

2017-­‐05-­‐27  

2017-­‐05-­‐27  

2017-­‐05-­‐28  

2017-­‐05-­‐28  peak  current  [µA]   resiscve  current  [µA]  

ßdry   saltfog  à  

Page 13: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

section  of  the  conductive  layer.  The  resistive  current  is  marginally  affected  by  the  pollution  of  the  housing  because  the  total  current  is  approximately  sinusoidal  and  primary  contains  a  predominant  1st   harmonic  due   to   surface   conductivity,   a   small   3rd  harmonic   from   the  ZnO  current  and  high  frequent  distortion  (9th,  11th  and  13th  harmonic  order)  caused  by  sparking  (Figure  20).    

   

Figure  20:  replacement  circuit  (left),  superimposed  current  oscillogram  and  spectrum  (right)  

In  contrast  to  these  clear  effects  of  the  pollution  grade  to  the  arrester  current  of  a  porcelain  housed   arrester,   the   current   of   the   silicone   housed   arrester   doesn´t   show   any   changes   in  peak  current  or  in  the  resistive  current  (Figure  21).  

 

Figure  21:  stable  leakage  current  under  harsh  environment  on  silicone  housed  arrester  

This  significant  difference  is  due  to  the  hydrophobic  properties  of  silicone.  Porcelain  always  shows  behavior  of  Hydrophobicity  Class  6   (Wetted  areas  cover  over  90%)  and   thus  carries  continuous  surface  currents.  A  good  quality  silicone  ranges  between  Hydrophobicity  Class  1  (discrete   droplets)   and   Class   3   (flat   discrete   droplets).   In   Class   3,   there   is   still   no  interconnection   between   the   droplets   and   no   salt   layer   sticking   to   the   surface.   In  consequence  there  is  no  formation  of  current  across  the  surge  arrester  surface  (Figure  22).      

0  

0.5  

1  

1.5  

2  

2.5  

3  

3.5  

4  

1.  Harm  

3.  Harm  

5.  Harm  

7.  Harm  

9.  Harm  

11.  H

arm  

13.  H

arm  

15.  H

arm  

17.  H

arm  

19.  H

arm  

0  

1000  

2000  

3000  

4000  

5000  

6000  

2017-­‐05-­‐08  

2017-­‐05-­‐08  

2017-­‐05-­‐09  

2017-­‐05-­‐10  

2017-­‐05-­‐10  

2017-­‐05-­‐11  

2017-­‐05-­‐11  

2017-­‐05-­‐12  

2017-­‐05-­‐13  

2017-­‐05-­‐13  

2017-­‐05-­‐14  

2017-­‐05-­‐14  

2017-­‐05-­‐15  

2017-­‐05-­‐15  

2017-­‐05-­‐16  

2017-­‐05-­‐17  

2017-­‐05-­‐17  

2017-­‐05-­‐18  

2017-­‐05-­‐18  

2017-­‐05-­‐19  

2017-­‐05-­‐20  

2017-­‐05-­‐20  

2017-­‐05-­‐21  

2017-­‐05-­‐21  

2017-­‐05-­‐22  

2017-­‐05-­‐22  

2017-­‐05-­‐23  

2017-­‐05-­‐24  

2017-­‐05-­‐24  

2017-­‐05-­‐25  

2017-­‐05-­‐25  

2017-­‐05-­‐26  

2017-­‐05-­‐27  

2017-­‐05-­‐27  

2017-­‐05-­‐28  

2017-­‐05-­‐28  

peak  current  [µA]   resiscve  current  [µA]  

 ß  dry   salsog  à    

Page 14: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

     

Figure  22:  polluted  surfaces  on  porcelain  housing  (left)  and  silicone  housing  (right)  

Cleaning   the   polluted   surge   arresters   eliminates   surface   currents   and   brings   the   leakage  current  back  to  its  normal  value  (Figure  23).  

 

Figure  23:  leakage  current  with  polluted  porcelain  housing  and  after  cleaning  

All   so   far   mentioned   effects   that   have   an   impact   on   the   arrester   leakage   current   simply  falsify  measurement   results   and  make   it  difficult   to  estimate   the   real   condition  of   a   surge  arrester.  

3.6. Detecting  humidity   ingress      

Humidity   ingress   is  the  main  reason  for  arrester  breakdown  in  field  and  it´s  a  fundamental  benefit,  when  a  surge  arrester  monitoring  system   is  capable  of  detecting   it.  To   investigate  the   impacts   of   moisture   inside   the   surge   arrester   on   the   arrester   leakage   current,   a  laboratory  test  was  carried  out.  Four  centiliters  of  water  were  intentionally  poured  inside  a  surge  arrester.  A  smartCOUNT  surge  arrester  monitor  was  mounted  on  the  surge  arrester.  Then  voltage  was  switched  to  the  arrester  and  the  leakage  current  was  recorded  for  several  

0  

500  

1000  

1500  

2000  

08.05.2017  09:00  

08.05.2017  10:00  

08.05.2017  11:00  

08.05.2017  12:00  

08.05.2017  13:00  

08.05.2017  14:00  

08.05.2017  15:00  

08.05.2017  16:00  

08.05.2017  17:00  

08.05.2017  18:00  

08.05.2017  19:00  

resisitve  current  [µA]   peak  current  [µA]  

polluted   clean  

Page 15: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

hours.   In   the   next   step,   the   surge   arrester   was   installed   inside   an   oven   and   kept   under  voltage  and  ambient   temperature  of  40°C  to  accelerate   the  distribution  of  humidity   in   the  surge  arrester  core  (Figure  24).  

   

Figure  24:  arrester  in  a  humidity  ingress  test  (left),  moistened  varistor  shrink  stack  (right)  

During  the  test  at  room  temperature,  the  peak  current  remained  at  its  nominal  value  of  circa  1000µA  and  the  resistive  current  kept  its  value  of  circa  140µA.  By  heating  up  the  arrester  to  40°C,  the  evaporation  of  the  water  inside  was  accelerated.  After  5  hours  at  40°C,  the  arrester  was  completely  up  to  temperature  and  the  water  was  distributed  all  along  the  varistor  stack.  The   peak   current     rose   to   more   than   14mA   and   started   fluctuating   due   to   the   repeated  drying  remoistening  of  the  varistor  stack  (Figure  25).  A  lesser  impact  on  the  resistive  leakage  was  observed  due  to  the  low  3rd  harmonic  content  of  the  surface  current,  as  illustrated  in  in  Figure  26.  

 

Figure  25:  peak  current  with  increased  moisture  inside  the  arrester  

0  

10  

20  

30  

40  

0  2000  4000  6000  8000  10000  12000  14000  16000  

7-­‐10-­‐2017  6:00  

7-­‐10-­‐2017  8:00  

7-­‐10-­‐2017  10:00  

7-­‐10-­‐2017  12:00  

7-­‐14-­‐2017  11:00  

7-­‐14-­‐2017  13:00  

7-­‐14-­‐2017  15:00  

7-­‐14-­‐2017  17:00  

7-­‐14-­‐2017  19:00  

7-­‐14-­‐2017  21:00  

7-­‐14-­‐2017  23:00  

7-­‐15-­‐2017  1:00  

7-­‐15-­‐2017  3:00  

7-­‐15-­‐2017  5:00  

7-­‐15-­‐2017  7:00  

7-­‐15-­‐2017  9:00  

7-­‐15-­‐2017  11:00  

7-­‐15-­‐2017  13:00  

7-­‐15-­‐2017  15:00  

7-­‐15-­‐2017  17:00  

7-­‐15-­‐2017  19:00  

7-­‐15-­‐2017  21:00  

7-­‐15-­‐2017  23:00  

7-­‐16-­‐2017  1:00  

7-­‐16-­‐2017  3:00  

7-­‐16-­‐2017  5:00  

7-­‐16-­‐2017  7:00  

7-­‐16-­‐2017  9:00  

7-­‐16-­‐2017  11:00  

7-­‐16-­‐2017  13:00  

7-­‐16-­‐2017  15:00  

7-­‐16-­‐2017  17:00  

7-­‐16-­‐2017  19:00  

7-­‐16-­‐2017  21:00  

7-­‐16-­‐2017  23:00  

7-­‐17-­‐2017  1:00  

peak  current  [µA]   temperature  [°C]  

Page 16: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

 

Figure  26:  resistive  current  with  increased  moisture  inside  the  arrester  

To   summarize,   humidity   ingress   can   be   easily   determined   because   it   results   in   extremely  high  peak  currents  but  low  changes  in  the  resistive  current  inside  the  arrester.  

3.7. Discovering  degraded  MOVs  

The  second  most  commonly  occurring  malfunction  of  surge  arresters  is  varistor  damaged  or  degraded.  Defective  MOV  blocks  generally  show   lower  reference  voltages,  higher  reactive-­‐power  losses  and  thus  higher  resistive  and  capacitive  currents.    A  malfunction  of  one  MOV  block   inside   a   high   voltage   surge   arrester   affects   only   small   changes   in   the   resistive   and  capacitive  leakage  current  but  increases  the  voltage  stress  to  all  other  MOV  blocks.  Then  an  accelerated  aging  of  the  other  blocks  takes  place  and  can  lead  to  a  growing  leakage  current.  To  simulate  this  behavior  and  to  test  how  the  leakage  current  behaves  in  these  cases,  a  test  was  performed  on  a  surge  arrester  with  defective  MOV  blocks  (previously  overloaded  in  line  discharge   tests).   To   realize   this   the   healthy   MOV   blocks   of   the   surge   arrester   were  exchanged   for   defective   blocks   in   4   stages   and   the   leakage   current   was   recorded   with   a  smartCOUNT  arrester  monitor  (Figure  27).    

    Stage  1   Stage  2   Stage  3   Stage  4  Ur  total  [kV]   41,70   39,05   33,83   28,49  Uc  [kV]   33,36   31,24   27,06   22,79  Utest  [kV]   25,50   25,50   25,50   25,50  U/Uc   0,76   0,82   0,94   1,12       Stage  1   Stage  2   Stage  3   Stage  4  Ur  MOV  6  [kV]   6,95   4,30   4,30   4,30  Ur  MOV  5  [kV]   6,95   6,95   1,73   1,73  Ur  MOV  4  [kV]   6,95   6,95   6,95   1,61  Ur  MOV  3  [kV]   6,95   6,95   6,95   6,95  Ur  MOV  2  [kV]   6,95   6,95   6,95   6,95  Ur  MOV  1  [kV]   6,95   6,95   6,95   6,95  

Figure  27:  test  procedure  with  degraded  MOV  blocks    

Stage  1  represents  a  healthy  arrester  with  6  MOV  blocks.    The  peak  current  remained  stable  at  1000µA  and  the  resistive  current  at  30µA.  In  stage  2  one  MOV  block  was  exchanged  for  a  

0  5  10  15  20  25  30  35  40  45  

0  

200  

400  

600  

800  

1000  

7-­‐10-­‐2017  6:00  

7-­‐10-­‐2017  8:00  

7-­‐10-­‐2017  10:00  

7-­‐10-­‐2017  12:00  

7-­‐14-­‐2017  11:00  

7-­‐14-­‐2017  13:00  

7-­‐14-­‐2017  15:00  

7-­‐14-­‐2017  17:00  

7-­‐14-­‐2017  19:00  

7-­‐14-­‐2017  21:00  

7-­‐14-­‐2017  23:00  

7-­‐15-­‐2017  1:00  

7-­‐15-­‐2017  3:00  

7-­‐15-­‐2017  5:00  

7-­‐15-­‐2017  7:00  

7-­‐15-­‐2017  9:00  

7-­‐15-­‐2017  11:00  

7-­‐15-­‐2017  13:00  

7-­‐15-­‐2017  15:00  

7-­‐15-­‐2017  17:00  

7-­‐15-­‐2017  19:00  

7-­‐15-­‐2017  21:00  

7-­‐15-­‐2017  23:00  

7-­‐16-­‐2017  1:00  

7-­‐16-­‐2017  3:00  

7-­‐16-­‐2017  5:00  

7-­‐16-­‐2017  7:00  

7-­‐16-­‐2017  9:00  

7-­‐16-­‐2017  11:00  

7-­‐16-­‐2017  13:00  

7-­‐16-­‐2017  15:00  

7-­‐16-­‐2017  17:00  

7-­‐16-­‐2017  19:00  

7-­‐16-­‐2017  21:00  

7-­‐16-­‐2017  23:00  

7-­‐17-­‐2017  1:00  

resiscve  current  [µA]   temperature  [°C]  

Page 17: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

slightly   damaged   block   to   simulate   minor   MOV   damage.   The   peak   current   is   still  representative  of   the  capacitive   current  and   is  proportional   to   the  voltage   stress   increase.  The   resistive   current   changes   only   slightly.   Stage   3   consists   of   an   exchange   of   another  healthy   MOV   block   for   a   heavily   damaged   block.   This   leads   to   a   significant   drop   of   the  reference  voltage  and  consequently  to  a  bigger  rise  in  the  peak  current.  In  correlation  to  this  the  power  dissipation  rises  and  the  resistive  current  grows  to  over  500%  of  its  nominal  value  because  the  voltage  ratio  at  this  stage  corresponds  to  the  operation  of  a  surge  arrester  near  to   Uc,   where   the   current-­‐voltage   characteristic   becomes   highly   non-­‐linear.   The   current  values  still  stood  roughly  stable  at  these  values.  Stage  4  comprises  the  exchange  of  another  varistor   to  produce  a   situation   in  which   the  voltage   stress  of  each   single  varistor   is  higher  than   permitted   by   its   continuous   operating   voltage.   The   power   dissipation   in   the   arrester  produces  a  large  amount  of  heat,  which  the  arrester  housing  isn´t  capable  of  conducting  to  the   ambient   air.   Resistive   and   peak   current   values   continue   rising   steadily;   the   arrester   is  already   in  thermal  runaway  mode.  The  resistive   leakage  current   is  now  almost  900%  of   its  nominal  value,  peak  current  500%  (Figure  28  and  29).    

 

Figure  29:  relative  change  in  leakage  current  in  a  MOV  degrading  test  

 

Figure  28:  current  in  a  MOV  degrading  test  

This  scenario  shows  the  behavior  of  a  slowly  degrading  ZnO  stack,  leading  finally  to  thermal  runaway,   if   the   damage   isn´t   recognized   in   time.   The   resistve   leakage   current   is   very  sensitive  to  damages  to  the  ZnO  Varistor  and  clearly  represents  power  dissipation  and  thus  the   arrester   health.   ZnO   degradation   is   the   only   condition,   that   significantly   and  permanently  increases  the  resistive  current.  

0%  200%  400%  600%  800%  1000%  

Stage  1   Stage  2   Stage  3   Stage  4  

relacve  resiscve  current  [µA]  

relacve  peak  current  [µA]  

0  

50  

100  

150  

200  

250  

300  

350  

400  

0  

1000  

2000  

3000  

4000  

5000  

6000  

Stage  1   Stage  2   Stage  3   Stage  4  

resiscve  curren

t  [µA

]  

peak  current  [µ

A]  

peak  current  [µA]   resisitve  current  [µA]  

Page 18: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

4. Recommendations  for  correct  surge  arrester  analysis  

Finally  the  gained  experiences  are  presented  in  the  following  summary  that  may  be  used  as  a  guideline  for  leakage  current  measurement  data  interpretation.  The  given  case  assumptions  will  probably  look  different  in  the  field.  The  following  recommendations  and  cases  may  help  in  decision  making  for  surge  arrester  maintenance.  

è Very  important  for  the  correct  estimation  of  the  arrester  health  is  the  observation  of  the   leakage   current   trend   instead   of   comparing   absolute   values   with   a   suspected  maximum  current  threshold.  

è Cases  might   be  mistakenly   chosen  wrong   if   different   symptoms   occur   at   the   same  time.  

è If   reoccurring,   transient   or   cyclic   leakage   current   effects   (like   arrester   pollution)  should  be  monitored,  choose  a  low  data  logging  interval  (<1  day)    

è When   measuring   with   a   logging   frequency   equal   to   or   greater   than   1   day,   it´s  recommended  to  measure  at  night  to  prevent  influences  of  sunlight  

è If   the   situation   is   not   clear,   contact   the   arrester   manufacturer   and/or   inspect   the  arrester.  

 

 

Cases   Pictograms  

Case  1  -­‐  Sudden  spike  in  the  peak  current,  later  fall  back   to   drop-­‐off   value,   no   influence   on   the  resistive  current  

Arrester  is  ok!  The  surge  arrester  could  be  affected  by  rain.  Check  the  past  weather  review  of  the  area,  where   the   arrester   is   situated.   If   no   rain   was  recorded,   the   arrester   may   be   affected   by  humidity,   fog,   dew   and/or   pollution.   Check   the  arrester  housing  for  surface  pollution,   if  the  effect  reoccurs.    

peak  current   resiscve  current  

Page 19: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

Case  2  –  Periodical  spikes  and  fall  backs  to  drop-­‐off  value   of   peak   current,   continuous   rise   drop-­‐off  value,  small  influence  on  the  resistive  current  

The   surge   arrester   housing   is   probably   polluted  with  salt,  dirt,  chemicals  etc.  Check  the  housing  for  surface   pollution   and   if   necessary   clean   the  arrester   to  prevent   tracking  erosion  or   flash  over.  The   leakage   current   sinks   to   nominal   value   after  cleaning.  Arrester  is  ok!  

 

Case  3  –  Resistive  and  peak  current  fall  to  0.  

The  line  was  switched  off.  The  leakage  current  has  to   rise   to   its   nominal   value,   when   voltage   is  switched  to  the  line.  Arrester  is  ok!  

 

 

Case   4   –   Resistive   and   peak   current   fall   to   a   very  low  value  

The   voltage   across   the   arrester   has   dropped.   The  line  is  probably  affected  by  earth  fault.  The  current  has  to  rise  to  its  nominal  value,  when  earth  fault  is  fixed.  (concerns  isolated  grid)  Arrester  is  ok!  

   

Case   5   –   Resistive   and   peak   current   rise   for   a  certain  time  and  fall  back  to  their  nominal  value.  

The  voltage  across   the  arrester  has   risen.  Another  line   of   the   system   is   probably   affected   by   earth  fault.   The   current   has   to   fall   to   its   nominal   value,  when   earth   fault   is   fixed.   (concerns   isolated   grid)  Arrester  is  ok!  

   

peak  current   resiscve  current  

peak  current   resiscve  current  

peak  current   resiscve  current  

peak  current   resiscve  current  

Page 20: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

Case  6  –  Daily  rise  and  fall  back  to  drop-­‐off  value  of  resistive  current,  peak  current  is  not  affected.  

The   measurement   values   are   being  overcompensated   by   the   temperature  compensation   function.   The   arrester   or   the  measurement   device   is   probably   partially   shaded  or   the   wrong   arrester   type   was   assigned   in   the  measurement   device   setup   (wrong   temperature  model  chosen).  Arrester  is  ok!  

 

 

Case   7   –   Very   high   fluctuating   peak   currents,   low  changes   in   resistive   current,   no   pollution   on  arrester  surface  detected  

Arrester   not   ok!   The   arrester   might   be  compromised   by   humidity   ingress.   Check   the  arrester   for   surface   pollution   and   clean   it,   if  necessary.   If   the   current   doesn´t   stop   fluctuating,  replace   the   arrester   immediately   to   prevent  dangerous  arrester  breakdown.    

 

 

Case   8   –   Successive   rising   values   of   resistive  leakage  current  and  capacitive  leakage  current,  no  pollution  or  humidity  detected.  

Arrester   not   ok!   The   arrester   may   contain  degrading   MOV   blocks.   Check   the   arrester   more  frequently.   Consult   the   arrester   manufacturer.  Replace   the   arrester   preemptively   before   the  resistive   current   reaches   the   given   maximum  threshold.  

 

 

References    

[1]    IEC   60099-­‐5,   Surge   arresters   -­‐   Part   5:   Selection   and   application   recommendations,  5/2013.    

peak  current   resiscve  current  

peak  current   resiscve  current  

peak  current   resiscve  current  

Page 21: Practical Experience with Stateof the Art Surge …...Practical Experience with State-of-the-Art Surge Arrester Monitoring Devices! 2017!INMRWorldCongress,Barcelona8Sitges,November!688,2017!

[2]    V.  Hinrichsen,  „Monitoring  of  High  Voltage  Metal  Oxide  Surge  Arresters,“  Bilbao,  1997.  

[3]    STRI,  „Guide1,  92/1  Hydrophobicity  Classification  Guide“.