practical computation with clifford algebrasleopardi/unsw... · clifford algebras paul leopardi...

62
Practical computation with Clifford algebras Paul Leopardi [email protected] School of Mathematics, University of New South Wales 8 16 8 16 Real representation matrix R 2 http://glucat.sf.net – p.1/62

Upload: others

Post on 26-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Practical computation withClifford algebras

Paul [email protected]

Schoolof Mathematics,Universityof New SouthWales

8 16

8

16

Real representation matrix R2

http://glucat.sf.net– p.1/62

Page 2: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Agenda

� Motivation� Clifford algebras� Notation� Representations� Functions

http://glucat.sf.net– p.2/62

Page 3: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

GluCat(Lounestoet al. 1987;Lounesto1992;Raja1996;Bangerthet al.; Karmesinet al.; Sieketal.)

� Genericlibrary of universalClif ford algebra

templates

� C++ templatelibrary for usewith otherlibraries

suchasdeal.II andPOOMA

� For details,seehttp://glucat.sf.net and

thethesis,“Practicalcomputationwith Clif ford

algebras”

http://glucat.sf.net– p.3/62

Page 4: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Motivation� Thevectorderivative� Integral formulaein

� Methodsfor PDEs

http://glucat.sf.net– p.4/62

Page 5: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

The vector derivative(HestenesandSobczyck1984)

� Applieson left or right

� Multiplies likeavectorunderthegeometric

product

� May havea left or a right inverse

� Canhavea functionalcalculuswith

� �

etc.

� ��� � and� � � definemonogenicfunctions

� Maxwell’s equationscanbewrittenas

� �

http://glucat.sf.net– p.5/62

Page 6: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Integral formulae preliminaries(HestenesandSobczyck1984)

� Thesurfaceareaof aunit ball in � dimensionsis

� � � ��� � ��� � � � � �

� DefinetheGreen’s function

�� ��� � � �� � � � � �

� A Lyapunov surfaceis aclosedsurfacein

whichhasaHöldercontinuousoutwardnormal �

http://glucat.sf.net– p.6/62

Page 7: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Integral formulae in

(HestenesandSobczyck1984)

� Let beadomainwhich is boundedby a

piecewiseLyapunov surface

�. Then��� � � � �"! # � $ � �"! # �

Stoke’s theorem: % � ��& �' & � ( % � ��& � � ' )+* �

Cauchy-Borel-Pompeiuformula:

, -/. 021 3 4 56 7 0 4 58 4 39 , -/. 01 3 4 52: 0 4 5 7 0 4 5; 8=< >; ? @BAC 7 01 5 021 D E 5GFH 021 D I. J E 5

http://glucat.sf.net– p.7/62

Page 8: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Methods for PDEs� Appropriatevectorderivative (Obolashvili1998)

� Operatorcalculusandquadrature

(GürlebeckandSprößig1997)

� Discreteoperators(GürlebeckandSprößig1997)

� Functionspaces

� Galerkinmethod

� Clifford wavelets(Mitrea 1994)

http://glucat.sf.net– p.8/62

Page 9: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Outer product(LasenbyandDoran1999;Lounesto1997)

� For � and & in

, makingangleK

, theouter

product � L & is adirectedarea in theplaneof �

and & :

� � L & � � � � � � & �NM OQP K

K� � L &

& RRRRRRS S S S S ST UK �& L �

&RRRRRR U S S S S S ST

http://glucat.sf.net– p.9/62

Page 10: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Properties of outer product(LasenbyandDoran1999)

� Theouterproductis anticommutativeonvectors:

� L & � V & L � �� & � �

� anddistributive:

� L ��& W � � � L & � L W �� & W

� � L & is a

XY[Z \] ^`_ a for vectors� � &

� Bivectorsform a linearspace

http://glucat.sf.net– p.10/62

Page 11: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

The geometric product(LasenbyandDoran1999)

� Thegeometricproductof vectorsin�

is:

� & � � b & � L & �� & � �

� Sumof scalarandbivector

� Encodestheanglebetween� and &

cd e cgf d h c i d e d f ckj d i c

d f c e lm n d c h cd o

d i c e lm n d cj cd o pdrq c s t u

http://glucat.sf.net– p.11/62

Page 12: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Multivectors(LasenbyandDoran1999)

� A vectorspaceclosedunderthegeometric

productis aClifford algebra

� Elementsarecalledmultivectors

� A multivectoris a

v-vector(scalar),plusaw

-vector(vector),plusa

�-vector(bivector), plus

. . .an � -vector(pseudoscalar)

� Formaldefinitionusesquadratic forms

http://glucat.sf.net– p.12/62

Page 13: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Quadratic forms(Lounesto1997)

For vectorspace overfield

x

, characteristic � �:

� Map x

, with

�y � � � y � ��� � �y � x � �

� ��� � � X ��� � �

, where

X z x givenby

X ��� & � � w� � ��� & � V ��� � V ��& � �

is a symmetricbilinearformhttp://glucat.sf.net– p.13/62

Page 14: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Quadratic spaces, Clifford maps(Porteous1995;Lounesto1997)

� A quadratic spaceis thepair

� �, where is

aquadraticform on

� A Clifford mapis avectorspacehomomorphism

{ where is anassociative algebra,and

� {Z � � � �Z � �Z �

http://glucat.sf.net– p.14/62

Page 15: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Universal Clifford algebras(Lounesto1997)

� TheuniversalClifford algebra

| � �for the

quadraticspace

� �

is thealgebragenerated

by theimageof theClif ford map {~} suchthat| � �

is theuniversalinitial objectsuchthat

suitablealgebras with Clif ford map {�� �

a

homomorphism�� | � �

{� � �� � {}

http://glucat.sf.net– p.15/62

Page 16: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

PDEs and quadratic forms(Sobolev 1964)

� A secondorderPDEwith constantcoefficients

determinesa realsymmetricmatrix,eg.

�� � � � �� ��� � � � �� ��� � �� � V � �� ��� ��

� � � ww V � � �� �

where

� � � ��� �

��� � �

http://glucat.sf.net– p.16/62

Page 17: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real quadratic forms(Lounesto1997)

� A realsymmetricmatrixdeterminesa real

quadraticform, eg.

��� � � �� � � �� � � � V ��� ��

� � � � where

� � ww V �

http://glucat.sf.net– p.17/62

Page 18: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Canonical quadratic forms(Sobolev 1964;Lipschutz1968)

� A realsymmetricmatrixcanbediagonalized� Sylvester’s theoremimplies

�uniquecanonical

quadratic form

��� �

, eg.

�k� ? �� � �� 3 ��� ? � ��� �

, with

�� ? �� � � ��H ���� F � � ? �� � HH 3 ���

sowecandefine

��� � � � � � � � � � V � ��

http://glucat.sf.net– p.18/62

Page 19: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Notation for integer sets

� For

, define

�~� � �� � � � � v �

�   � �� � � � ¡ v �

� ¢ � �£� ¤ �  

¥§¦ ¨ ¥ �© ª« ¨

¬®­ ¯ °²± ³¬´ ³¥ ¥§¦ ¨ ¥ �

© ª« ¨¬®­ ¯ °²± ³¬´ ³

¥

� For µ � � , define

� µ·¶ ¶ ¶ � � ¢ � � µ µ w ¶ ¶ ¶ � V w � � ¢

http://glucat.sf.net– p.19/62

Page 20: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real Clifford algebras ¸ ¹(Porteous1995)

� Therealquadraticspace

º! »

is

º   »with

��� � � V � �¥½¼ � »

� ¥ �º

¥½¼ � � ¥ �

� � ¸ ¹ � � º! » : therealuniversalClif ford

algebrafor

º! »

� º! » is isomorphicto somematrixalgebraover

oneof: � �

� For example, � ! � ¾¿� � � �

http://glucat.sf.net– p.20/62

Page 21: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Notation for Clifford algebras(HestenesandSobczyck1984;Wene1992;Ashdown)

� For finite

�ÁÀ , ¸ ¹ � define

Â� »"à à à º Ä Å � º! »

¨ � � ¨ Æ ¨ Ç ! Æ ¨ÉÈ { ¨ �

Â� »"à à à º Ä Å � � º! » º! » { º! » �

where Ê ¨ � ¨

{ ¨ ¨ Æ ¨ Ç ! Æ ¨È

Ë { ¨ � Ê ¨ � ¥ Ì � � ¨ Ë � Ê ¨ � ¥ Ì � M O[Í P �

http://glucat.sf.net– p.21/62

Page 22: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real frame groups(Braden1985;Lam andSmith1989)

� A frameis anorderedbasis

� Ê� » ¶ ¶ ¶ Ê º �for

º! »

whichputsquadraticform into canonicalform

� � ¸ ¹ �

realframegroup º! »

� Theframeand V w

generatetherealframegroup

via thereal framegroupmap

� � V ¹ ¶ ¶ ¶ ¸ � ¢ º! »� �¥ � � � Ê ¥ �¥ �rÎ � V w �rÎ �¥ �� � µ

http://glucat.sf.net– p.22/62

Page 23: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Canonical products(Bergdolt 1996;Lounesto1997;Dorst2001)

� Therealframegroup º! » hasorder� º   »   �

� Eachmember Ï canbeexpressedasthe

canonicallyorderedproduct

Ï � � V w �Ð »¥½¼ � º! ¥ Ѽ # �¥ Ò ¬

where Ó X ¥ � v w

http://glucat.sf.net– p.23/62

Page 24: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Index sets(Lounesto1997;Dorst2001)

For finite

� À ¢

definethe index map Ô ¨

Ô ¨ � � � ¨

� Ô ¨ � � � ¥§¦ ¨ �¥ Õ×ÖÙØ Ú ¬, where

� � � �

is thepowersetof

� Û � is thecharacteristicfunctionof T

� Dropsubscript

�whenit is understood.eg.ÔÝÜ � � ! � Þ � ÔÝÜ � � Þ ÔÝÜ � Þ

http://glucat.sf.net– p.24/62

Page 25: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Clifford algebra of frame group(Braden1985;Lam andSmith1989;Lounesto1997;Dorst2001)

� For finite

�ÁÀ ¢

definethemap ß ¨

ß ¨ ¨ ¨

ß ¨ w � w ß ¨ � V w � � V w

ß ¨ �¥ � { ¨ Ê ¥ ß ¨ � �à � � ß ¨ �ß ¨ à

� ß ¨ � Ô ¨ � � � ¥§¦ ¨ � { ¨ Ê ¥ � Õ×ÖÙØ Ú ¬

� eg. ß ÔÝÜ � � ! � Þ � � { Ê� � � � { Ê� �

http://glucat.sf.net– p.25/62

Page 26: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Generators and basis elements(Lounesto1997;Dorst2001)

� For finite

�ÁÀ ¢

definethemap á ¨

á ¨ � ¨

� á ¨ � ¥ � ß ¨ � Ê ¨ � ¥

� For finite

�ÁÀ ¢definethemap â ¨

â ¨ � � � ¨

� â ¨ � � � ß ¨ � Ô ¨ � �

http://glucat.sf.net– p.26/62

Page 27: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Summary diagram

ãä ä ä ä ä ä

ä ä ä ä ä ää ä ä ä ä ä å

æç

èèèèèèèèèè

èèèèèèè

é êèèèèè

èèèèèèèèèè

èè

� � � ëì

í î » x

http://glucat.sf.net– p.27/62

Page 28: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Vector derivative(LasenbyandDoran1999;Lounesto1997)

Givena frame

� Ê� » ¶ ¶ ¶ Ê º �

for

º! », thevector

derivative canbedefinedusingthereciprocal

frame

á ¥ á Î � ï ¥ Î �

¥§¦ Â� » à à à º Ä Å á ¥ � ¥

� V � �¥½¼ � »

á ¥ � ¥º

¥½¼ �á ¥ � ¥

http://glucat.sf.net– p.28/62

Page 29: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Laplacian ð �

(Lounesto1997)

� Thesignconventionfor usedhereagreeswith

Lounesto1997

� � V � �¥½¼ � »

�� ¥º

¥½¼ ��� ¥ �

� With theoppositesignconvention,wewould

have

� � V

http://glucat.sf.net– p.29/62

Page 30: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Subalgebras(Porteous1995)

� If is aClif ford algebrafor a realquadratic

space and is a linearsubspaceof , then

thesubalgebrageneratedby is aClif ford

algebrafor .

� A subsetof acanonicalframeof a realClif ford

algebraspansasubspaceandgeneratesa

subalgebrawhich is aClif ford algebrafor this

subspace.

finite

�ÁÀ ¢ � ¨

http://glucat.sf.net– p.30/62

Page 31: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Isomorphisms

ñ   � ñ �   ñ � � ñ �� � ò ¨

� Proof. Thefollowing diagramcommutes

æØ V V � éØ V V Æ � Ç ! Æ �È

} óóô õØ ³ óóô

ööö� V Væ ³¨ V Vé ³ Æ ¨ Ç ! Æ ¨È

Themap � � ¨ is aquadraticspaceisomorphism[]

http://glucat.sf.net– p.31/62

Page 32: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Framed inner product, norm(Gilbert andMurray1991)

÷ Wecantreat ¨ asaninnerproductspace.

÷ �ø â ¨ ù � ú � �

is a

û Æ ¨

elementbasisfor ¨

÷ For üþý �ÿ ¨ ü � â ��� �ý �ÿ ¨ � � â � � ¨

÷ Thereal framedinnerproductis

ü � � úý �ÿ ¨ ü � � �

÷ Thereal framednorm is

� ü � �� úý ø ü � ü ù �

http://glucat.sf.net– p.32/62

Page 33: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Framed notation÷ For finite

� �

definetheframednotation

�� � � � � �� � � � úý ø ��� ù�� � ��� � �� à à à �

÷ eg.

� � � � � ý �� � � ! � ý � � � � �

÷ eg.

" û � # � $ � � � % � # � � � � � � ý

" & �� � ' � $ �� � ! � % �� � '� � !� ! �

( In handcalculation,it is convenientto useanunderlinenotation:

) � ) ! � � � � * + �� �-, � �, � � � � + . ��� /0� � � � � 1� à à à �

eg. � ", & + � �, � � + �� � � ! � + � " &

http://glucat.sf.net– p.33/62

Page 34: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Framed representationFor finite

� �

define

( lexicogaphicalordering

23 45 6879 :<; =?> 23 ; =?> 4 @A

BDCE F 687 :G H3 EJI H F 2K H F 4 @L E M F 2L E F 4 N

( OP QSR T UWV P � * . /

XY Z\[ ] ^`_ Ya 25 679 bc d egf a hij k h

bi l bc d egf a h c mij k h

bi

( no o p q * � ! r st u vxw r y{z uw

|} ~� �� �

k �a � k � k�

��� ��� � ���� � k

79 � k

http://glucat.sf.net– p.34/62

Page 35: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Matrix representations(CartanandStudy1908;Porteous1995;Lounesto1997)

( EachrealClif ford algebra �� � canbe

representedby anendomorphismalgebraover a

finite dimensionalmoduleoveroneof:

,!

, , ,!

.

( Representationmap � , representationmatrix�� �� �

� � � "

� óó�

óó� �

� � � �� �� ���� �

&

http://glucat.sf.net– p.35/62

Page 36: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Matrix representations of  , ¡(CartanandStudy1908;Porteous1995;Lounesto1997)

¢ £

¤ ¥ ¦ b § ¨ © ª « ¬

­ ¥ ® ¯ ° ± ° ° : b @ ¯ : ¨ @ ® : ¬ @ ± ® : ¬ @ ® : ¦ ª @

¦ ± ® ® : b @ ¯ : b @ ° : b @ ± ° : b @ ° : ¨ @ ¯ : ¬ @ ® : ¦ ª @ ± ® : ¦ ª @

b ® : b @ ± ® : b @ ® : ¨ @ ¯ : ¨ @ ° : ¨ @ ± ° : ¨ @ ° : ¬ @ ¯ : ¦ ª @ ® : § b @

§ ¯ : b @ ® : ¨ @ ± ® : ¨ @ ® : ¬ @ ¯ : ¬ @ ° : ¬ @ ± ° : ¬ @ ° : ¦ ª @ ¯ : § b @

¨ ° : b @ ¯ : ¨ @ ® : ¬ @ ± ® : ¬ @ ® : ¦ ª @ ¯ : ¦ ª @ ° : ¦ ª @ ± ° : ¦ ª @ ° : § b @

© ± ° : b @ ° : ¨ @ ¯ : ¬ @ ® : ¦ ª @ ± ® : ¦ ª @ ® : § b @ ¯ : § b @ ° : § b @ ± ° : § b @

ª ° : ¨ @ ± ° : ¨ @ ° : ¬ @ ¯ : ¦ ª @ ® : § b @ ± ® : § b @ ® : ª ¨ @ ¯ : ª ¨ @ ° : ª ¨ @

« ¯ : ¬ @ ° : ¬ @ ± ° : ¬ @ ° : ¦ ª @ ¯ : § b @ ® : § b @ ± ® : ª ¨ @ ® : ¦ b ¬ @ ¯ : ¦ b ¬ @

¬ ® : ¦ ª @ ¯ : ¦ ª @ ° : ¦ ª @ ± ° : ¦ ª @ ° : § b @ ¯ : ª ¨ @ ® : ª ¨ @ ± ® : ¦ b ¬ @ ® : b © ª @

( Notation. /

means ²� ² . /

, i.e.

²´³ ²

( Periodicityof

µ

andothersymmetrieshttp://glucat.sf.net– p.36/62

Page 37: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real representations of  , ¡

(CartanandStudy1908;Porteous1995;Lounesto1997)

¢ £

¤ ¥ ¦ b § ¨ © ª « ¬

­ ¥ ¶ b ¨ ¬ ¬ ¬ · ¦ ª ¶¸

¦ b ¹ ¨ ¬ ¦ ª ¦ ª ¦ ª ¶¸ § b

b ¹ ¨ º ¬ ¦ ª § b § b § b » ¹

§ ¨ º ¬ · ¦ ª § b ª ¨ ª ¨ ª ¨

¨ ¬ ¬ · ¦ ª ¶¸ § b ª ¨ ¦ b ¬ ¦ b ¬

© ¦ ª ¦ ª ¦ ª ¶¸ § b » ¹ ª ¨ ¦ b ¬ b © ª

ª ¦ ª § b § b § b » ¹ ª ¨ ¸ º ¦ b ¬ b © ª

« ¦ ª § b ª ¨ ª ¨ ª ¨ ¸ º ¦ b ¬ ¶ ¹ · b © ª

¬ ¶¸ § b ª ¨ ¦ b ¬ ¦ b ¬ ¦ b ¬ ¶ ¹ · b © ª ¹¼ ¸

( Thetablelists for

. /

( �� � choosesgeneratorsfrom ½� ¾ with redhttp://glucat.sf.net– p.37/62

Page 38: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Complex representations of  , ¡(CartanandStudy1908;Porteous1995;Lounesto1997)

¢ £

¤ ¥ ¦ b § ¨ © ª « ¬

­ ¥ ¦ ¶ b ¨ ¨ º ¬ ¦ ª ¦ ª

¦ b b ¹ ¨ ¬ ¬ · ¦ ª § b

b b ¨ ¨ º ¬ ¦ ª ¦ ª ¶¸ § b

§ ¹ ¨ ¬ ¬ · ¦ ª § b § b » ¹

¨ ¨ º ¬ ¦ ª ¦ ª ¶¸ § b ª ¨ ª ¨

© ¬ ¬ · ¦ ª § b § b » ¹ ª ¨ ¦ b ¬

ª ¬ ¦ ª ¦ ª ¶¸ § b ª ¨ ª ¨ ¸ º ¦ b ¬

« · ¦ ª § b § b » ¹ ª ¨ ¦ b ¬ ¦ b ¬ ¶ ¹ ·

¬ ¦ ª ¶¸ § b ª ¨ ª ¨ ¸ º ¦ b ¬ b © ª b © ª

( Thetablelists for

. /

( �� � choosesgeneratorsfrom ½� ¾ with redhttp://glucat.sf.net– p.38/62

Page 39: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Neutral matrix representations(CartanandStudy1908;Porteous1995;Lounesto1997)

( Representationmap �À¿ , representationmatrix

¿

¿ � ¿

�� �� �� � � ÁÂ

�Âóó�

óó� ÃÂ

. & ¿ / � � � �� �� ���� �

ÁÂ

http://glucat.sf.net– p.39/62

Page 40: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Representations of generators(Porteous1995;Lounesto1997)

Proposition. For each finite Ä , ¿ � ¿Å+ . & ¿ /

Proof. By induction,giving explicit representationsof generators. �ÇÆ * + È

, For Ä É Ê:

ËÇÌ ÍÏÎ Ð Ñ 79Ò

Ó ¥ Î ÔÌ c m

ÔÌ c m ¥Õ

Ö ËÇÌ Í Ð Ñ 79Ò

Ó ¥ ÔÌ c m

ÔÌ c m ¥Õ

Ö

Ë?Ì Í× Ñ 79Ò

Ó Ë�Ì c m Í× Ñ ¥

¥ Î Ë´Ì c m Í× ÑÕ

Ö Î H 3 E 3 HI E Ø9 ¥

where

Ù¿ � hereis theunit of

. & ¿ � /

, for Ä É Ê

.

[]

http://glucat.sf.net– p.40/62

Page 41: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Generator sets, frame group(Braden1985;Lam andSmith1989;Porteous1995;Bergdolt 1996)

( Thegeneratorset

¿ for thematrix

representationof ¿ � ¿ is asfollows:

Æ * + È, For Ä É Ê:

¿ * + � ¿ �� � * � Ä Ú ) Ú Ä, ) + Ê �

( Thegeneratorset¿ generatesamatrix

representationof therealframegroup:

Û ¿ Ü Å+ ¿ � ¿

http://glucat.sf.net– p.41/62

Page 42: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Matrix inner product, norm(GolubandvanLoan1996)

( Wecantreat

. /

asaninnerproductspace.

( For , Ý . /

,

( ThenormalisedFrobeniusinnerproductis:

Þ�ß à 79 ¦á Þãâ à

where

B Þãâ à Nåäçæ i 79è

ä�é mè

i é mÞäæ i àäæ i

( ThenormalisedFrobeniusnorm is:

ê ê Þ ê ê èë 79 ì Þ�ß Þ9 ¦á Þãâ Þ9 ¦ì á ê ê Þ ê ê ë

where

í í í íïî is theFrobeniusnormof .http://glucat.sf.net– p.42/62

Page 43: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Basis matrices are orthonormal(Porteous1995)

Lemma. Thebasismatricesfor ¿ � ¿ areorthonormalwith respectto thenormalisedFrobeniusinnerproduct ð :

Þ�ß à9ñóò

ô¦ Þ9 à

¥ à Ø9 à G ÞI à F õ 6Ì ö

Proof. (Sketch)Useinductionon Ä . If Ä + Ê

then

Û ¿ Ü + È

, soconclusionis trivial. Inductivestepuses

generatorsetsandrepresentationof generators.[]

Corollary. Thereal representationmatrix ¿ is

& ¿

timesanorthogonalmatrix.

http://glucat.sf.net– p.43/62

Page 44: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Inverse representation mapsCorollary. For ÷, ø Ý ¿ � ¿

� ÷ ð � �\� + ÷ ð �\� , � ÷ ð � ø + ÷ ð ø

Proposition. ThenormalizedFrobeniusinnerproductcanbeusedto determinethecoordinates ÷ù� of theframedrepresentationof ÷ Ý �� � fromtherealmatrix representation � ÷ asfollows: ÷\� + � ÷ ð � � �

Proof. Usethecorollary. Notethat �� � Åú+ ¿ � ¿

for some Ä û Tü .  , ¡ / . Thebasismatricesof therealrepresentationof �� � are thebasismatricesfor some ¿ � ¿ , andareorthonormal with respecttoð . []

http://glucat.sf.net– p.44/62

Page 45: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real representation matrix "

2 4

2

4

Real representation matrix R1

http://glucat.sf.net– p.45/62

Page 46: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real representation matrix &

8 16

8

16

Real representation matrix R2

http://glucat.sf.net– p.46/62

Page 47: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real representation matrix ý

32 64

32

64

Real representation matrix R3

http://glucat.sf.net– p.47/62

Page 48: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real representation matrix $

128 256

128

256

Real representation matrix R4

http://glucat.sf.net– p.48/62

Page 49: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Real representation matrix %

512 1024

512

1024

Real representation matrix R5

http://glucat.sf.net– p.49/62

Page 50: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Folding frames

( fold minimizesthesizeof matricesrequired

( eg.{-2,3}.fold({-4,-2,1,3})=={-1,-2}

� $ � ý � & � " " & ý

ð

þþþþþþþþþþþþþþþþþþ ð ð

ÿÿÿÿÿÿÿÿ

ÿ ð ð ð ð

� � � � � ��

ð ð ð ð ð ð ð

ð ð ð � " " & ð

http://glucat.sf.net– p.50/62

Page 51: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Isomorphisms

� � + � � �, � � + � � � � � �

( Proof. Thefollowing diagramcommutes�� � � � � � v� � �w� ��� �� u��� ���� � u

� � u

� � v� � �w

Themap � � � is aquadraticspaceisomorphism[]

http://glucat.sf.net– p.51/62

Page 52: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Division and inverses(GolubandvanLoan1996,Higham1996)

( Left andright divisionaredefinedvia theinverse

� * + � � � � + � �

( Thematrix representationcanbeusedto compute

theinverse.Not all multivectorshave inverses.

( GluCat 0.0.6implementstheinverseasaspecial

caseof division

( DivisionusesLU decompositionfollowedby

successiveLU solves,with iterative refinementhttp://glucat.sf.net– p.52/62

Page 53: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

elliptic() � �

(Braden1985;Lam andSmith1989;Porteous1995;Bergdolt 1996)

( Define

to betheunit volumeelement� �� � �

,

of thereal–complex algebra, � , suchthat:

� � � � �"! � ! � #$! % �

( GluCat 0.0.6provideselliptic(), which

returns

�http://glucat.sf.net– p.53/62

Page 54: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Complex representations of & '(Porteous1995;Lounesto1997)

( )* + , - . / 0 1 2 ¬3 + , 4 - / / 5 ¬ , 1 , 1, - - 6 / ¬ ¬ 7 , 1 . -- - / / 5 ¬ , 1 , 1 48 . -. 6 / ¬ ¬ 7 , 1 . - . - 9 6/ / 5 ¬ , 1 , 1 48 . - 1 / 1 /0 ¬ ¬ 7 , 1 . - . - 9 6 1 / , - ¬1 ¬ , 1 , 1 48 . - 1 / 1 / 8 5 , - ¬2 7 , 1 . - . - 9 6 1 / , - ¬ , - ¬ 4 6 7

¬ , 1 48 . - 1 / 1 / 8 5 , - ¬ - 0 1 - 0 1

( Thetablelists for

: ;

< =?> @ choosesgeneratorsfrom A> B with redhttp://glucat.sf.net– p.54/62

Page 55: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Functions of multivectors(GolubandvanLoan1996;Rinehart1955)

< ConsidertherealClif ford algebra => @ to bea

subalgebraof thereal–complex Clif ford algebraA> B isomorphicto somecomplex matrixalgebra: ;

. Try to definea functionof ! % => @ in

termsof thecorrespondingfunctionin .

: ! ;DC � �E"F � GH :JI ; :JI K ! ;ML NPO I

< Usenormequivalencebetween =?> @ and

: ;

http://glucat.sf.net– p.55/62

Page 56: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Functions of matrices(GolubandvanLoan1996;Rinehart1955)

< In thematrixcase,wehave:

: ; C � �E"F Q GR :JI ; :JI S K ;TL N O I

with anopensubsetof with smooth

boundary

U

and

V : ;XWwhere V : ;

is thespectrumof .

http://glucat.sf.net– p.56/62

Page 57: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Taylor series of matrices(GolubandvanLoan1996;Rinehart1955)

< TheTaylor seriesfor

: ;

allowsusto define

transcendentalfunctionsof matrices.

Theorem. If

:I ;

hasa powerseries

representation

:JI ; � YZ\[ ]

^ ZI Zin anopendisk

containing V : ;, then

: ; � YZ\[ ]

^ Z Z

http://glucat.sf.net– p.57/62

Page 58: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Square root(GolubandvanLoan1996;GeraldandWheatley 1999;Cheng,Higham,Kenney andLaub1999)

GluCat 0.0.6usesthefollowing algorithm:

< Scaleby dividing by thenorm

< If therealpartof thescalarpartis negative,

negatetheargumentandmultiply theresultby

< If abs(val-1) < 1, usediagonalPadé

approximation

< Otherwiseuseproductform of Denman-Beavers

squareroot iteration

http://glucat.sf.net– p.58/62

Page 59: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Transcendental functions(GolubandvanLoan1996;GeraldandWheatley 1999;Abramowicz andStegun1965)

< exp() usesthescalingandsquaringPadé

approximation.

< cos, cosh, acos, etc.arebasedonexp and

log.

< Approximatedusingexpressionswhichmay

involve theuseof�.

< Advantageof using

�is thatscalingis simplified.

< Disadvantageis thatit is possibleto “pokeout”

of thesubalgebra.http://glucat.sf.net– p.59/62

Page 60: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Cosine and sineProposition. Within a real–complex Clifford algebra,usingthereal framednorm,thedefinitionsof thefunctions _`a anda bdc in termsof ef g agreewiththeir definitionsasformalpowerseries.

Proof. For _`a :

hij klnm oqp hij ksr lnm o- t uvxw y lvm v- kz o{ p uvxw y kr l o vm v- kz o{

t u| w y l

} |m } |k -�~ o {t u

| w y kr , o |m } |k -~ o {t ��� km o

[]http://glucat.sf.net– p.60/62

Page 61: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

Logarithm(Cheng,Higham,Kenney andLaub1999)

GluCat 0.0.6usesinversescalingandsquaringusing

the incompleteDenman–Beaverssquareroot cascade

andthediagonalPadéapproximation

http://glucat.sf.net– p.61/62

Page 62: Practical computation with Clifford algebrasleopardi/UNSW... · Clifford algebras Paul Leopardi paul.leopardi@unsw.edu.au School of Mathematics, University of New South Wales 8 16

GluCat(Lounestoet al. 1987;Lounesto1992;Raja1996;Bangerthet al.; Karmesinet al.; Sieketal.)

< Genericlibrary of universalClif ford algebra

templates

< C++ templatelibrary for usewith otherlibraries

suchasdeal.II andPOOMA

< For details,seehttp://glucat.sf.net and

thethesis,“Practicalcomputationwith Clif ford

algebras”

http://glucat.sf.net– p.62/62