ppt - welcome to our family homepage

63
Evolution by Genome Duplication tp://news.bbc.co.uk/1/hi/sci/tech/222591.stm Itai Yanai Department of Biology Technion – Israel Institute of Technology

Upload: pammy98

Post on 10-May-2015

489 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: PPT - Welcome to our family homepage

Evolution by Genome Duplication

http

://n

ews.

bbc.

co.u

k/1/

hi/s

ci/t

ech/

2225

91.s

tm

Itai YanaiDepartment of Biology

Technion – Israel Institute of Technology

Page 2: PPT - Welcome to our family homepage

Susumu Ohno and evolution by gene duplicationThe Drosophila genome

Homeotic mutationsHox genesWhat is an animal?

Genome Duplication during chordate evolutionGenome duplications happen(ed)The 2R hypothesisMethods of molecular archeology

Map-based (spatial) – S. cerevisiae and Arabidopsis examples

Tree-based (temporal)Recent progress suggests one genome duplication in vertebrate evolution.

Evolution by Genome Duplication

Page 3: PPT - Welcome to our family homepage

Mutations

DNA sequence

SELECTION)purifying or positive(

DRIFT

DNA sequence (Altered)

The engine :

The steering wheel :

The standard model of genome evolution

Page 4: PPT - Welcome to our family homepage

~800-1000 Mya

Metazoan phylogeny

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Page 5: PPT - Welcome to our family homepage

What is the birth of creativity, novelty, diversity?

Or, how do you acquire new function while maintaining the old?Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Page 6: PPT - Welcome to our family homepage

GATCTACCATGAAAGACTTGTGAATCCAGGAAGAGAGACTGACTGGGCAACATGTTATTCAGGTACAAAAAGATTTGGACTGTAACTTAAAAATGATCAAATTATGTTTCCCATGCATCAGGTGCAATGGGAAGCTCTTCTGGAGAGTGAGAGAAGCTTCCAGTTAAGGTGACATTGAAGCCAAGTCCTGAAAGATGAGGAAGAGTTGTATGAGAGTGGGGAGGGAAGGGGGAGGTGGAGGGATGGGGAATGGGCCGGGATGGGATAGCGCAAACTGCCCGGGAAGGGAAACCAGCACTGTACAGACCTGAACAACGAAGATGGCATATTTTGTTCAGGGAATGGTGAATTAAGTGTGGCAGGAATGCTTTGTAGACACAGTAATTTGCTTGTATGGAATTTTGCCTGAGAGACCTCATTGCAGTTTCTGATTTTTTGATGTCTTCATCCATCACTGTCCTTGTCAAATAGTTTGGAACAGGTATAATGATCACAATAACCCCAAGCATAATATTTCGTTAATTCTCACAGAATCACATATAGGTGCCACAGTTATCC

CCATTTTATGAATGGAGTEvolutionbyDuplicationGATGAAAACCTTAGGAATAATGAATGATTTGCGCAGGCTCACCTGGATATTAAGACTGAGTCAAATGTTGGGTCTGGTCTGACTTTAATGTTTGCTTTGTTCATGAGCACCACATATTGCCTCTCCTATGCAGTTAAGCAGGTAGGTGACAGAAAAGCCCATGTTTGTCTCTACTCACACACTTCCGACTGAATGTATGTATGGAGTTTCTACACCAGATTCTTCAGTGCTCTGGATATTAACTGGGTATCCCATGACTTTATTCTGACACTACCTGGACCTTGTCAAATAGTTTGGACCTTGTCAAATAGTTTGGAGTCCTTGTCAAATAGTTTGGGGTTAGCACAGACCCCACAAGTTAGGGGCTCAGTCCCACGAGGCCATCCTCACTTCAGATGACAATGGCAAGTCCTAAGTTGTCACCATACTTTTGACCAACCTGTTACCAATCGGGGGTTCCCGTAACTGTCTTCTTGGGTTTAATAATTTGCTAGAACAGTTTACGGAACTCAGAAAAACAGTTTATTTTCTTTTTTTCTGAGAGAGAGGGTCTTATTTTGTTGCCCAGGCTGGTGTGCAATGGTGCAGTCATAGCTCATTGCAGCCTTGATTGTCTGGGTTCCAGTGGTTCTCCCACCTCAGCCTCCCTAGTAGCTGAGACTACATGCCTGCACCACCACATCTGGCTAGTTTCTTTTATTTTTTGTATAGATGGGGTCTTGTTGTGTTGGCCAGGCTGGCCACAAATTCCTGGTCTCAAGTGATCCTCCCACCTCAGCCTCTGAAAGTGCTGGGATTACAGATGTGAGCCACCACATCTGGCCAGTTCATTTCCTATTACTGGTTCATTGTGAAGGATACATCTCAGAAACAGTCAATGAAAGAGACGTGCATGCTGGATGCAGTGGCTCATGCCTGTAATCTCAGCACTTTGGGAGGCCAAGGTGGGAGGATCGCTTAAACTCAGGAGTTTGAGACCAGCCTGGGCAACATGGTGAAAACCTGTCTCTATAAAAAATTAAAAAATAATAATAATAACTGGTGTGGTGTTGTGCACCTAGAGTTCCAACTACTAGGGAAGCTGAGATGAGAGGATACCTTGAGCTGGGGACTGGGGAGGCTTAGGTTACAGTAAGCTGAGATTGTGCCACTGCACTCCAGCTTGGACAAAAGAGCCTGATCCTGTCTCAAAAAAAAGAAAGATACCCAGGGTCCACAGGCACAGCTCCATCGTTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTTCT

Page 7: PPT - Welcome to our family homepage

Evolution by Gene Duplication Susumu Ohno, 1970

“natural selection merely modified,while redundancy created”

Page 8: PPT - Welcome to our family homepage

It is said that “necessity is the mother of invention”. To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citizens. Looking at the history of mankind, however, one has to add that “leisure is the mother of cultural improvement”. Man’s creative genius flourished only when his mind, freed, from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that “natural selection merely modified, while redundancy created”. Natural selection has been extremely effective in policing allelic mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Yet, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impossible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redundant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.

-         Susumu Ohno, Evolution by Gene Duplication (1970)

Page 9: PPT - Welcome to our family homepage

A new function is created by duplicatingan old gene and modifying the copy.

Page 10: PPT - Welcome to our family homepage

GenomeChromosomeSegment

Gene cluster

Gene

Domain (exon)

Short indels

Duplications occur at all genomic scales!A

ppar

ent F

requ

enc y

Page 11: PPT - Welcome to our family homepage

DNA sequence

DNA sequence (Altered)

The steering wheel :

Single nucleotide changes, short insertions or deletions, inversions, recombinations, domain duplication, gene duplication, cluster duplication, segment duplication, chromosome duplication, genome duplication,

A modified model of genome evolution

Mutationsofdifferent

kinds

SELECTION)purifying or positive(

DRIFT

Page 12: PPT - Welcome to our family homepage

GATCTACCATGAAAGACTTGTGAATCCAGGAAGAGAGACTGACTGGGCAACATGTTATTCAGGTACAAAAAGATTTGGACTGTAACTTAAAAATGATCAAATTATGTTTCCCATGCATCAGGTGCAATGGGAAGCTCTTCTGGAGAGTGAGAGAAGCTTCCAGTTAAGGTGACATTGAAGCCAAGTCCTGAAAGATGAGGAAGAGTTGTATGAGAGTGGGGAGGGAAGGGGGAGGTGGAGGGATGGGGAATGGGCCGGGATGGGATAGCGCAAACTGCCCGGGAAGGGAAACCAGCACTGTACAGACCTGAACAACGAAGATGGCATATTTTGTTCAGGGAATGGTGAATTAAGTGTGGCAGGAATGCTTTGTAGACACAGTAATTTGCTTGTATGGAATTTTGCCTGAGAGACCTCATTGCAGTTTCTGATTTTTTGATGTCTTCATCCATCACTGTCCTTGTCAAATAGTTTGGAACAGGTATAATGATCACAATAACCCCAAGCATAATATTTCGTTAATTCTCACAGAATCACATATAGGTGCCACAGTTATCCCCATTTTATGAATGGAGGATGAAAACCTTAGGAATAATGAATGATTTGCGCAGGCTCACCTGGATATTAAGACTGAGTCAAATGTTGGGTCTGGTCTGACTTTAATGTTTGCTTTGTTCATGAGCACCACATATTGCCTCTCCTATGCAGTTAAGCAGGTAGGTGACAGAAAAGCCCATGTTTGTCTCTACTCACACACTTCCGACTGAATGTATGTATGGAGTTTCTACACCAGATTCTTCAGTGCTCTGGATATTAACTGGGTATCCCATGACTTTATTCTGACACTACCTGGACCTTGTCAAATAGTTTGGACCTTGTCAAATAGTTTGGAGTCCTTGTCAAATAGTTTGGGGTTAGCACAGACCCCACAAGTTAGGGGCTCAGTCCCACGAGGCCATCCTCACTTCAGATGACAATGGCAAGTCCTAAGTTGTCACCATACTTTTGACCAACCTGTTACCAATCGGGGGTTCCCGTAACTGTCTTCTTGGGTTTAATAATTTGCTAGAACAGTTTACGGAACTCAGAAAAACAGTTTATTTTCTTTTTTTCTGAGAGAGAGGGTCTTATTTTGTTGCCCAGGCTGGTGTGCAATGGTGCAGTCATAGCTCATTGCAGCCTTGATTGTCTGGGTTCCAGTGGTTCTCCCACCTCAGCCTCCCTAGTAGCTGAGACTACATGCCTGCACCACCACATCTGGCTAGTTTCTTTTATTTTTTGTATAGATGGGGTCTTGTTGTGTTGGCCAGGCTGGCCACAAATTCCTGGTCTCAAGTGATCCTCCCACCTCAGCCTCTGAAAGTGCTGGGATTACAGATGTGAGCCACCACATCTGGCCAGTTCATTTCCTATTACTGGTTCATTGTGAAGGATACATCTCAGAAACAGTCAATGAAAGAGACGTGCATGCTGGATGCAGTGGCTCATGCCTGTAATCTCAGCACTTTGGGAGGCCAAGGTGGGAGGATCGCTTAAACTCAGGAGTTTGAGACCAGCCTGGGCAACATGGTGAAAACCTGTCTCTATAAAAAATTAAAAAATAATAATAATAACTGGTGTGGTGTTGTGCACCTAGAGTTCCAACTACTAGGGAAGCTGAGATGAGAGGATACCTTGAGCTGGGGACTGGGGAGGCTTAGGTTACAGTAAGCTGAGATTGTGCCACTGCACTCCAGCTTGGACAAAAGAGCCTGATCCTGTCTCAAAAAAAAGAAAGATACCCAGGGTCCACAGGCACAGCTCCATCGTTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTTCT

Page 13: PPT - Welcome to our family homepage

The Drosophila genome

Adams, M.D. et al. Science 2000 287 2185-2195

~120-megabase euchromatic* portion was sequenced

euchromatic= *true chromatin=

non repetitivegenome regions

Page 14: PPT - Welcome to our family homepage

Misra et al. Genome Biology 2002 3(12):research0083.1-0083.22

Drosophila has >13,000 genes

Page 15: PPT - Welcome to our family homepage

Homeotic mutants

Normal fly

Extra set of wings!Ubx (Ultrabithorax) gene mutant

Antennae are transformed into legs!Antp (Antennapedia) gene mutant

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Drosophila homeobox genes as example of gene duplication

Page 16: PPT - Welcome to our family homepage

Eight homeobox (Hox) genes regulate the identity of regions within the adult and embryo.

Embryo

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Adult

Page 17: PPT - Welcome to our family homepage

The Hox genes are paralogs with a highly conserved homeobox domain

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

The Hox genes are transcription regulators and the Homeobox domain is DNA-binding domain.

Multiple alignment of the homeobox domain:

Page 18: PPT - Welcome to our family homepage

Vertebrates have 4 Hox clusters

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Human chromosomes

Page 19: PPT - Welcome to our family homepage

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Evolution of Metazoan Hox genes

Page 20: PPT - Welcome to our family homepage

What is an animal?

Textbook definition: an organism that feeds, moves and responds to stimuli.

From the book of “Bunny Suicides”

Page 21: PPT - Welcome to our family homepage

The phylotypic stage

The top row shows an early stage common to all groups, the second row shows a middle stage of development, and the bottom row shows a late stage embryo.

Haeckel's 1874 version of vertebrate embryonic development.

Page 22: PPT - Welcome to our family homepage

The zootype defines the spatial order of anterior expression limits of the Hox cluster and some other genes.

An animal is an organism that displays a particular spatial pattern of gene expression (zootype)

Slack et al. Nature 361 (1993), 490-492

Page 23: PPT - Welcome to our family homepage

Slack et al. Nature 361 (1993), 490-492

Origin of the zootype on the evolutionary tree

Page 24: PPT - Welcome to our family homepage

GATCTACCATGAAAGACTTGTGAATCCAGGAAGAGAGACTGACTGGGCAACATGTTATTCAGGTACAAAAAGATTTGGACTGTAACTTAAAAATGATCAAATTATGTTTCCCATGCATCAGGTGCAATGGGAAGCTCTTCTGGAGAGTGAGAGAAGCTTCCAGTTAAGGTGACATTGAAGCCAAGTCCTGAAAGATGAGGAAGAGTTGTATGAGAGTGGGGAGGGAAGGGGGAGGTGGAGGGATGGGGAATGGGCCGGGATGGGATAGCGCAAACTGCCCGGGAAGGGAAACCAGCACTGTACAGACCTGAACAACGAAGATGGCATATTTTGTTCAGGGAATGGTGAATTAAGTGTGGCAGGAATGCTTTGTAGACACAGTAATTTGCTTGTATGGAATTTTGCCTGAGAGACCTCATTGCAGTTTCTGATTTTTTGATGTCTTCATCCATCACTGTCCTTGTCAAATAGTTTGGAACAGGTATAATGATCACAATAACCCCAAGCATAATATTTCGTTAATTCTCACAGAATCACATATAGGTGCCACAGTTATCC

CCATTTTATGAATGGAGTEvolutionbyGenomeDuplicationGATGAAAACCTTAGGAATAATGAATGATTTGCGCAGGCTCACCTGGATATTAAGACTGAGTCAAATGTTGGGTCTGGTCTGACTTTAATGTTTGCTTTGTTCATGAGCACCACATATTGCCTCTCCTATGCAGTTAAGCAGGTAGGTGACAGAAAAGCCCATGTTTGTCTCTACTCACACACTTCCGACTGAATGTATGTATGGAGTTTCTACACCAGATTCTTCAGTGCTCTGGATATTAACTGGGTATCCCATGACTTTATTCTGACACTACCTGGACCTTGTCAAATAGTTTGGACCTTGTCAAATAGTTTGGAGTCCTTGTCAAATAGTTTGGGGTTAGCACAGACCCCACAAGTTAGGGGCTCAGTCCCACGAGGCCATCCTCACTTCAGATGACAATGGCAAGTCCTAAGTTGTCACCATACTTTTGACCAACCTGTTACCAATCGGGGGTTCCCGTAACTGTCTTCTTGGGTTTAATAATTTGCTAGAACAGTTTACGGAACTCAGAAAAACAGTTTATTTTCTTTTTTTCTGAGAGAGAGGGTCTTATTTTGTTGCCCAGGCTGGTGTGCAATGGTGCAGTCATAGCTCATTGCAGCCTTGATTGTCTGGGTTCCAGTGGTTCTCCCACCTCAGCCTCCCTAGTAGCTGAGACTACATGCCTGCACCACCACATCTGGCTAGTTTCTTTTATTTTTTGTATAGATGGGGTCTTGTTGTGTTGGCCAGGCTGGCCACAAATTCCTGGTCTCAAGTGATCCTCCCACCTCAGCCTCTGAAAGTGCTGGGATTACAGATGTGAGCCACCACATCTGGCCAGTTCATTTCCTATTACTGGTTCATTGTGAAGGATACATCTCAGAAACAGTCAATGAAAGAGACGTGCATGCTGGATGCAGTGGCTCATGCCTGTAATCTCAGCACTTTGGGAGGCCAAGGTGGGAGGATCGCTTAAACTCAGGAGTTTGAGACCAGCCTGGGCAACATGGTGAAAACCTGTCTCTATAAAAAATTAAAAAATAATAATAATAACTGGTGTGGTGTTGTGCACCTAGAGTTCCAACTACTAGGGAAGCTGAGATGAGAGGATACCTTGAGCTGGGGACTGGGGAGGCTTAGGTTACAGTAAGCTGAGATTGTGCCACTGCACTCCAGCTTGGACAAAAGAGCCTGATCCTGTCTCAAAAAAAAGAAAGATACCCAGGGTCCACAGGCACAGCTCCATCGTTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTTCT

Page 25: PPT - Welcome to our family homepage

Susumu Ohno and the 2R hypothesis

“It is our contention that the ancestors of reptiles, birds, and mammals have experienced at least one tetraploid evolution either at the stage of fish or at the stage of amphibians” (1970)

“A mammalian ancestor might have gone through at least one round of tetraploid evolution at the stage of fish” (1973)

Page 26: PPT - Welcome to our family homepage

Evolution by gene duplication, Ohno (1970)

Distribution of chromosome number in fishes is bi-modal

Page 27: PPT - Welcome to our family homepage

At least 7 Hox clusters in zebrafish

Amores et al. (1998) Science 282 1711-1714

Page 28: PPT - Welcome to our family homepage

1. Dosage relationship of functionally related genes2. Each structural gene is accompanied by duplication of its own

regulator

Much more on evolution of gene function in the next lecture...

Problems genome duplication solves:

Page 29: PPT - Welcome to our family homepage

Science v. 291, pp 1304-1351

Evidence 1: Large segments of conserved synteny are indeed present

Synthenic regions of human chromosome 11 on other human chromsomes

Page 30: PPT - Welcome to our family homepage

Carroll S.B. et al. From DNA to Diversity (2001) Blackwell Science

Evidence 2: Vertebrates have 4 copies of the Hox cluster

Page 31: PPT - Welcome to our family homepage

Detected genome duplication events

genomeduplication

Van de Peer et al. Nature Reviews Genetics (2009)

Page 32: PPT - Welcome to our family homepage

The “one-to-four” rule:

The human genome contains up to four paralogs of many Drosophila genes.

Spring J. FEBS Letters 400 (1997) 2-8

Page 33: PPT - Welcome to our family homepage

Examples of the ‘one-to-four’ rule

Spring J. Nature Genetics (2002) 31 128-129

Page 34: PPT - Welcome to our family homepage

How to turn 5 genes into 9 by a 2R model

Wolfe, K.H. Nature Reviews Genetics (2001) 2 333-341

Things Fall Apart, or

Page 35: PPT - Welcome to our family homepage

Methods for detecting genome duplications

• Spatial – Map-based approachusing knowledge of the order of genes along complete genomes

• Temporal – Tree-based approachusing the molecular clock to estimate the age of the duplication

Ken WolfeGenome Duplication archaeologist par excellence

Page 36: PPT - Welcome to our family homepage

Map-based approachA systematic search for duplicated regions in S. cerevisiae

3 separate diagonals indicate 3 distinct regional duplications

Interspersed within the clusters are gene that are not duplicated (result of regional duplications)

Wolfe K.H. and Shields D.C. Nature (1997) 387 708-713

Page 37: PPT - Welcome to our family homepage

55 duplicate regions were identified

Wolfe K.H. and Shields D.C. Nature (1997) 387 708-713

• 376 pairs of homologous genes

• Covering ~50% of the genome

Page 38: PPT - Welcome to our family homepage

How did these 55 duplicated regions arise?

By successive duplications

Simultaneously by a single duplication of the entire genome (tetraploidy)

-OR-

Page 39: PPT - Welcome to our family homepage

Triplicated regions are not observed!

If duplications were successive, then about 7 of the 55 duplications would be expected to be in triplicated regions

The duplicates are not duplicated again

Duplication

Duplication of duplicate

Page 40: PPT - Welcome to our family homepage

Chrom. XVI

Chrom. VII

centromere

centromere

50 of the 55 duplicated regions conserve the orientation with respect to the centromere.

Wolfe K.H. and Shields D.C. Nature (1997) 387 708-713

What does this signify?

Page 41: PPT - Welcome to our family homepage

mutual exchange of segments between nonhomologous chromosomes

http://www.ucl.ac.uk/~ucbhjow/bmsi/bmsi_7.html

Reciprocal translocation

Page 42: PPT - Welcome to our family homepage

• ~100 million years ago, two ancestral diploid yeast cells each containing about 5000 genes fused to form a tetraploid.

• The species then became diploid (decay of sequence identity) and most (85%) of the duplicate copies were deleted.

• Current species with a haploid diploid life cycle and 5,800 genes that include many duplicates.

S. cerevisiae is a paleoploid

Wolfe K.H. and Shields D.C. Nature (1997) 387 708-713

Page 43: PPT - Welcome to our family homepage

K. Waltii illuminates the way

S. cerevisiae and K. waltii diverged roughly 150 million years ago,before the genome duplication event.

Kellis et al. Nature (2004) 428 617-624

Page 44: PPT - Welcome to our family homepage

Gene and region correspondence with K. waltii reveals genome duplication

Kellis et al. Nature (2004) 428 617-624

• Identified a total of 253 duplicate blocks, containing 75% of K. waltii genes and 81% of S. cerevisiae genes.

• Duplicate blocks tile 85% of each K. waltii chromosome in the pattern expected for WGD.

Page 45: PPT - Welcome to our family homepage

• Segmentally duplicated regions in the Arabidopsis genome.• Much of the genome is in pairs (not in triplicates, etc.).• There is evidence that most (60–70%) flowering plants have a polyploid ancestry

Arabidopsis Genome Initiative. Nature 408, 796–815 (2000).Masterston, Science 264, 421–423 (1994).

The Map-based approach also suggests a genome duplication in the Arabidopsis genome

Page 46: PPT - Welcome to our family homepage

Genes duplicated simultaneously should show the same history

Duplication 1

Duplication 2

Wolfe, K.H. Nature Reviews Genetics (2001) 2 333-341

Temporal Tree-based approach

Page 47: PPT - Welcome to our family homepage

When the human genome was estimated at 80,000 genes the “one-to-four” hypothesis was reasonable but now that the estimate is at 35,000.

The ‘one-to-four’ rule does not hold up

Makalowski W. Genome Research (2001) 667-670

...and in 2009, only 25,000.

Page 48: PPT - Welcome to our family homepage

Arguments against 2R

1. The “one-to-four” rule has not been upheld by genome sequence data

2. Phylogenetic trees for four-membered human gene families do not show the excess of ((AB),(CD)) topologies expected under a 2R model.

A B C D

Page 49: PPT - Welcome to our family homepage

GATCTACCATGAAAGACTTGTGAATCCAGGAAGAGAGACTGACTGGGCAACATGTTATTCAGGTACAAAAAGATTTGGACTGTAACTTAAAAATGATCAAATTATGTTTCCCATGCATCAGGTGCAATGGGAAGCTCTTCTGGAGAGTGAGAGAAGCTTCCAGTTAAGGTGACATTGAAGCCAAGTCCTGAAAGATGAGGAAGAGTTGTATGAGAGTGGGGAGGGAAGGGGGAGGTGGAGGGATGGGGAATGGGCCGGGATGGGATAGCGCAAACTGCCCGGGAAGGGAAACCAGCACTGTACAGACCTGAACAACGAAGATGGCATATTTTGTTCAGGGAATGGTGAATTAAGTGTGGCAGGAATGCTTTGTAGACACAGTAATTTGCTTGTATGGAATTTTGCCTGAGAGACCTCATTGCAGTTTCTGATTTTTTGATGTCTTCATCCATCACTGTCCTTGTCAAATAGTTTGGAACAGGTATAATGATCACAATAACCCCAAGCATAATATTTCGTTAATTCTCACAGAATCACATATAGGTGCCACAGTTATCC

CCATTTTATGAATGGAGT2Rornot2R?GATGAAAACCTTAGGAATAATGAATGATTTGCGCAGGCTCACCTGGATATTAAGACTGAGTCAAATGTTGGGTCTGGTCTGACTTTAATGTTTGCTTTGTTCATGAGCACCACATATTGCCTCTCCTATGCAGTTAAGCAGGTAGGTGACAGAAAAGCCCATGTTTGTCTCTACTCACACACTTCCGACTGAATGTATGTATGGAGTTTCTACACCAGATTCTTCAGTGCTCTGGATATTAACTGGGTATCCCATGACTTTATTCTGACACTACCTGGACCTTGTCAAATAGTTTGGACCTTGTCAAATAGTTTGGAGTCCTTGTCAAATAGTTTGGGGTTAGCACAGACCCCACAAGTTAGGGGCTCAGTCCCACGAGGCCATCCTCACTTCAGATGACAATGGCAAGTCCTAAGTTGTCACCATACTTTTGACCAACCTGTTACCAATCGGGGGTTCCCGTAACTGTCTTCTTGGGTTTAATAATTTGCTAGAACAGTTTACGGAACTCAGAAAAACAGTTTATTTTCTTTTTTTCTGAGAGAGAGGGTCTTATTTTGTTGCCCAGGCTGGTGTGCAATGGTGCAGTCATAGCTCATTGCAGCCTTGATTGTCTGGGTTCCAGTGGTTCTCCCACCTCAGCCTCCCTAGTAGCTGAGACTACATGCCTGCACCACCACATCTGGCTAGTTTCTTTTATTTTTTGTATAGATGGGGTCTTGTTGTGTTGGCCAGGCTGGCCACAAATTCCTGGTCTCAAGTGATCCTCCCACCTCAGCCTCTGAAAGTGCTGGGATTACAGATGTGAGCCACCACATCTGGCCAGTTCATTTCCTATTACTGGTTCATTGTGAAGGATACATCTCAGAAACAGTCAATGAAAGAGACGTGCATGCTGGATGCAGTGGCTCATGCCTGTAATCTCAGCACTTTGGGAGGCCAAGGTGGGAGGATCGCTTAAACTCAGGAGTTTGAGACCAGCCTGGGCAACATGGTGAAAACCTGTCTCTATAAAAAATTAAAAAATAATAATAATAACTGGTGTGGTGTTGTGCACCTAGAGTTCCAACTACTAGGGAAGCTGAGATGAGAGGATACCTTGAGCTGGGGACTGGGGAGGCTTAGGTTACAGTAAGCTGAGATTGTGCCACTGCACTCCAGCTTGGACAAAAGAGCCTGATCCTGTCTCAAAAAAAAGAAAGATACCCAGGGTCCACAGGCACAGCTCCATCGTTACAATGGCCTCTTTAGACCCAGCTCCTGCCTCCCAGCCTTCT

Page 50: PPT - Welcome to our family homepage

4 intervening genes (allow for a maximum of 30)

A paralogon of size 2 (sm = 2)

A paralogon of size 3 (sm = 3)

Paralogons are defined as paralog pairs separated by at most 30 intervening genes

Based upon McLysaght et al. Nature Genetics (2002) 31 200-204

Page 51: PPT - Welcome to our family homepage

Modified from McLysaght et al. Nature Genetics (2002) 31 200-204

Paralogons on human chromosome 17

Page 52: PPT - Welcome to our family homepage

McLysaght et al. Nature Genetics (2002) 31 200-204

Distribution of sizes of paralogons found in the human genome

Page 53: PPT - Welcome to our family homepage

Large-scale duplications must be invoked to explain paralogons:Test with a random shuffling model

Any paralogon with sm 6 was very likely to have been formed by a single duplication

McLysaght et al. Nature Genetics (2002) 31 200-204

Page 54: PPT - Welcome to our family homepage

McLysaght et al. Nature Genetics (2002) 31 200-204

Dating the duplications with respect to divergence from fly

outgroup

Page 55: PPT - Welcome to our family homepage

McLysaght et al. Nature Genetics (2002) 31 200-204

Excess duplications in the 0.4-0.7 D date range

Page 56: PPT - Welcome to our family homepage

McLysaght et al. Nature Genetics (2002) 31 200-204

The majority of genes making up paralogons fall in the age class 0.4–0.7 D

Page 57: PPT - Welcome to our family homepage

1. Human genome contains many more paralogons than expected by chance

2. A burst of gene duplication occurred during early chordate evolution

3. A widespread deletion of genes must have subsequently occurred (as in yeast and arabidopsis)

McLysaght et al. Nature Genetics (2002) 31 200-204

One genome duplication seems to have occurred

Page 58: PPT - Welcome to our family homepage

Gu X. et al. Nature Genetics (2002) 31 205-209

Another study, based upon 749 gene families ,came to a similar conclusion

The authors emphasized both genome and segmental duplications

Page 59: PPT - Welcome to our family homepage

Durand D. TIGs (2003) 19 2-5

Evolution of the chordate lineage with fly as an outgroup

Genome duplication estimates

Page 60: PPT - Welcome to our family homepage

Aury et al. Nature (2006) 444 171-178

In the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications

Representation of the successive duplications of the Paramecium genome. The exterior circle displays all chromosome-sized scaffolds, and the three interior circles show the reconstructed sequences obtained by fusion of the paired sequences from each previous step. Red lines link pairs of genes with a BRH match, and blue lines link pairs of genes with a non-BRH match that were added on the basis of syntenic position. Only the BRHs that link two genes in the same paralogon are represented. The position of an ancestral block is unrelated to the position of its constituents in the previous circle.

Page 61: PPT - Welcome to our family homepage

Aury et al. Nature (2006) 444 171-178

A model for gradual gene loss after genome duplications deduced from differential retention of genes in Paramecium.

Page 62: PPT - Welcome to our family homepage

• Paleopolyploidy events therefore seem to be exceedingly rare

• However, polyploidy is extremely common, 2-3% of speciation events.

• This would suggest that, although descendants of WGD events do not survive often, when they do survive their evolutionary lineage can be very successful.

Genome Duplications and Organismal Complexity

Van de Peer et al. Nature Reviews Genetics (2009)

Page 63: PPT - Welcome to our family homepage

The End

From the book of Bunny Suicides