powheg in herwig++ for susy - durpowheg in herwig++ for susy alix wilcock ippp, durham university...

27
Powheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl¨ atzer and B. Fuks

Upload: others

Post on 22-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Powheg in Herwig++ for SUSY

Alix Wilcock

IPPP, Durham University

27/04/2015

Based on work done with P. Richardson, S. Platzer and B. Fuks

Page 2: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Acronyms

SUSY = Supersymmetry

Want SUSY to solve the hierarchy problem

Page 3: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Supersymmetry

- it’s not dead

Require SUSY partner of the top quark to be light(mt1

. few TeV)

Still possible in compressed spectra scenarios

Page 4: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Supersymmetry - it’s not dead

Require SUSY partner of the top quark to be light(mt1

. few TeV)

Still possible in compressed spectra scenarios

Page 5: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Compressed spectra SUSY

Mass difference between SUSY particle and the decayproducts is small

No energetic Standard Model objects

Not a lot of missing ET

Look for SUSY particles recoiling against hard initial-stateradiation

χ01

χ01

q

qq

qp p

Page 6: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Compressed spectra SUSY

Mass difference between SUSY particle and the decayproducts is small

No energetic Standard Model objects

Not a lot of missing ET

Look for SUSY particles recoiling against hard initial-stateradiation

χ01

qq

p p

q χ01

q

Page 7: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Acronyms

Herwig++

= Hard emission reactions with interfering gluons

Page 8: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Acronyms

Herwig++ = Hard emission reactions with interfering gluons

Page 9: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Monte Carlo event generator

Takes theoretical model → simulates expected experimentaldata

Monte Carlo simulations split into several stages:

Hard process → Parton shower → Hadronisation

Page 10: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Matrix-element matching

Parton showers resum large logarithms

Good approx. in soft/collinear limit

Doesn’t describe hard emissions well

(Remember hard emissionsimportant when studyingcompressed spectra SUSY)

j

k

iMn

θ

1(pj+pk )2 = 1

EjEk (1−cos θ)

Improve simulation of hard radiation in the shower usingNLO matrix-element matching

Combines exact matrix elements with the parton shower

We use the POsitive Weight Hardest Emission Generator(Powheg ) formalism

Page 11: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Matrix-element matching

Parton showers resum large logarithms

Good approx. in soft/collinear limit

Doesn’t describe hard emissions well

(Remember hard emissionsimportant when studyingcompressed spectra SUSY)

j

k

iMn

θ

1(pj+pk )2 = 1

EjEk (1−cos θ)

Improve simulation of hard radiation in the shower usingNLO matrix-element matching

Combines exact matrix elements with the parton shower

We use the POsitive Weight Hardest Emission Generator(Powheg ) formalism

Page 12: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Powheg formalism

For a pT ordered parton shower, cross section for the first emission:

Normal parton shower

dσPS = B(ΦB)dΦB

[∆(pmin

T , pmaxT ) + ∆(pT , p

maxT )P(z) dΦR

]∆(pT , p

maxT ) = exp

(−∫ pmax

T

pT

P(z)dΦR

)

Powheg corrected parton shower

dσPO = B(ΦB)dΦB

[∆(pmin

T , pmaxT ) + ∆(pT , p

maxT )

RB dΦR

]

∆(pT , pmaxT ) = exp

(−∫ pmax

T

pT

RB dΦR

)

B(ΦB) = B(ΦB) + V(ΦB) +

∫R(ΦB ,ΦR)dΦR

Page 13: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Powheg formalism

For a pT ordered parton shower, cross section for the first emission:

Normal parton shower

dσPS = B(ΦB)dΦB

[∆(pmin

T , pmaxT ) + ∆(pT , p

maxT )P(z) dΦR

]∆(pT , p

maxT ) = exp

(−∫ pmax

T

pT

P(z)dΦR

)

Powheg corrected parton shower

dσPO = B(ΦB)dΦB

[∆(pmin

T , pmaxT ) + ∆(pT , p

maxT )

RB dΦR

]

∆(pT , pmaxT ) = exp

(−∫ pmax

T

pT

RB dΦR

)

B(ΦB) = B(ΦB) + V(ΦB) +

∫R(ΦB ,ΦR)dΦR

Page 14: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Matrix-element corrections

Powheg correction available in Herwig++ for large number ofStandard Model processes.

For BSM processes, limited by absence of virtual matrix elements→ Powheg style matrix-element correction

Generate hardest emission using RBut local normalization is B rather than B

Implement ME correction using Matchbox and MadGraph

MadGraph 5 - used to generate B and RMatchbox - framework for NLO calculations, MC@NLO andPowheg matching to the Herwig++ angular ordered anddipole showers

Page 15: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Matrix-element corrections

Powheg correction available in Herwig++ for large number ofStandard Model processes.

For BSM processes, limited by absence of virtual matrix elements→ Powheg style matrix-element correction

Generate hardest emission using RBut local normalization is B rather than B

Implement ME correction using Matchbox and MadGraph

MadGraph 5 - used to generate B and RMatchbox - framework for NLO calculations, MC@NLO andPowheg matching to the Herwig++ angular ordered anddipole showers

Page 16: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Top squark pair production

Simulated pp → t1t∗1 , stable t1 at

√s = 14TeV, mt1

= 700 GeV.Limit simulation to hard process + full parton shower

LO

MEC

10−6

10−5

10−4

10−3

10−2

10−1

Matchbox +MadGraph 5

dσ/dpT[fb/GeV

]

0 500 1000 1500 2000

0.6

0.8

1

1.2

1.4

pT,t1t∗1[GeV]

MEC/LO

Example: e+e− → qqg [hep-ph/0310083]

Uncorrected shower:

over populates hard regions of phase space in pT . mt1region

has unpopulated dead zone for pT & mt1

Page 17: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Effect of the matrix element correction: exclusion bounds

ATLAS search for direct production of the top squark inevents with missing ET and two b-jets

t1 → bχ+1 → bf f ′χ0

1 with mχ+1−mχ0

1= 5GeV

Selection criterion Signal region A Signal region B

EmissT > 150 GeV > 250 GeV

Leading jet, j1 pT > 130 GeV, |η| < 2.8 pT > 150 GeV, |η| < 2.8

Subleading jet, j2 pT > 50 GeV, |η| < 2.8 pT > 30 GeV, |η| < 2.8

Third jet, j3 veto if pT > 50 GeV, |η| < 2.8 pT > 30 GeV, |η| < 2.8

∆φ(pmissT , j1) - > 2.5

b-tagged jetsj1 and j2 b-tagged with

pT > 50 GeV, |η| < 2.5

j2 and j3 b-tagged with

pT > 30 GeV, |η| < 2.5

mink (∆φ(pmissT , jk )) for k ≤ 3 > 0.4 > 0.4

EmissT /(

∑ni=1(p

jetT

)i + EmissT ) > 0.25, n = 2 > 0.25, n = 3

mCT [ref] > 150, 200, 250, 300, 350 GeV -

HT,3 =∑

(pjT

)i for all i > 3 - > 50 GeV

mbb =√

(pb,1 + pb,2)2 > 200 GeV -

Page 18: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Effect of matrix element correction: before

ATLAS search for direct production of the top squark inevents with missing ET and two b-jets

t1 → bχ+1 → bf f ′χ0

1 with mχ+1−mχ0

1= 5GeV

Original signal simulated with MadGraph + PYTHIA 6

200 300 400 500 600 700

mt1 [GeV]

100

200

300

400

500

600

0 1[G

eV]

ATLAS-SUSY-2013-05

∆mχ+1 −χ0

1= 5 GeV

t 1→bχ+1

forb

idden ∫

L = 20.1fb−1

√s = 8TeV

ATLAS result

Herwig++

Page 19: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Effect of matrix element correction: after

ATLAS search for direct production of the top squark inevents with missing ET and two b-jets

t1 → bχ+1 → bf f ′χ0

1 with mχ+1−mχ0

1= 5GeV

Original signal simulated with MadGraph + PYTHIA 6

200 300 400 500 600 700

mt1 [GeV]

100

200

300

400

500

600

0 1[G

eV]

ATLAS-SUSY-2013-05

∆mχ+1 −χ0

1= 5 GeV

t 1→bχ+1

forb

idden ∫

L = 20.1fb−1

√s = 8TeV

ATLAS result

Herwig++

Page 20: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

And now for something a little different...

We’ve looked at SUSY searches based on a hard ISR jet + EmissT

But this in not the only option...

“monojet” = ISR jet + EmissT

“monophoton” = energetic photon + EmissT

“monotop” = top quark + EmissT

χ01

qq

p p

q χ01

q

t

Page 21: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Monotop search for SUSY

Study LHC sensitivity using Monte Carlo simulations of 300fb−1 of14TeV collisions

Search for pp → t1χ01t with t1 → cχ0

1

Experimental signal is t + EmissT

t1 and χ01 light

Other SUSY particles decoupled m ≈ 10 TeV

Page 22: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Simulation

Signal:

pp → t1χ01t with t → bqq′ simulated in MadGraph 5

t1 → cχ01, parton shower, hadronization done with Herwig++

Background:

Process Simulation details

ttHard process at NLO with

PowhegBox, matched to Herwig++

Single top As above

tW production As above

W (→ lν) + light-jetsW production at NLO matched to

LO W+ 1 or 2 jets using Sherpa

γ/Z (→ l l/νν) + jets As above

Wbb with W → lνHard process at LO with

MadGraph, matched to Herwig++

Diboson NLO using Powheg in Herwig++

Page 23: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Event Selection Criteria

Designed to reflect final state of signal events

Exactly zero leptons

Exactly one b-jet, pT > 30GeV

Three other jets with pT > min(pbT , 40GeV)

Impose further cuts to maximize sensitivity = S√S+B

S , B are number of signal and background events passing the cuts

EmissT > 200GeV

50GeV < mjj < 100GeV

100GeV < mbjj < 200GeV

∆φ(pmissT , pj1) > 0.6 and ∆φ(pmiss

T , pb) > 0.6

∆φ(pmissT , pt) > 1.8

Page 24: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Results - Scan

Scan (mt1,mχ0

1) plane

Superimpose ATLAS monojet search for pair-produced top squarks

150 200 250 300

mt1[GeV]

50

100

150

200

250

300

350

0 1[G

eV]

mt1< m

χ01

+mc

ATLAS: 95% CL, 20fb−1

Monotop: 2σ, 300fb−1

Can monotops provide competitive sensitivity to monojettechniques?

No!

Page 25: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Results - Scan

Scan (mt1,mχ0

1) plane

Superimpose ATLAS monojet search for pair-produced top squarks

150 200 250 300

mt1[GeV]

50

100

150

200

250

300

350

0 1[G

eV]

mt1< m

χ01

+mc

ATLAS: 95% CL, 20fb−1

Monotop: 2σ, 300fb−1

Can monotops provide competitive sensitivity to monojettechniques? No!

Page 26: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks

Summary

SUSY is not dead

Light top squarks could still exist in compressed spectrascenarios

Search for them using non-standard analysis techniques, e.g.monojet or monotop signals

Monojet searches require accurate simulation of hard radiationand work pretty well

Monotops are not competitive at LHC energies

Page 27: Powheg in Herwig++ for SUSY - DurPowheg in Herwig++ for SUSY Alix Wilcock IPPP, Durham University 27/04/2015 Based on work done with P. Richardson, S. Pl atzer and B. Fuks