poster’printsize: ’ harmful(algal(blooms(in(the(chesapeake...

1
Contributing factors to bloom events: chlorophyll and sea surface temperature. Harmful Algal Blooms in the Chesapeake Bay Grant Catlin, Johnny Roberts, and Anthony Farris Correspondence: [email protected] INTRODUCTION METHODS CONCLUSIONS Figure 3. Recorded bloom events from Summers 201416 occur primarily near agricultural faciliBes and watershed with high phosphorous and nitrogen outputs. Figure 1. Timeline of HABs by species and region (lower Chesapeake Bay and higher) with overlay of associated MODIS AQUA chlorophyll data, monthly composite. Although different species typically occur in varying locaBons of the Bay, all bloom under condiBons of high chlorophyll values as shown above. This project uBlized available MODIS AQUA Level 3, 1km daily chlorophylla imagery for July through September of 201516 as well as NOAA AVHRR daily 1km SST imagery. StaBsBcal analysis of these data sets were performed and compared to in situ water measurements and records of blooms in order to asses the accuracy of remotely sensing these phenomenon. Using ENVI, a Region of Interest was created to isolate the lower Chesapeake. Subset of ROI to extract staBsBcs. A mask was created in the staBsBcs to ignore superfluous values. Data input range of 0.5 – 150 mg m 3 for chlorophylla imagery and 5 – 35° C for SST were set to obtain reasonably accurate staBsBcal outputs. Histogram was analyzed, and max and mean values were derived from staBsBcs for each day. These values were graphed to determine a correlaBon between dates of recorded blooms and dates with high seasurface temperature and chlorophylla values. In situ water quality data obtained from Chesapeake Bay Water Quality Database. Chlorophyll, water temperature, total dissolved nitrogen, and total dissolved phosphorous graphed over Bme. These values were compared to values derived from remote sensing data to assess accuracy, and help see if there is a correlaBon between high data values and bloom dates. In ArcMap, Chesapeake Bay phosphorous and nitrogen output data, point sources of nutrient polluBon outputs and priority agriculture watersheds, as well as HAB reports from Virginia InsBtute of Marine Science, and Eyes on the Bay, were digiBzed. HABs were then appropriately classified based on date recorded, species, and concentraBon in cell/ml. QualitaBve symbology was applied to designate HABs by size and value. This data was overlaid on chlorophyll concentraBon rasters for each month within the studied Bme periods. This data provides us with accurate insight about the influence nutrient outputs from agriculture has on bloom events. Kernel density performed based off HAB event. The United States’ largest estuary, the Chesapeake Bay, is home to a vast and complex ecosystem, which supports a diverse range of habitats and provides a crucial economic role for local communiBes. Every year, predominantly in the summer months, harmful algal blooms (HABs) occur, negaBvely impacBng economic, ecological, and human health. HABs occur when colonies of algae grow rapidly, fueled by warm water temperatures and excess nutrients such as phosphorous and nitrogen. Tracking and monitoring HABs is very challenging, as they are highly variable in nature and can pop up and disappear in a number of hours. We uBlized MODIS and AVHRR satellite data as a method to track blooms over the course of July through September 201416, and analyzed the effecBveness of using chlorophyll and sea surface temperature as a proxy for these blooms. By linking past records of HAB events with locaBons of agriculture faciliBes and their phosphorous and nitrogen watershed outputs, we were able to combine remote sensing techniques with GIS, and ulBmately provide a product that displays a Bme series trend of HAB hotspots in the Chesapeake Bay. Research quesBons: Can we remotely sense HABs using chlorophyll and SST as a proxy? Where and when are blooms most likely, and what other factors are blooms conBngent upon? 2014 2015 2016 JULY 2014 2015 2016 2014 2015 2016 AUGUST SEPTEMBER Contributing factors to bloom events: nutrient outputs. Can we use MODIS chlorophyll and AVHRR SST imagery to accurately track and sense HABs? Figure 5. Region of interest for staRsRcal study of area with the most frequent and clustered HAB events over our Rme period of interest. VIIRS 750m satellite imagery. 1.V. (n.d.). 2015 HAB AcBvity & Sampling. Retrieved June 04, 2017, from hyps://www.google.com/maps/d/viewer? mid=1PuSe4rsPyy6Onl1qhF8yAtnrxsk&ll=37.25716937140065%2C76.46381380000003&z=9. 2.Harmful Algal Blooms InteracBve Data Map. (n.d.). Retrieved June 04, 2017, from hyp:// eyesonthebay.dnr.maryland.gov/eyesonthebay/habs_fullsizemap.cfm 3.Wolf, J. (2009, March 9). Point Sources and Priority Agriculture Watersheds Chesapeake Bay Watershed. Retrieved June 04, 2017, from hyp://www.chesapeakebay.net/maps/map/ point_sources_and_priority_agriculture_watersheds_chesapeake_bay_watershed. 4.Wolf, J. (2011, March 11). LongTerm FlowAdjusted Trends Suspended Sediment (32 Sites in the Chesapeake Bay Watershed) 8509. Retrieved June 04, 2017, fromhyp://www.chesapeakebay.net/maps/map/ long_term_flow_adjusted_trends_suspended_sediment_32_sites_in_the_chesapeak. 5.Chesapeake Bay Data Hub. hyp://data.chesapeakebay.net/WaterQuality. REFERENCES Figure 4. Kernel density map based off clustering of bloom events. Darkest red areas show where blooms have occurred most oDen for the given month over 201416. This can be used to help predict which species will occur as well as where and when based off of past events. StaBsBcs computed from ROI subset for Jul.Sep. 2016 chlorophyll imagery and SST. We hypothesized high values of chlorophyll would match up to high values of SST, however all chlorophyll values match up to high values of SST (figure 6), showing Chlorophyll is not exclusively dependent on SST. StaRsRcs derived from in situ water quality data of same study region. SST trends closely follow chlorophyll trends, versus the high variability in satellite data. HAB events follow high data values supporRng the hypothesis as well as portraying the increased accuracy of in situ versus satellite. This study helps predict HAB prone areas, but also portrays the complicaBons associated with detecBng, idenBfying, and tracking blooms using remote sensing to facilitate improvements in further research. Most blooms occur where chlorophyll concentraBons are highest. Different species thrive in different regions of the Bay as well as Bmes of the year. One of the main overlooked consBtuents of HABs is locaBon of agricultural faciliBes and their relaBve phosphorous and nitrogen outputs. All blooms observed occur within an agricultural watershed, or next to a source facility where nutrient concentraBons are highest. The remote sensing of blooms generally requires sensors with a 1 day temporal resoluBon, as well as a 1km – 1m spaBal resoluBon and 710 key spectral bands in the “red edge,” or the red to nearinfrared porBon of the spectrum. The key spectral bands used to sense algal blooms are around 681 nm. MODIS AQUA has adequate temporal resoluBon at 12 days, but suffers in its lack of key spectral bands in the red edge, as well as its coarser 1 km spaBal resoluBon. This prevents it from disBnguishing between cyanobacteria and the other species that make up harmful algal blooms. Moving forward: The European Space Agency has launched SenBnel 3a, which has adequate spaBal and temporal resoluBon, and has began sensing our study area using a band range incorporaBng a “cyanobacteria index” that will enable more accurate remote sensing of bloom species. Southern Chesapeake Bay Northern Chesapeake Bay Figure 2. NOAA AVHRR imagery showing monthly composite sea surface temperature by month and year. Most blooms typically occur when temperatures are warmest, in August, however different species thrive in different temperatures. RelaBng SST to Figure 1, we can see which species prefer warmer versus cooler temperatures. Using HAB’s as a proxy to chlorophyll, we further hypothesized that HAB events would have occurred on days with the highest values of Chlorophyll. There are events where these condiBons hold true, however there are HAB events where the staBsBcs are very low instead. This graph shows the high variability in chlorophyll between each day by month portraying the difficulBes in sensing and tracking blooms as a proxy to chlorophyll. 35*C 15*C 0*C Jul.- Sep. 2016 Chlorophyll Concentration Average Chlorophyll Concentration at Surface from Jul.- Sep. 2016 Average Surface Water Temperature from Jul.- Sep. 2016

Upload: others

Post on 22-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Poster’PrintSize: ’ Harmful(Algal(Blooms(in(the(Chesapeake ...spatial.ucsb.edu/eventfiles/local17/posters/2-Catlin.pdf · Poster’PrintSize: ’ This’poster’template’is’42”’high’by’

Poster  Print  Size:  This  poster  template  is  42”  high  by  56”  wide.  It  can  be  used  to  print  any  poster  with  a  3:4  aspect  raBo.  

Placeholders:  The  various  elements  included  in  this  poster  are  ones  we  oDen  see  in  medical,  research,  and  scienBfic  posters.  Feel  free  to  edit,  move,    add,  and  delete  items,  or  change  the  layout  to  suit  your  needs.  Always  check  with  your  conference  organizer  for  specific  requirements.  

Image  Quality:  You  can  place  digital  photos  or  logo  art  in  your  poster  file  by  selecBng  the  Insert,  Picture  command,  or  by  using  standard  copy  &  paste.  For  best  results,  all  graphic  elements  should  be  at  least  150-­‐200  pixels  per  inch  in  their  final  printed  size.  For  instance,  a  1600  x  1200  pixel  photo  will  usually  look  fine  up  to  8“-­‐10”  wide  on  your  printed  poster.  To  preview  the  print  quality  of  images,  select  a  magnificaBon  of  100%  when  previewing  your  poster.  This  will  give  you  a  good  idea  of  what  it  will  look  like  in  print.  If  you  are  laying  out  a  large  poster  and  using  half-­‐scale  dimensions,  be  sure  to  preview  your  graphics  at  200%  to  see  them  at  their  final  printed  size.  Please  note  that  graphics  from  websites  (such  as  the  logo  on  your  hospital's  or  university's  home  page)  will  only  be  72dpi  and  not  suitable  for  prinBng.  

 [This  sidebar  area  does  not  print.]  

Change  Color  Theme:  This  template  is  designed  to  use  the  built-­‐in  color  themes  in  the  newer  versions  of  PowerPoint.  To  change  the  color  theme,  select  the  Design  tab,  then  select  the  Colors  drop-­‐down  list.                    The  default  color  theme  for  this  template  is  “Office”,  so  you  can  always  return  to  that  aDer  trying  some  of  the  alternaBves.  

PrinBng  Your  Poster:  Once  your  poster  file  is  ready,  visit  www.genigraphics.com  to  order  a  high-­‐quality,  affordable  poster  print.  Every  order  receives  a  free  design  review  and  we  can  deliver  as  fast  as  next  business  day  within  the  US  and  Canada.    Genigraphics®  has  been  producing  output  from  PowerPoint®  longer  than  anyone  in  the  industry;  daBng  back  to  when  we  helped  MicrosoD®  design  the  PowerPoint®  soDware.      US  and  Canada:    1-­‐800-­‐790-­‐4001  Email:  [email protected]  

 [This  sidebar  area  does  not  print.]  

Contributing factors to bloom events: chlorophyll and sea surface temperature.

Harmful  Algal  Blooms  in  the  Chesapeake  Bay    

Grant  Catlin,  Johnny  Roberts,  and  Anthony  Farris  Correspondence:  [email protected]  

 

INTRODUCTION  

METHODS  

CONCLUSIONS  

Figure  3.  Recorded  bloom  events  from  Summers  2014-­‐16  occur  primarily  near  agricultural  faciliBes  and  watershed  with  high  phosphorous  and  nitrogen  outputs.    

Figure  1.  Timeline  of  HABs  by  species  and  region  (lower  Chesapeake  Bay  and  higher)  with  overlay  of  associated  MODIS  AQUA  chlorophyll  data,  monthly  composite.  Although  different  species  typically  occur  in  varying  locaBons  of  the  Bay,  all  bloom  under  condiBons  of  high  chlorophyll  values  as  shown  above.                                        

This  project  uBlized  available  MODIS  AQUA  Level  3,  1km  daily  chlorophyll-­‐a  imagery  for  July  through  September  of  2015-­‐16  as  well  as  NOAA  AVHRR  daily  1km  SST  imagery.  StaBsBcal  analysis  of  these  data  sets  were  performed  and  compared  to  in  situ  water  measurements  and  records  of  blooms  in  order  to  asses  the  accuracy  of  remotely  sensing  these  phenomenon.    •  Using  ENVI,  a  Region  of  Interest  was  created  to  isolate  the  lower  Chesapeake.  •  Subset  of  ROI  to  extract  staBsBcs.  A  mask  was  created  in  the  staBsBcs  to  ignore  

superfluous  values.  Data  input  range  of  0.5  –  150  mg  m-­‐3  for  chlorophyll-­‐a  imagery  and  5  –  35°  C  for  SST  were  set  to  obtain  reasonably  accurate  staBsBcal  outputs.  

•  Histogram  was  analyzed,  and  max  and  mean  values  were  derived  from  staBsBcs  for  each  day.  These  values  were  graphed  to  determine  a  correlaBon  between  dates  of  recorded  blooms  and  dates  with  high  sea-­‐surface  temperature  and  chlorophyll-­‐a  values.  

•  In  situ  water  quality  data  obtained  from  Chesapeake  Bay  Water  Quality  Database.  Chlorophyll,  water  temperature,  total  dissolved  nitrogen,  and  total  dissolved  phosphorous  graphed  over  Bme.  These  values  were  compared  to  values  derived  from  remote  sensing  data  to  assess  accuracy,  and  help  see  if  there  is  a  correlaBon  between  high  data  values  and  bloom  dates.  

•  In  ArcMap,  Chesapeake  Bay  phosphorous  and  nitrogen  output  data,  point  sources  of  nutrient  polluBon  outputs  and  priority  agriculture  watersheds,  as  well  as  HAB  reports  from  Virginia  InsBtute  of  Marine  Science,  and  Eyes  on  the  Bay,  were  digiBzed.    

•  HABs  were  then  appropriately  classified  based  on  date  recorded,  species,  and  concentraBon  in  cell/ml.  QualitaBve  symbology  was  applied  to  designate  HABs  by  size  and  value.  This  data  was  overlaid  on  chlorophyll  concentraBon  rasters  for  each  month  within  the  studied  Bme  periods.  This  data  provides  us  with  accurate  insight  about  the  influence  nutrient  outputs  from  agriculture  has  on  bloom  events.    

•  Kernel  density  performed  based  off  HAB  event.    

The  United  States’  largest  estuary,  the  Chesapeake  Bay,  is  home  to  a  vast  and  complex  ecosystem,  which  supports  a  diverse  range  of  habitats  and  provides  a  crucial  economic  role  for  local  communiBes.  Every  year,  predominantly  in  the  summer  months,  harmful  algal  blooms  (HABs)  occur,  negaBvely  impacBng  economic,  ecological,  and  human  health.  HABs  occur  when  colonies  of  algae  grow  rapidly,  fueled  by  warm  water  temperatures  and  excess  nutrients  such  as  phosphorous  and  nitrogen.  Tracking  and  monitoring  HABs  is  very  challenging,  as  they  are  highly  variable  in  nature  and  can  pop  up  and  disappear  in  a  number  of  hours.  We  uBlized  MODIS  and  AVHRR  satellite  data  as  a  method  to  track  blooms  over  the  course  of  July  through  September  2014-­‐16,  and  analyzed  the  effecBveness  of  using  chlorophyll  and  sea  surface  temperature  as  a  proxy  for  these  blooms.  By  linking  past  records  of  HAB  events  with  locaBons  of  agriculture  faciliBes  and  their  phosphorous  and  nitrogen  watershed  outputs,  we  were  able  to  combine  remote  sensing  techniques  with  GIS,  and  ulBmately  provide  a  product  that  displays  a  Bme  series  trend  of  HAB  hotspots  in  the  Chesapeake  Bay.    Research  quesBons:  Can  we  remotely  sense  HABs  using  chlorophyll  and  SST  as  a  proxy?  Where  and  when  are  blooms  most  likely,  and  what  other  factors  are  blooms  conBngent  upon?  

2014 2015 2016

JULY 2014 2015 2016 2014 2015 2016

AUGUST SEPTEMBER

Contributing factors to bloom events: nutrient outputs.

Can we use MODIS chlorophyll and AVHRR SST imagery to accurately track and sense

HABs?

Figure  5.  Region  of  interest  for  staRsRcal  study    of  area  with  the  most  frequent  and  clustered    HAB  events  over  our  Rme  period  of  interest.  VIIRS  750m  satellite  imagery.

1. V.  (n.d.).  2015  HAB  AcBvity  &  Sampling.  Retrieved  June  04,  2017,  from  hyps://www.google.com/maps/d/viewer?mid=1PuSe4rsPyy6Onl1qhF8yAtnrxsk&ll=37.25716937140065%2C-­‐76.46381380000003&z=9.  

2. Harmful  Algal  Blooms  InteracBve  Data  Map.  (n.d.).  Retrieved  June  04,  2017,  from  hyp://eyesonthebay.dnr.maryland.gov/eyesonthebay/habs_fullsizemap.cfm  

3. Wolf,  J.  (2009,  March  9).  Point  Sources  and  Priority  Agriculture  Watersheds  -­‐  Chesapeake  Bay  Watershed.  Retrieved  June  04,  2017,  from  hyp://www.chesapeakebay.net/maps/map/point_sources_and_priority_agriculture_watersheds_chesapeake_bay_watershed.  

4. Wolf,  J.  (2011,  March  11).  Long-­‐Term  Flow-­‐Adjusted  Trends  Suspended  Sediment  (32  Sites  in  the  Chesapeake  Bay  Watershed)  85-­‐09.  Retrieved  June  04,  2017,  fromhyp://www.chesapeakebay.net/maps/map/long_term_flow_adjusted_trends_suspended_sediment_32_sites_in_the_chesapeak.  

5. Chesapeake  Bay  Data  Hub.  hyp://data.chesapeakebay.net/WaterQuality.  

REFERENCES

Figure  4.  Kernel  density  map  based  off  clustering  of  bloom  events.  Darkest  red  areas  show  where  blooms  have  occurred  most  oDen  for  the  given  month  over  2014-­‐16.  This  can  be  used  to  help  predict  which  species  will  occur  as  well  as  where  and  when    based  off  of  past  events.

StaBsBcs  computed  from  ROI  subset  for  Jul.-­‐Sep.  2016  chlorophyll  imagery  and  SST.  We  hypothesized  high  values  of  chlorophyll  would  match  up  to  high  values  of  SST,  however  all  chlorophyll  values  match  up  to  high  values  of  SST  (figure  6),  showing  Chlorophyll  is  not  exclusively  dependent  on  SST.    

StaRsRcs  derived  from  in  situ  water  quality  data  of  same  study  region.  SST  trends  closely  follow  chlorophyll  trends,  versus  the  high  variability  in  satellite  data.  HAB  events  follow  high  data  values  -­‐  supporRng  the  hypothesis  -­‐  as  well  as  portraying  the  increased  accuracy  of  in  situ  versus  satellite.    

This  study  helps  predict  HAB  prone  areas,  but  also  portrays  the  complicaBons  associated  with  detecBng,  idenBfying,  and  tracking  blooms  using  remote  sensing  to  facilitate  improvements  in  further  research.    •  Most  blooms  occur  where  chlorophyll  concentraBons  are  highest.  •  Different  species  thrive  in  different  regions  of  the  Bay  as  well  as  Bmes  of  

the  year.  •  One  of  the  main  overlooked  consBtuents  of  HABs  is  locaBon  of  agricultural  

faciliBes  and  their  relaBve  phosphorous  and  nitrogen  outputs.  All  blooms  observed  occur  within  an  agricultural  watershed,  or  next  to  a  source  facility  where  nutrient  concentraBons  are  highest.    

•  The  remote  sensing  of  blooms  generally  requires  sensors  with  a  1  day  temporal  resoluBon,  as  well  as  a  1km  –  1m  spaBal  resoluBon  and  7-­‐10  key  spectral  bands  in  the  “red  edge,”  or  the  red  to  near-­‐infrared  porBon  of  the  spectrum.  The  key  spectral  bands  used  to  sense  algal  blooms  are  around  681  nm.  

•   MODIS  AQUA  has  adequate  temporal  resoluBon  at  1-­‐2  days,  but  suffers  in  its  lack  of  key  spectral  bands  in  the  red  edge,  as  well  as  its  coarser  1  km  spaBal  resoluBon.  This  prevents  it  from  disBnguishing  between  cyanobacteria  and  the  other  species  that  make  up  harmful  algal  blooms.  

Moving  forward:  The  European  Space  Agency  has  launched  SenBnel  3-­‐a,  which  has  adequate  spaBal  and  temporal  resoluBon,  and  has  began  sensing  our  study  area  using  a  band  range  incorporaBng  a  “cyanobacteria  index”  that  will  enable  more  accurate  remote  sensing  of  bloom  species.  

Southern Chesapeake Bay

Northern Chesapeake Bay

Figure  2.  NOAA  AVHRR  imagery  showing  monthly  composite  sea  surface  temperature  by  month  and  year.  Most  blooms  typically  occur  when  temperatures  are  warmest,  in  August,  however  different  species  thrive  in  different  temperatures.  RelaBng  SST  to  Figure  1,  we  can  see  which  species  prefer  warmer  versus  cooler  temperatures.  

Using  HAB’s  as  a  proxy  to  chlorophyll,  we  further  hypothesized  that  HAB    events  would  have  occurred  on  days  with  the  highest  values  of  Chlorophyll.  There  are  events  where  these  condiBons  hold  true,  however  there  are  HAB  events  where  the  staBsBcs  are  very  low  instead.  This  graph  shows  the  high  variability  in  chlorophyll  between  each  day  by  month  portraying  the  difficulBes  in  sensing  and  tracking  blooms  as  a  proxy  to  chlorophyll.  

35*C

15*C

0*C

Jul.- Sep. 2016 Chlorophyll Concentration

Average Chlorophyll Concentration at Surface from Jul.- Sep. 2016 Average Surface Water Temperature from Jul.- Sep. 2016