population genetics2.pdf

Upload: azdaharalwi

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Population genetics2.pdf

    1/125

    1

    Human and PopulationGenetics

    M. K. Tadjudin

    Fakultas Kedokteran dan Ilmu Kesehatan

    UIN Syarif Hidayatullah

  • 8/10/2019 Population genetics2.pdf

    2/125

  • 8/10/2019 Population genetics2.pdf

    3/125

    3

    Gene A discrete particle of inheritancecontrolling a trait (pea shape or peaappearance)

    The segment of DNA involved inproducing polypetide chain (cistron). Itincludes regions preceding andfollowing the coding region (leader andtrailer) as well as intervening sequences(introns) between individual codingsegments (exons).

  • 8/10/2019 Population genetics2.pdf

    4/125

    4

  • 8/10/2019 Population genetics2.pdf

    5/125

    5

    Allele = An alternative form of agene (R or r)

    Phenotype = a trait exhibited byan allele that distinguishes oneindividual from another (round vs.

    wrinkled) Haplotype = particular

    combination of alleles in a defined

    region of a chromosome

  • 8/10/2019 Population genetics2.pdf

    6/125

    P= G+ E

    6

  • 8/10/2019 Population genetics2.pdf

    7/125

    7

    Polymorphism

    Simultaneous occurrence in thepopulation of genomes showing

    variations at a given population Polymorphism is present if the

    frequency of an allele is > 1 %

  • 8/10/2019 Population genetics2.pdf

    8/125

    8

  • 8/10/2019 Population genetics2.pdf

    9/125

    9

    Multiple alleles Multiple alleles are different forms

    of the same gene/locus

    The sequence of the bases isslightly different in the geneslocated on the same place of the

    chromosome

  • 8/10/2019 Population genetics2.pdf

    10/125

    10

    Polygenic traits

    The result of the interaction

    of several genes

  • 8/10/2019 Population genetics2.pdf

    11/125

    11

    Gametes ABC ABc AbC Abc aBC aBc abC abc

    ABC 6 5 5 4 5 4 4 3

    ABc 5 4 4 3 4 3 3 2

    AbC 5 4 4 3 4 3 3 2

    Abc 4 3 3 2 3 2 2 1

    aBC 5 4 4 3 4 3 3 2

    aBc 4 3 3 2 3 2 2 1

    abC

    4

    3

    3

    2

    3

    2

    2

    1

    abc 3 2 2 1 2 1 1 0

    Polygenic inheritance

  • 8/10/2019 Population genetics2.pdf

    12/125

    12

    Pleiotropy The effect of a single gene

    on more than onecharacteristic/effects

  • 8/10/2019 Population genetics2.pdf

    13/125

    13

    Disease risk

    Prevention ofinherited traits:Decision not toreproduce

    Fetal destructionAbortion

    Environmentalexposure

    Genetic mutationsand polymorphisms

    Reduction in

    mutagens

    Mutagens

    Geneticrisks

    Gene

    therapy

    To preventsecond hit

    Environmentalrisk

    Radiation andenvironmentalexposure:BiologicalPhysicalSocioeconomic

    Behavioral changes:SmokingDietExerciseDrugs & alcohol

    Other measures:Chemoprevention

    Early detectionPopulationscreeningRemoval of targetorgans

    Disease

    Inheritance

  • 8/10/2019 Population genetics2.pdf

    14/125

    14

    P= G+ E

  • 8/10/2019 Population genetics2.pdf

    15/125

    15

    Definitions (1)Population = all individuals of a

    speciesMendelian Population = all

    individuals of a species which can

    interbreed within a definedgeographical boundary

  • 8/10/2019 Population genetics2.pdf

    16/125

    16

    Definitions (2)Gene pool/gamete pool =

    hypothetical mixture of geneticunits from which the nextgeneration will arise

    Gene frequency= proportion of anallele in a population

  • 8/10/2019 Population genetics2.pdf

    17/125

    17

    PopulationInterbreeding groups oforganisms that are usuallysubdivided into partiallyisolated breeding groups

    called demesor localpopulation

  • 8/10/2019 Population genetics2.pdf

    18/125

    18

    Study of human inheritance

    Inborn characteristics of humanbeings

    Differences between human and non-human beings

    Characteristics of certain human

    populations Man is not an ideal species for the

    study of genetics

  • 8/10/2019 Population genetics2.pdf

    19/125

    19

  • 8/10/2019 Population genetics2.pdf

    20/125

    20

  • 8/10/2019 Population genetics2.pdf

    21/125

    21

  • 8/10/2019 Population genetics2.pdf

    22/125

    22Your ancestors

  • 8/10/2019 Population genetics2.pdf

    23/125

    23

    Eugenics Eu =well; gen = grow;

    eugenes = well born Primary aim = to produce a

    race of physically perfecthuman beings

  • 8/10/2019 Population genetics2.pdf

    24/125

    24

    Positive eugenics

    Attempts to increaseconsistently bettergermplasm and thuspreserve the best

    germplasm of the society

  • 8/10/2019 Population genetics2.pdf

    25/125

    25

    Early marriage for those having desirabletraits

    Subsidizing the fit Gamete banks

    Avoiding germinal wastage

    Improvement of environmental condition Genetic counseling

    Promotion of genetic research

    Positive eugenicsmeasures

  • 8/10/2019 Population genetics2.pdf

    26/125

    26

    Sexual separation of the defective

    Sterilization Control of immigration

    Regulation of marriage

    Negative eugenicsmeasures

  • 8/10/2019 Population genetics2.pdf

    27/125

    27

    A Nazi-era high-schoolbiology book warns

    that "a hereditarily illperson costs 50,000reichsmarks onaverage up to the age

    of sixty." From theU.S. HolocaustMemorial Museum,Washington, D.C.

  • 8/10/2019 Population genetics2.pdf

    28/125

  • 8/10/2019 Population genetics2.pdf

    29/125

  • 8/10/2019 Population genetics2.pdf

    30/125

    30

    The Nazi regime awardedbronze medals to "fit"Germanic women who hadfour or five children, silvermedals to those who had

    six or seven, and goldmedals to those with eightor more. From the U.S.Holocaust Memorial

    Museum, Washington, D.C.

  • 8/10/2019 Population genetics2.pdf

    31/125

    31

    EuphenicsSymptomatic treatment ofgenetic diseases:

    Prevention

    Replacement therapy Research in human genetics

  • 8/10/2019 Population genetics2.pdf

    32/125

    32

    Mendelian population

    Attributes:

    Gene frequenciesGene pool

  • 8/10/2019 Population genetics2.pdf

    33/125

    33

    Phenotype frequency

    Genotype frequency

    Gene frequency

  • 8/10/2019 Population genetics2.pdf

    34/125

    34

    Gene flowNew organisms entering apopulation by migration andmating in the newpopulation, thus bringing

    new alleles to the localgene pool

  • 8/10/2019 Population genetics2.pdf

    35/125

    35

  • 8/10/2019 Population genetics2.pdf

    36/125

    36

    Genetic polymorphism

    In a polymorphic locus thefrequency of a second allele >

    1 %

    39 % of loci are polymorphic

    12 % of loci are heterozygous Polymorphism is maintained by

    heterozygous advantage

  • 8/10/2019 Population genetics2.pdf

    37/125

    37

  • 8/10/2019 Population genetics2.pdf

    38/125

    38

    Hardy-Weinberg equilibrium

    1. The allelic frequencies at an autosomal locusin a population will not change from onegeneration to the next (allelic frequencyequilibrium)

    2. The genotypic frequencies of the populationare determined in a predictive way by theallelic frequencies (genotypic frequencyequilibrium)

    3. The equilibrium if perturbed will bereestablished within one generation ofrandom mating at the new allelic frequencies

  • 8/10/2019 Population genetics2.pdf

    39/125

    39

    Assumptions of the Hardy-

    Weinberg equilibrium1. Random mating

    2. Large and constant population size

    3. No difference in fitness between thedifferent genotypes

    4. No mutation5. No migration

    6. No natural selection/selection

  • 8/10/2019 Population genetics2.pdf

    40/125

    40

  • 8/10/2019 Population genetics2.pdf

    41/125

    41

    Genotype TTFreq.pxp =p2

    Gamete TFreq.p

    Gamete TFreq.p

    Gamete tFreq. q

    Gamete tFreq. q

    Genotype TtFreq.px q =pq

    Genotype TtFreq.px q =pq

    Genotype ttFreq. qx q = q2

    Genotype frequencies of TT, Tt, and tt

    TT =p2Tt = pq+ pq= 2pqtt = q2

    M ti f i

  • 8/10/2019 Population genetics2.pdf

    42/125

    42

    Mating frequencies

    GenotypeFrequencies

    TTp2

    ttq2

    Tt2pq

    Fema

    les

    TTp2

    p4

    2p3q

    p2q2

    Tt2pq

    2p3q

    4p2q2

    2pq3

    ttq2

    p2q2

    2pq3

    q4

    M a l e s

  • 8/10/2019 Population genetics2.pdf

    43/125

    43

    TT X TT p2

    X p2

    =p4 p4 - -

    TT X Tt(2)

    2(p2X 2pq) =4p3q

    2p3q 2p3q -

    Matingtypes

    Matingfrequencies TT Tt tt

    TT X tt

    (2)

    2(p2X q2) =

    2p

    2

    q

    2

    - 2p2q2 -

    Tt X Tt2pq X 2pq =

    4p2q2p2q2 2p2q2 p2q2

    Tt X tt(2)

    2(2pq X q2) =4pq3

    - 2pq3 2pq3

    tt X tt q2X q2=q4

    - - q4

    Frequency of offspring of different mating types

  • 8/10/2019 Population genetics2.pdf

    44/125

    44

    p4 + 4p3q + 6p2q2 + 4pq3+ q4=

    p2(p2 + 2pq + q2)+ 2pq(p2 + 2pq + q2)

    + q2(p2 + 2pq + q2) =

    p2 + 2pq + q2= (p + q)2= 1

    Total number of matings

  • 8/10/2019 Population genetics2.pdf

    45/125

    45

    TT:p4 + 2p3q +p2q2=p2(p2 + 2pq + q2) =p2 (1) =p2

    Total frequency of offspring

    Tt: 2p3q + 4p2q2+ 2pq3= 2pq(p2 + 2pq + q2) =2pq(1) = 2pq

    tt:p2q2+ 2pq3+ q4= q2(p2 + 2pq + q2) = q2 (1) = q2

  • 8/10/2019 Population genetics2.pdf

    46/125

    46

    Contributions of genes to

    the next generation (1)Parent population: [AA = 36] - [Aa = 39] - [aa = 25]Total = 100

    Number of genes in parent population:A = (2 X 36) + (1 X 39) = 111a= (1 X 39) + (2 X 25) = 89 = 0.45 = qTotal number of genes = 200

    Gene frequencies in parent population:A = 111/200 =0.55 = pa = 89/200 = 0.45 = q

  • 8/10/2019 Population genetics2.pdf

    47/125

    47

    Contributions of genes to

    the next generation (2)Genotype frequencies in the nextgeneration:

    AA = (0.55)2 = 0.3025

    Aa = 2 X 0.55 X 0.45 = 0.495

    aa = (0.45)2= 0.2025

  • 8/10/2019 Population genetics2.pdf

    48/125

    48

    H2=4DR

    (2pq)2=4p2q2

  • 8/10/2019 Population genetics2.pdf

    49/125

    D = 10 = AA

    H = 80 = Aa

    R = 10 = aa

    H2= 0.64

    4 DR = 4 X 0.1 X 0.1 = 0.0449

    10

  • 8/10/2019 Population genetics2.pdf

    50/125

    D = AA = 10[A] = (2 X 10) + (1 X 80) = 100

    H = Aa = 80[a] = (2 X 10) + 1 X 80 = 100

    R = aa = 10

    Frekwensi gen [A] = 100/200 = 0.5 = p

    Frekwensi gen [a] = 100/200 = 0.5= qFrekwensi genotip [AA] = 0.52= 0.25 = p2Frekwensi genotip [Aa] = 2 X 0.5X 0.5 = 0.50 = 2pqFrekwensi genotip [aa] = 0.52= 0.25 = q2

    50

  • 8/10/2019 Population genetics2.pdf

    51/125

    51

    H- W Equilibrium in

    X-linked genes (1) In equilibrium gene frequencies in males and

    females are the same

    In a population: Males have 1/3 of all X-chromosomes while females have 2/3

    Gene frequency in males is the same as thegene frequency in the mothers generation

    Gene frequency in females =

    2

    mofa pp

  • 8/10/2019 Population genetics2.pdf

    52/125

    52

    H- W Equilibrium in

    X-linked genes (2)Male genotypes:

    XHY = p

    Xh

    Y = q

    Female genotypes:

    XHXH = p2

    XHXh = 2pq

    XhXh = q2

  • 8/10/2019 Population genetics2.pdf

    53/125

    53

    H- W Equilibrium in

    X-linked genes (3)If the number of male = number of females,

    then the gene frequency is:

    p= 1/3 (pmales) + 2/3 (pfemales) =

    3)2( femalesmales pp

  • 8/10/2019 Population genetics2.pdf

    54/125

    54

    Males 0.2 0.5 0.35 0.425 0.3875 .40625 0.39675

    Females 0.5 0.35 0.425 0.3875 0.40625 0.39675 0.401562

    0 1 2 3 4 5 6

    Generations

    Zigzag change in gene frequenciesbetween males and females

  • 8/10/2019 Population genetics2.pdf

    55/125

    55

    XHY p p3 2p2q pq2

    XhY q p2q 2pq3 q3

    XHXH XHXh XhXh

    p2 2pq q2

    Mothers genotype

    Fathers

    genotype

    Freq

    Mating frequencies of X-linked genes

  • 8/10/2019 Population genetics2.pdf

    56/125

    56

    Estimation of equilibriumin dominance

    Heterozygotes cannot bedistinguished from dominants

    When recessive phenotypes arerare carrier heterozygotes arepresent in relatively highfrequency

    Snyders ratio to check for H-Wequilibrium

  • 8/10/2019 Population genetics2.pdf

    57/125

    57

    p2AA p4 2p3q p2q2

    2pqAa 2p3q 4p2q2 2pq3

    q2aa p2q2 2pq3 q4

    p2AA 2pqAa q2aa

    Dominant Recessive

    Dominant

    Recessive

    Male

    Parent

    Female Parent

    Snyders dominant ratio (1)

  • 8/10/2019 Population genetics2.pdf

    58/125

    58

    Snyders dominant ratio (2)

    Proportion of recessive offspring indominant X dominant matings:

    p2q2

    p4+ 4p3q + 4p2q2

    =p2q2

    p2(p2+ 4pq + 4q2)

    =q2

    p2+ 4pq + 4q2

    =q2

    [(p + q) + q]2

    q2

    (1 + q)2

    =

  • 8/10/2019 Population genetics2.pdf

    59/125

    59

    p2AA p4 2p3q p2q2

    2pqAa 2p3q 4p2q2 2pq3

    q2aa p2q2 2pq3 q4

    p2AA 2pqAa q2aa

    Dominant Recessive

    Dominant

    Recessive

    Male

    Parent

    Female Parent

    Snyders recessive ratio (1)

  • 8/10/2019 Population genetics2.pdf

    60/125

    60

    Snyders recessive ratio (2)

    Proportion of recessive offspring indominant X recessive matings:

    2pq3

    2p2q2+ 4pq3

    =2pq3

    2pq2(p + 2pq3)

    = =

    =

    q

    p + 2q

    q

    p + q + q

    q

    1 + q

    Snyders experiment

  • 8/10/2019 Population genetics2.pdf

    61/125

    61

    Freq. of Non-tasters among

    offspring

    ParentsOffspring

    MatingNo.

    CouplesTasters

    NonTasters

    Total Obs. Exp.

    TasterX

    Taster

    425 929 130 1069 0.123 0.122

    TasterX Non-Taster

    289 483 278 761 0.365 0.349

    Non-

    TasterX Non-Taster

    86 (5) 218 223

    Total 800 1417 626 2043

    SDR

    SRR

    PTC = PTU

    Snyder s experiment

    Comparison of observed and expected

  • 8/10/2019 Population genetics2.pdf

    62/125

    62

    Exp. SDR = = 0.5372/1.5372= 0.122

    The frequency of the non-tasting allele is derived fromthe frequency of homozyogous recessives among theparents or [2 X number of recessive homozygotes(2R)]+ [(number of heterozygotes(1H)] among (2 X number

    of parents) = (2R + 1H)/2N = q2

    q =

    Comparison of observed and expectedfrequencies of recessive phenotypes

    2R + 1H

    2Nq = 461/1600 = 0.288 = 0.537

    Exp. SRR = = 0.537/1.537 = 0.349q

    1 + q

    q2

    (1 + q)2

    TUGAS

  • 8/10/2019 Population genetics2.pdf

    63/125

    63

    Freq. of Non-tasters among

    offspring

    ParentsOffspring

    MatingNo.

    CouplesTasters

    NonTasters

    Total Obs. Exp.

    TasterX

    Taster

    525 950 130 1080 0.12 0.12

    TasterX Non-Taster

    389 450 278 728 0.382 0.346

    Non-

    TasterX Non-Taster

    86 0 218 218

    Total 1000 1400 626 2026

    SDR

    SRR

    PTC = PTU

    TUGAS

    H W ilib i i

  • 8/10/2019 Population genetics2.pdf

    64/125

    64

    H-W equilibrium in

    multiple alleles (1) The equilibrium condition is

    described by the multinomial

    expansion (p + q + r + )2 If all the alleles are co-dominant

    each genotype has its own distinct

    phenotype and genotypicfrequencies can be easily scored

    A = p A = q A = r

  • 8/10/2019 Population genetics2.pdf

    65/125

    A1 = p A2= q A3= rA1A1 A1A2 A1A3

    A2A2 A2A3A3A3

    p = (2 A1A1+ A1A2 + A1A3)/2N

    q = (2 A2A2+ A1A2 + A2A3)/2N

    r = (2 A3A3+ A1A3 + A2A3)/2N

    65

  • 8/10/2019 Population genetics2.pdf

    66/125

    Human blood groups

  • 8/10/2019 Population genetics2.pdf

    67/125

    67

    Genotype AA AO AB BB BO OO

    Frequency p2

    2pr 2pq q2

    2qr r2

    Phenotypes

    Human blood groups

    In equilibrium frequency of B + O phenotypes =

    q2+ 2qr + r2 = (q + r)2

    As (p + q + r) = 1 1 (q + r) = p

    So: 1 - (q + r)2= p - or: 1 - (B+O) phenotypes/N= p

    Similarly 1 - (A+O) phenotypes/N= q

  • 8/10/2019 Population genetics2.pdf

    68/125

    68

    Genotype AA AO AB BB BO OO

    Frequency p2 2pr 2pq q2 2qr r2

    280 13 19 288

    In equilibrium frequency of B + O phenotypes =

    q2+ 2qr + r2 = (q + r)2

    As (p + q + r) = 1 1 (q + r) = p

    So: 1 - (q + r)2= p - or: 1 - (B+O) phenotypes/N= p

    Similarly 1 - (A+O) phenotypes/N= q

    Comparison of observed and expected frequencies

  • 8/10/2019 Population genetics2.pdf

    69/125

    69

    Observednumber 63 31 6 92 192

    Phenotype

    frequencies 0.3281 0.1615 0.0312 0.4792 1.000

    Equilibriumfrequencies

    (p2+2pr)N (q2+2qr)N (2pq)N (r2)N N

    Expectednumber 61 29 8 94 192

    2

    (with Yatescorrection)

    0.037 0.078 0.282 0.024 0.421

    A B AB O Total

    Phenotypes

    Comparison of observed and expected frequencies

    Calculation of gene frequencies with Bernsteins correction

  • 8/10/2019 Population genetics2.pdf

    70/125

    70

    Phenoty-pes

    Numberobserved

    Frequency SQRT offrequency

    Estimate Correctionformula

    Correctedvalues

    B + O 123 0.6407 0.8004p =

    0.1996p(1+1/2d)

    p =0.2003

    A + O 155 0.8703 0.8985 q =0.1015

    q(1+1/2d) q =0.1018

    O 92 0.4792 0.6923r =

    0.6923(r+1/2d) X(1+1/2d)

    r =0.6979

    370 0.9934 d =0.0066

    1.000

    Bernsteins correction factor: d = 1 0.9934

    Calculation of gene frequencies with Bernstein s correction

    TUGAS

  • 8/10/2019 Population genetics2.pdf

    71/125

    71

    Observednumber 263 231 106 400 1000

    Phenotypefrequencies 0.263 0.231

    0.106=2pq

    0.4 = r2

    r=0.632 1

    Equilibriumfrequencies 0.632

    Expectednumber 530 146 64 5652

    (with Yatescorrection)

    A B AB O Total

    Phenotypes

    TUGAS

    TUGAS

  • 8/10/2019 Population genetics2.pdf

    72/125

    72

    Phenoty-pes

    Numberobserved

    FrequencySQRT of

    frequencyEstimate

    Correctionformula

    Correctedvalues

    B + O231 +

    400=631

    0.631=

    (q+r)2

    0.7944=

    (q+r)

    p= 1-(q+r)=0.2056

    p(1+1/2d)=

    0.2056-0.0837p = 0.1219

    A + O263 +

    400=663

    0.663=

    (p+r)20.8142

    q=1-(p+r)=0.1858

    q(1+1/2d)=0.1858-0.0837

    q = 0.1021

    O 400 0.4 0.6325 r = 0.6923

    (r+1/2d) X(1+1/2d)=

    (0.6923-0.0837)x(1-0.0837)

    r = 0.5577

    Yatescorrecti

    on

    1000 1.0837d=

    -0.0837

    0.7816

    TUGAS

    A ti f th H d

  • 8/10/2019 Population genetics2.pdf

    73/125

    73

    Assumptions of the Hardy-Weinberg equilibrium

    1. Random mating

    2. Large and constant population size

    3. No difference in fitness between thedifferent genotypes

    4. No mutation

    5. No migration

    6. No natural selection/selection

  • 8/10/2019 Population genetics2.pdf

    74/125

    74

    Changes in gene frequencies

    Mutation

    Selection:

    Gametic selection Zygotic selection

    Artificial selection

    Natural selection

    Migration

    M t tio

  • 8/10/2019 Population genetics2.pdf

    75/125

    75

    Mutation The mere appearance of new genes

    is no guarantee they will persist

    A newly mutated gene has a verysmall chance of survival

    Size of offspring and mutationrates influence chances for survival

    of a newly mutated gene

    Probability of elimination of mutant genes (1)

  • 8/10/2019 Population genetics2.pdf

    76/125

    76

    # ofoffsping/fam 0 1 2 3 4 5

    Freq of fam e-2 2e-2 (22/2! )e-2 (23/3! )e-2 (24/4! )e-2 (25/5! )e-2

    Prob of elim 1 1/2 ()2 ()3 ()4 ()5

    Freq of familyX prob of elim

    e-2 e-2 (1/2!)e-2 (1/3!)e-2 (1/4!)e-2 (1/5!)e-2

    Tot prob ofelim in 1stgen

    e-2

    (1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + ) =e-2(e) = e-1= 1/2.718 = 0.3679

    y g ( )

    e = natural number = 2.303

    Probability of elimination of mutant genes (2)

  • 8/10/2019 Population genetics2.pdf

    77/125

    77

    y g ( )

    Probability of elimination in the 2ndgeneration =

    e-(1-0.3679)= e-0.6321= 0.5315

    Probability of elimination in the 3rd generation =

    e-(1-0.5315)= e-0.4685= 0.6159

    According to Fisher chances of a mutant genesurviving after n generations = 2/n

    The persistence and increase of many mutantsis due to recurrent mutations or the frequencyof mutations.

    Mutation rate (1)

  • 8/10/2019 Population genetics2.pdf

    78/125

    78

    Mutation of A a - Forward mutationForward mutation rate = u

    Mutation of a A - Backward mutation/Reverse mutation

    Reverse mutation rate = v

    Mutation rate (1)

    Mutation rate (2)

  • 8/10/2019 Population genetics2.pdf

    79/125

    79

    In equilibrium:Forward mutation = Reverse mutationup = vq

    Since p = 1q up = u(1q)So: u(1q) = vq

    uuq = vq

    u = uq + vq = q(u + v)

    q =

    Mutation rate (2)

    u

    u + v

  • 8/10/2019 Population genetics2.pdf

    80/125

    80

    Selection (1) Mechanisms for modifying thereproductive success of a genotype

    Artificial selection

    Natural selection

    Gametic selection Zygotic selection

  • 8/10/2019 Population genetics2.pdf

    81/125

    81

    Selection (2) FITNESSRelative reproductivesuccessAdaptive value -Selective value

    SELECTION COEFFICIENT (s):The force acting on eachgenotype to reduce its adaptivevalue

  • 8/10/2019 Population genetics2.pdf

    82/125

    82

    Gametic selection (1)

    Selection at the gamete levelAs gametes are haploids the

    gene frequency at the gametelevel = the gamete genotypefrequency

    The rules for gametic selectionare also valid for haploidorganisms

    G ti l ti (2)

  • 8/10/2019 Population genetics2.pdf

    83/125

    83

    Gametic selection (2)

    Initial freq po q

    o 1

    Fitness 1 1s

    After

    selection p q(1 s)

    p + q sq

    = 1 - sq

    Gene freqafter sel.

    p/(1 sq) q(1 s)

    (1 sq)

    A a Total

    Gamete genotypes

    G ti l ti (3)

  • 8/10/2019 Population genetics2.pdf

    84/125

    84

    Change in gene frequency = q = q1 qo

    = - q = - q

    =

    = =

    Gametic selection (3)

    q(1 s)

    1 sq

    (q sq)

    1 sq

    q sq q + sq 2

    1 sq

    sq + sq2

    1 sq

    sq(1 q)q1 sq

    G ti l ti (4)

  • 8/10/2019 Population genetics2.pdf

    85/125

    85

    Gametic selection (4)If s is small sq in the denominator can be ignoredsq= 0 and the denominator becomes = 1

    The relationship for n generations calculated by

    calculus is then:

    sn = loge = 2.303 log10

    2.303 log10

    n =

    q0(1 qn)

    qn(1 q0)

    q0(1 qn)

    qn(1 q0)

    q0(1 qn)

    qn(1 q0)

    s

    G ti l ti (5)

  • 8/10/2019 Population genetics2.pdf

    86/125

    86

    Gametic selection (5)If q0= 0.25 and s = 0.1, then the number ofgenerations (n) needed to reduce q0to qn= 0.10 is:

    0.1n = 2.303 log10

    0.1n = 2.303 log10

    0.1n = 2.303 log103 = 2.303(0.47712) = 1.09861

    n = 1.09861/0.1 = 110 generations

    0.25(1 0.10)

    0.10(1 0.25)

    0.25(0.90)

    0.10(0.75)

    Z ti l ti (1)

  • 8/10/2019 Population genetics2.pdf

    87/125

    87

    Zygotic selection (1)

    Initialfreq.

    p2 2pq q2 1 q

    Adaptivevalue 1 1 1s

    Freq afterselection p2 2pq q2(1s)

    (p2+2pq)=p[p+(p+q)]=

    p(1+q)

    { }=

    =Rel. freq. = =

    0

    AA Aa aa Total [a]Genotypes

    p2

    p(1 + q)

    p

    (1 + q)

    2pq

    p(1 + q)

    2q

    (1 + q)

    2pq

    p(1 + q)

    pqp(1 + q)

    q

    (1 + q)

    s = 1

    Z ti l ti (2)

  • 8/10/2019 Population genetics2.pdf

    88/125

    88

    Zygotic selection (2)

    q= - q = -q

    (1 + q)

    q

    (1 + q)

    q(1 + q)

    (1 + q)

    = - = -q

    (1 + q)

    q + q 2

    (1 + q)

    q 2

    (1 + q)

    Gene (a) is lethal in homozygous condition s = 1

    Z gotic selection (3)

  • 8/10/2019 Population genetics2.pdf

    89/125

    89

    Zygotic selection (3)

    Initialfreq.

    p2 2pq q2 1 q

    Adaptivevalue 1 1 1s

    Freq afterselection p2 2pq q

    2(1s)(p2+2pq+q2)-sq2=1-sq2 =

    =

    =

    Rel. freq.

    AA Aa aa Total [a]Genotypes

    p2

    (1 sq2)

    2pq

    (1 sq2)

    pq+q2(1-s)

    1 sq2)

    pq+q2-sq

    1 sq2

    q(p+q-sq)

    (1 sq2)

    s < 1

    q(1-sq)

    (1 sq2)

    q2( 1 s)

    (1 sq2)

    (1 sq2)

    Z gotic selection (4)

  • 8/10/2019 Population genetics2.pdf

    90/125

    90

    Zygotic selection (4)

    q= - q = -q(1-sq)

    (1 sq2)

    q(1-sq)

    (1 sq2)

    q(1-sq2)

    (1 sq2)

    = = =q sq2q + sq3

    (1 sq2)

    -sq2+ sq3

    (1 sq2)

    Gene (a) is not lethal in homozygous condition s < 1

    -sq2(1 q)

    (1 sq2)

    Generations necessary to reach a given change in[q] of a deleterious recessive gene under different

  • 8/10/2019 Population genetics2.pdf

    91/125

    91

    q0 qn q02 qn

    2

    s=1 s=.80 s=.50 s=.10 s=.01 s=.001

    .99 .75 .980 .562 1 5 8 38 382 3,820

    .75 .50 .562 .250 1 2 3 18 176 1,765

    .50 .25 .250 .062 2 4 6 31 310 3,099

    .25 .10 .062 .010 6 9 14 71 710 7,099

    .10 .01 .010 .0001 90 115 185 924 9,240 92,398

    .01 .001 .0001.0000

    01900 1,128 1,805 9,023 90,231 902,314

    .001 .0001.0000

    01.00000001

    9,000 11,515 18,005 90,023 900,230 9,002,304

    Change ingene freq

    Change infreq of R

    Number of generations necessary forreaching new gene freq. at differentselection coefficients (s)

    [q] of a deleterious recessive gene under differentselection coefficients

    Selection against dominants(1)

  • 8/10/2019 Population genetics2.pdf

    92/125

    92

    Selection against dominants(1)

    Initialfreq.

    p2 2pq q2 1 p

    Adaptivevalue

    1s 1s 1

    p2

    (1-s)+2pq(1-s)+q2=p2-p2s+2pq-2pqs+q2=(p2+2pq+q2)-p2s-2pqs=1-p2s-2p(1-p)s=1-p2s-2ps+2p2s=

    1-sp(2-p)

    Freq afterselection p

    2(1-s) 2pq(1-s) q2Numerator = P2(1-s)+ pq(1-s)=p2p2s+pq-pqs=p2-p2s+p(1-p)-sp(1-p)=p2-p2s+p-p2-sp+sp2 =

    pspRel. freq.

    AA Aa aa Total [A]Genotypes

    p2(1-s)

    1-sp(2-p)

    2pq(1-s)

    1-sp(2-p)

    q2

    1-sp(2-p)

    psp1sp(2p)

    S l ti i t d i t (2)

  • 8/10/2019 Population genetics2.pdf

    93/125

    93

    Selection against dominants (2)

    p= -p=ps p

    1 sp(2-p)

    = =

    = =

    p sp p + sp2(2 p)

    1 sp(2 p)

    Gene (A) is not lethal in homozygous condition s < 1

    ps p p{1 sp(2 p)}

    1 sp(2-p)

    sp + 2sp2sp3)

    1 sp(2 p)

    sp (1 2p2+ p2)

    1 sp(2 p)

    sp (1 p)2

    1 sp(2 p)

    Selection in no dominance (1)

  • 8/10/2019 Population genetics2.pdf

    94/125

    94

    Selection in no dominance (1)

    Initialfreq.

    p2 2pq q2 1 p

    Adaptivevalue

    1 1s 12s

    p2-p2s+ 2pq-2pqs+q2-2sq2=(p2+2pq+q2)-2pqs-2sq2=1-2sq(p+q)=1-2sq

    Freq afterselection

    p2 2pq(1-s) q2(12s) + =

    =Rel. freq.

    AA Aa aa Total [A]Genotypes

    p2

    1-2sq

    2pq(1-s)

    1-2sq

    q2(1-2s)

    1-2sq

    pq(1-s)

    1-2sq

    q2(1-2s)

    1-2sq

    pq(1-s)+q2-2q2s

    1-2sqq-sq(1+q)

    1-2sq

    Selection in no dominance (2)

  • 8/10/2019 Population genetics2.pdf

    95/125

    95

    Selection in no dominance (2)

    q= - q= -qsq(1+q)

    1 2sq

    = = =

    Fitness of heterozygotes is exactly intermediatebetween the two homozygotes

    qsq(1+q)

    1 2sq

    q(1-2sq)

    1 2sq

    qsq- sq2-q+2sq2

    1 2sq

    -sq + sq2

    1 2sq

    -sq(1 q)

    1 2sq

    Generations necessary to reach a given change in[q] under different selection coefficients in the

  • 8/10/2019 Population genetics2.pdf

    96/125

    96

    q0 qn q0 qn s=1 s=.80 s=.50 s=.10 s=.01 s=.001

    .99 .75 .01 .25 3 4 7 35 350 1,496

    .75 .50 .25 .50 1 1 2 11 110 1,099

    .50 .25 .50 .75 1 1 2 11 110 1,099

    .25 .10 .75 .90 1 1 2 11 110 1,099

    .10 .01 .90 .99 2 3 5 24 240 2,398

    .01 .001 .990 .999 2 3 5 23 231 2,314

    .001 .0001 .999 .9999 2 3 5 23 230 2,304

    Change ingene freq

    (del. allele)

    Change infreq of [a]

    (fav. allele)

    Number of generations necessary forreaching new gene freq. at differentselection coefficients (s)

    [q] under different selection coefficients in theabsence of dominance (co-dominance)

    Heterozygous advantage (1)

  • 8/10/2019 Population genetics2.pdf

    97/125

    97

    Heterozygous advantage (1)

    Heterozygote has superiorreproductive fitness to bothhomozygotes

    Overdominance Permit equilibrium with both

    alleles remaining in the population,provided the selection coefficientsremain constant balancedpolymorphism

    Heterozygous advantage (2)

  • 8/10/2019 Population genetics2.pdf

    98/125

    98

    Heterozygous advantage (2)

    Equilibrium is achieved when ps = qt.

    If so then: ps + qs= qt + qss(p + q) = q(s + t)

    Since p + q = 1 q = ss + t

    Also ps + pt= qt + pt p(s + t) = t (p + q)

    Since p + q = 1 p =t

    s + t

    Heterozygous advantage (3)

  • 8/10/2019 Population genetics2.pdf

    99/125

    99

    Initialfreq.

    p2 2pq q2 1 p

    Adaptivevalue

    1s 1 1t

    p2-p2s+ 2pq+q2-q2t=(p2+2pq+q2)-p2s-q2t=

    1-p2s-q2t

    Freq afterselection

    p2(1s) 2pq q2(1t) =

    = =Rel. freq.

    AA Aa aa Total [A]Genotypes

    p2(1-s)

    1-p2s-q2t

    2pq

    1-p2s-q2t

    pq+q2(1-t)

    1-p2s-q2t

    Heterozygous advantage (3)

    q2(1-t)

    1-p2s-q2t

    pq+q2-qt

    1-p2s-q2t

    q{(p+q)-qt}

    1-p2s-q2t

    q(1-qt)

    1-p2s-q2t

    Heterozygous advantage (4)

  • 8/10/2019 Population genetics2.pdf

    100/125

    100

    q= - q=

    = = =

    Heterozygous advantage (4)

    q(1-qt)

    1-p2s-q2t

    q(1-qt) q(1-p2s-q2t)

    1-p2s-q2t

    q+q2tpq2t-q2t)

    1-p2s-q2t

    qpq2t

    1-p2s-q2t

    pq(psqt)

    1-p2s-q2t

    Equilibrium between

  • 8/10/2019 Population genetics2.pdf

    101/125

    101

    Equilibrium betweenmutation and selection (1)

    -sq2(1 q)

    (1 sq2)

    For a deleterious recessive gene the loss per generation =

    In equilibrium the loss of (a) genes through selection isexactly balanced by the gain of (a) genes through

    mutation. The frequency of newly mutated (a) genes =u X [A] or up or u(1q).

    If s is small the denominator can be considered = 1

    Equilibrium between

  • 8/10/2019 Population genetics2.pdf

    102/125

    102

    Equilibrium betweenmutation and selection (2)

    Thus: sq2(1q) = u(1q)

    sq2 = u

    q2= u/sq = u/s

    If s = 1 q = u or q2= u The frequency of

    homozygous lethals at equilibrium = the frequency ofnew genes introduced by mutation.

    Equilibrium between

  • 8/10/2019 Population genetics2.pdf

    103/125

    103

    Equilibrium betweenmutation and selection (3)

    For a deleterious dominant gene the reduction p can besimplified to sp(1p)2. Since q = (1p) the mutationrate of the recessive allele to dominant = u(1p).

    Equilibrium occurs when:sp(1p)2 = u(1p)

    p(1p) = u/s

    Since small values of p can usually be expected whenthe dominant gene is selected against (1p) = 1At equilibrium p = u/s

    Estimation of mutation rates

  • 8/10/2019 Population genetics2.pdf

    104/125

    104

    Estimation of mutation ratesand equilibrium frequencies

    In dominance: p = u/s u = ps

    When dominance is lacking the reduction of genefrequencies per generation for low values of q is veryclose to sq(1q). As the mutation rate = u(1q)The selection mutation equilibrium is:

    sq(1q) = u(1q)

    q = u/s

    Migration (1)

  • 8/10/2019 Population genetics2.pdf

    105/125

    105

    Migration (1)

    Recipient population

    q0

    Qm

    m = proportion of newlyintroduced gene

    Genes in population aftermigration = q0(1m) + mQ

    Difference in gene frequencyafter migration = (1m)(q

    0Q)

    Q

    Migration (2)

  • 8/10/2019 Population genetics2.pdf

    106/125

    106

    Migration (2)Gen Hybrid Mig

    Gene freq diff betweenhybrids and migrants

    0 q0 Q q0Q

    1 q0(1-m)+mQ=q0-mq+mQ Q q1-Q=q0-mq+mQ-Q=(1-m)(q0-Q)

    2 (q0-mq+mQ)(1-m)+mQ Q q2-Q=q0-2mq+m2q0-Q=(1-m)2(q0-Q)

    n qn-1(1-m)+mQ Q qn-Q=(1-m)n(q0-Q)

    Migration (3)

  • 8/10/2019 Population genetics2.pdf

    107/125

    107

    Migration (3)When after n generations the gene frequency in ahybrid population becomes qn, then:

    qnQ = (1m)n

    (q0Q)

    (1m)n =q0- Q

    qn- Q

    If:qn= 0.446Q = 0.028q0 = 0.630n = 10

    m = 0.036

  • 8/10/2019 Population genetics2.pdf

    108/125

    108

    Mahram

    ((22

    ((23

    [:2223]

    Dan janganlah kamu menikahi perempuan-perempuan yang telah

  • 8/10/2019 Population genetics2.pdf

    109/125

    109

    Dan janganlah kamu menikahi perempuan perempuan yang telahdinikahi oleh ayahmu, kecuali (kejadian pada masa) yang telahlampau. Sungguh, perbuatan itu sangat keji dan dibenci (oleh Allah)

    dan seburuk-buruk jalan (yang ditempuh). Diharamkan atas kamu(menikahi) ibu-ibumu, anak-anakmu yang perempuan, saudara-saudaramu yang perempuan, saudara-saudara ayahmu yangperempuan, saudara-saudara ibumu yang perempuan, anak-anakperempuan dari saudara-saudaramu yang laki-laki, anak-anak

    perempuan dari saudara-saudaramu yang perempuan, ibu-ibumuyang menyusui kamu, saudara-saudara perempuanmu sesusuan, ibu-ibu istrimu (mertua), anak-anak perempuan dari istrimu (anak tiri)

    yang dalam pemeliharaanmu dari istri yang telah kamu campuri,tetapi jika kamu belum campur dengan istrimu itu (dan sudah kamuceraikan), maka tidak berdosa kamu (menikahinya), (dan diharamkan

    bagimu) istri-istri anak kandungmu (menantu), dan (diharamkan)mengumpulkan (dalam pernikahan) dua perempuan yang bersaudara,kecuali yang telah terjadi pada masa lampau. Sungguh, Allah MahaPengampun, Maha Penyayang. (An-nisa 2223)

    Ptolomeus V Cleopatra I

  • 8/10/2019 Population genetics2.pdf

    110/125

    110

    Ptolomeus VI Cleopatra II

    Cleopatra II

    Ptolomeus VIII

    Cleopatra III

    Ptolomeus X Cleopatra IV Ptolomeus IX Cleopatra V

    Berenice III Ptolomeus XII

    Cleopatra VI Cleopatra VII

    Inbreeding

  • 8/10/2019 Population genetics2.pdf

    111/125

    111

    Inbreeding Occurs when two genes in a zygote

    are identical

    The probability that two genes in ahybrid are identical is given by theinbreeding coefficient

    Inbreeding coefficient: The

    probability that two genes in azygote are identical

    A1A1 aa

  • 8/10/2019 Population genetics2.pdf

    112/125

    112

    A A aa

    aa A1a A1a A2a

    A1a A1A2

    A1A1 A1A2 A1a

    identical similar different

    Combinations of alleles from first-cousin mating

    1/2 1/2

    1/21/2

    1/24

    [c] = 0 01 [C] = 0 99

  • 8/10/2019 Population genetics2.pdf

    113/125

    [c] = 0.01 [C] = 0.99

    Cc = 2pq = 2 x 0.99 x 0.01 = 0.0198

    Cc X Cc2pq x 2pq = 0.01982 =

    0.00039204

    cc = 0.25 x 0.00039204 = 0.00009801113

    Inbreeding coefficient (1)

  • 8/10/2019 Population genetics2.pdf

    114/125

    114

    Inbreeding coefficient (1)

    Gives the extent of mating between relatives

    Chances in a diploid population of twoidentical gametes coming together is for any

    generation = 1/2N probability of newlyarisen identical homozygotes = 1/2N

    The probability of the remaining zygotes,1(1/2N), will have identical genes is theinbreeding coefficient of the previousgeneration

    Inbreeding coefficient (2)

  • 8/10/2019 Population genetics2.pdf

    115/125

    115

    Inbreeding coefficient (2)

    F0= 0

    F1= 1/2N

    F2= 1/2N + (11/2N)F1

    F3= 1/2N + (11/2N)F2Fn= 1/2N + (11/2N)Fn-1

    Panmictic index (1)

  • 8/10/2019 Population genetics2.pdf

    116/125

    116

    Panmictic index (1)

    Panmictic index or outbred state

    If F is the inbreeding or fixation

    index, then 1F is the panmicticindex = P P is a measure of the relative

    amount of random-mating

    heterozygosity that is diminishedby inbreeding

    Panmictic index (2)

  • 8/10/2019 Population genetics2.pdf

    117/125

    117

    Panmictic index (2)Fn= 1/2N + (11/2N)Fn-1

    1Pn= 1/2N + (11/2N)(1Pn-1)

    Pn= -1 + 1/2N + 11/2NPn-1) + (1/2N)Pn-1

    Pn=Pn-1+ (1/2N)Pn-1

    Pn=Pn-1{1 + (1/2N)Pn-1}

    Pn= Pn-1{1 - (1/2N)Pn-1}

    Pn= P0(1 - 1/2N)n!

    Inbreeding pedigrees (1)

  • 8/10/2019 Population genetics2.pdf

    118/125

    118

    Inbreeding pedigrees (1)

    V V

    X Y

    Z

    Brother-sisterfull-sib mating

    1/2 1/2

    1/22

    Inbreeding pedigrees (2)

  • 8/10/2019 Population genetics2.pdf

    119/125

    119

    Inbreeding pedigrees (2)

    R S

    U V

    Z

    First-cousinmating

    X Y

    T W1

    2

    3

    4

    5

    6

    F = ()4

    () + ()4

    ()

    Inbreeding pedigrees (3)

  • 8/10/2019 Population genetics2.pdf

    120/125

    120

    b eed g ped g ees (3)

    U

    V

    Z

    X Y

    W

    1

    2

    3

    5

    4 6

    U = ()4() = ()5V = ()4() = ()5

    W =()2() = ()3

    Z = U + V + W

    Effects of non-

  • 8/10/2019 Population genetics2.pdf

    121/125

    121

    Effects of non-

    random mating

    Inbreeding ----->Increased homozygosity

    Effects of changes in

  • 8/10/2019 Population genetics2.pdf

    122/125

    122

    population size

    Sampling error:The allelicfrequencies of a population

    fluctuates from generation togeneration -----> GENETICDRIFT

    In very small population ----->FIXATION

    Gene frequencies

    Probabilities of mating combinations

  • 8/10/2019 Population genetics2.pdf

    123/125

    123

    AA X AA X = 1/16 1 0

    (2) AA X Aa 2 X X = 0.75 0.25

    (2) AA X aa 2 X X = 1/8 0.50 0.50

    Aa X Aa X = 0.50 0.50

    (2) Aa X aa 2 X X = 1/4 0.25 0.75

    aa X aa X = 1/16 0 1

    A aProbabilityMating

    qin mating parents

    Genetic drift

  • 8/10/2019 Population genetics2.pdf

    124/125

    124

    Genetic driftMeasured mathematically by the

    standard deviation of a proportion

    =

    pq/2N

  • 8/10/2019 Population genetics2.pdf

    125/125