polymeric ultrafiltration membranes and surfactants

65
This article was downloaded by: [University of Guelph] On: 12 October 2012, At: 01:21 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Separation & Purification Reviews Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lspr20 Polymeric Ultrafiltration Membranes and Surfactants Ioannis Xiarchos a , Danae Doulia a , Vassilis Gekas b & Gun Trägårdh c a Laboratory of Organic Chemical Technology, NTUA, School of Chemical Engineering, Iroon Politechniou 9, Polytechnioupolis, Zografou Campus, GR157 80, Athens, Greece b Laboratory of Transport Phenomena and Applied Thermodynamics, TUC, GR 731 00, Hania, Greece c Food Engineering, Lund University, P.O.Box 124, S221 00, Lund, Sweden Version of record first published: 15 Feb 2007. To cite this article: Ioannis Xiarchos, Danae Doulia, Vassilis Gekas & Gun Trägårdh (2003): Polymeric Ultrafiltration Membranes and Surfactants, Separation & Purification Reviews, 32:2, 215-278 To link to this article: http://dx.doi.org/10.1081/SPM-120026628 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Upload: gun

Post on 08-Oct-2016

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Polymeric Ultrafiltration Membranes and Surfactants

This article was downloaded by: [University of Guelph]On: 12 October 2012, At: 01:21Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

Separation & Purification ReviewsPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/lspr20

Polymeric Ultrafiltration Membranes and SurfactantsIoannis Xiarchos a , Danae Doulia a , Vassilis Gekas b & Gun Trägårdh ca Laboratory of Organic Chemical Technology, NTUA, School of Chemical Engineering, IroonPolitechniou 9, Polytechnioupolis, Zografou Campus, GR‐157 80, Athens, Greeceb Laboratory of Transport Phenomena and Applied Thermodynamics, TUC, GR 731 00, Hania,Greecec Food Engineering, Lund University, P.O.Box 124, S‐221 00, Lund, Sweden

Version of record first published: 15 Feb 2007.

To cite this article: Ioannis Xiarchos, Danae Doulia, Vassilis Gekas & Gun Trägårdh (2003): Polymeric UltrafiltrationMembranes and Surfactants, Separation & Purification Reviews, 32:2, 215-278

To link to this article: http://dx.doi.org/10.1081/SPM-120026628

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form toanyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contentswill be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses shouldbe independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly inconnection with or arising out of the use of this material.

Page 2: Polymeric Ultrafiltration Membranes and Surfactants

SEPARATION AND PURIFICATION REVIEWS

Vol. 32, No. 2, pp. 215–278, 2003

Polymeric Ultrafiltration Membranesand Surfactants

Ioannis Xiarchos,1,* Danae Doulia,1 Vassilis Gekas,2

and Gun Tragardh3

1Laboratory of Organic Chemical Technology, NTUA,

School of Chemical Engineering, Athens, Greece2Laboratory of Transport Phenomena and Applied Thermodynamics,

TUC, Hania, Greece3Food Engineering, Lund University, Lund, Sweden

CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

2. THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

2.1. Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

2.2. Ultrafiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

*Correspondence: Ioannis Xiarchos, Laboratory of Organic Chemical Technology,

NTUA, School of Chemical Engineering, Iroon Politechniou 9, Polytechnioupolis,

Zografou Campus, GR-157 80, Athens, Greece; Fax: 30-210-7723163; E-mail:

[email protected].

215

DOI: 10.1081/SPM-120026628 1542-2119 (Print); 1542-2127 (Online)

Copyright D 2003 by Marcel Dekker, Inc. www.dekker.com

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 3: Polymeric Ultrafiltration Membranes and Surfactants

3. RECENT RESEARCH ACTIVITY . . . . . . . . . . . . . . . . . . 220

3.1. Pretreatment for Fouling Control . . . . . . . . . . . . . . . . 221

3.2. Determination of Partition Coefficients or

Equilibrium Distribution Constants in Solubilization . . . . 224

3.3. Micellar-Enhanced Ultrafiltration (MEUF) . . . . . . . . . . 226

3.4. Interaction Behaviour . . . . . . . . . . . . . . . . . . . . . . . 247

3.5. Water Management . . . . . . . . . . . . . . . . . . . . . . . . 260

4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

5. APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

6. APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . 270

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

ABSTRACT

Surfactants have been extensively used in ultrafiltration processes such

as membrane cleaning,removal of surfactants or other organic toxic com-

pounds and metal ions from solutions and estimation of interactions at

surfactant and membrane interface. The aim of this review is to present

the possibilities that arise from the data reported in the literature on the

field of ultrafiltration (UF) membranes and surfactants. This data is

classified into five groups and a brief description of each article is given.

Pretreatment of membranes with surfactant solutions can lead to perform-

ance increase of UF process. By Micellar-Enhanced Ultrafiltration the

separation of low molecular weight toxic substances and heavy metals is

possible, extending the applications of conventional UF (e.g. separation of

proteins). Through estimation of the type of interactions on membrane

surface with surfactants the prediction of retention and removal of small

size substances, the prevention of fouling, the modification of surfactant-

membrane system, the design of new surfactant-membrane system could be

achieved. Finally economical aspects of UF-surfactant processes are given.

Key Words: Polymeric; Ultrafiltration; Membranes; Micellar-enhanced

ultrafiltration.

1. INTRODUCTION

Surfactants can be classified as the most versatile products of the chemical

industry. They are basic constituents of a variety of chemical products such as

216 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 4: Polymeric Ultrafiltration Membranes and Surfactants

detergents, paints, dyestuffs, cosmetics, pharmaceuticals, pesticides, fibers,

plastics, etc. Moreover surface active agents play a vital role in the oil industry,

for example in enhanced and tertiary oil recovery. They are also occasionally

used for environmental protection, e.g., in oil slick dispersions (Rosen, 1989a;

Tadros, 1984).

As a consequence of their extensive use and the relative environmental

and economical impacts, their removal from aqueous streams is frequently

required in occasions as:

. Detergent containing process streams encountered in surfactant

based manufacturing processes (Forstmeier et al., 2002).

. Laundry wastes (Bhattacharyya et al., 1974), and

. Surfactant aided processes such as micellar-enhanced separations,

electroplating, cleaning procedures etc. (Goers et al., 2000; Mawson,

1997).

Membrane technology can effectively be used for separation as an

alternative method friendly to the environment in terms of pollution impact and

energy consumption. By membranes applications, recyclable streams to the

main manufacturing process are generated (Cheryan and Rajagopalan, 1998).

The role of a membrane in separation processes is based on its action

as a selective barrier. In general, separation takes place on the surface of

the membrane, or in the membrane, itself, where the molecular interactions

compete with one another. Thus, it is necessary to understand what goes on

in the vicinity and inside the membrane. The respective mechanism of

permeation is the key.

Two factors should be examined thoroughly, selectivity and total flow,

in order to improve the separation efficiency of a membrane. Both factors

can be studied considering the actual transport mechanism through the

membrane (Kammermeyer and Hwang, 1984).

2. THEORY

2.1. Surfactants

A surface-active agent is a substance that when present at low con-

centration in a system has the property of adsorbing onto surfaces or interfaces

with a specific orientation and of altering (usually reducing) significantly the

surface or interfacial free energies. This compound is termed also surfactant,

amphiphile or tenside (Myers, 1988a). One part of a surfactant’s molecule has

an affinity for non-polar media and the other part has an affinity for polar

media. This behaviour is due to its characteristic molecular structure

Polymeric UF Membranes and Surfactants 217

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 5: Polymeric Ultrafiltration Membranes and Surfactants

(amphipathic), consisting of a structural group with little attraction to the

solvent (lyophobic, hydrophobic in the case of water) and a group with strong

attraction to the solvent known as lyophilic or hydrophilic group. The

hydrophobic group is usually a long alkyl chain and the hydrophilic group an

ionic or highly polar group. Depending of the nature of hydrophilic group

surfactants are classified as anionic (�), cationic (+), zwitterionic (+ �) and

nonionic (Myers, 1988a).

A fundamental property of surfactants is their capability to form mi-

celles (colloidal-sized clusters or aggregates in solution). The concentration at

which micellization occurs is called critical micelle concentration (CMC),

below of which surfactants exist as unassociated molecules (Myers, 1988b).

Changes in most physical properties of a surfactant solution are observed at

the neighborhood of CMC. The existence of micelles affects a number of

important interfacial phenomena, such as detergency and solubilization. Solu-

bilization is defined as the spontaneous dissolving of a substance by reversible

interaction with the micelles of a surfactant in a solvent to form a thermo-

dynamically stable isotropic solution with reduced thermodynamic activity of

the solubilized material. The importance of this phenomenon from a practical

point of view is that normally insoluble substances are being dissolved.

2.2. Ultrafiltration

Ultrafiltration (UF) is one of the membrane separation processes that

are grouped together under pressure—driven processes. UF is used to

remove particles in the size range of 0.001–0.02 mm. Solvents and salts of

low molecular weight will pass through the membrane, whilst larger

molecules are retained. Thus, UF is principally used in the separation of

macromolecules having molar mass in the range of 300 to 300,000. Ultra-

filtration membrane performance is generally characterized by molecular

weight cut-off and by notional pore size. However, cut-off values are only

approximate, since the same molecules can have different radii depending

on solution properties such as pH and ionic strength. In addition, a variety

of physico-chemical interactions could be developed between solute and

membrane surface. These interactions may be net, repulsive or attractive

and lead to solute binding at the membrane surface, resulting in a reduction

of permeability. Osmotic effects in UF membranes are small and the ap-

plied pressure, of the order of 1–7 bar, is primarily to overcome viscous

resistance of liquid permeation through the porous network of the membrane.

Commercial UF membranes are asymmetric with a thin skin 0.1–1 mm thick,

of fine porous structure exposed to the feed side. This skin is supported on a

highly porous layer 50–250 mm thick giving the unique requirement of high

permeability and permeselectivity. Typical membrane materials are poly-

lsulphone, polyethersulphone, polyacrylonitrile, polyimide, cellulose acetate,

218 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 6: Polymeric Ultrafiltration Membranes and Surfactants

polyvinylidenefluoride, aliphatic polyamides, and ceramics, e.g. zirconium

and aluminium oxides. The separation mechanism of UF membranes is

conceived as a sieving action, where an increase in applied pressure increases

the flux rate. However, a phenomenon referred to as concentration

polarization puts an upper limit on the practical flux rates. Concentration

polarization arises from a build-up of solute concentration on the feed side of

the membrane and this ‘‘boundary layer’’ formation results in an additional

resistance to that of the membrane for overall liquid permeation. At

sufficiently high pressures gelation of macromolecules can occur and a thin

gel layer forms at the membrane surface acting as a secondary membrane. As

well as the formation of a gel layer, another phenomenon, ‘‘membrane

fouling,’’ often occurs. Fouling gives rise to a steadily declining flux with time

and can be attributed to a variety of mechanisms including changes in the

chemical nature of the gel layer as crosslinking and compaction (Scott, 1996).

There have been a number of different approaches used to describe solute

and solvent transport through ultrafiltration membranes. Both Kedem-

Katchalsky analysis and Stefan-Maxwell multicomponent diffusion equations

were developed directly from the principles of irreversible thermodynamics

with the solute and solvent flux related to the pressure and concentration

driving forces via a set of phenomenological coefficients. In contrast, the

solvent and solute flux in the hydrodynamics models are evaluated directly

solving the equations of motion for a well-defined solute (assumed spherical)

in a well-defined pore (typically cylindrical) (Zydney, 1996).

Permeate rates (flux) can be measured as a function of applied pressure

at constant temperature. According to Hagen-Poiseuille pore model of

ultrafiltration, flux is predicted by the equation:

J ¼e � d2

p � PT

32 � Dw � m ð1:1Þ

where J is the flow rate through the membrane, dp is the channel diameter

(in this case the mean pore diameter), PT is the applied transmembrane

pressure, m is the viscosity of the fluid permeating the membrane, Dw is the

length of the channel (the membrane ‘‘skin’’ thickness) and e is the surface

porosity of the membrane. This equation can be rewritten:

J ¼ PT

RM

ð1:2Þ

where RM is the intrinsic membrane resistance. When fouling occurs,

another resistance factor (RF) is added to the model:

J ¼ PT

RM þ RF

ð1:3Þ

Polymeric UF Membranes and Surfactants 219

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 7: Polymeric Ultrafiltration Membranes and Surfactants

An additional resistance term RG can be added to the flux equation to

account for concentration polarization, which is a function of operating

parameters and physical properties (Cheryan, 1998):

J ¼ PT

RM þ RF þ RG

ð1:4Þ

3. RECENT RESEARCH ACTIVITY

Data on surfactant-membrane research field are abundant since a great

variety of surfactants and membranes are available connected with UF pro-

cesses. The classification of the recent literature in the field of UF mem-

branes and surfactants into the following groups was based mainly on the role

of surfactant related to UF process and on the objectives of each article:

i) Pretreatment for fouling control.

ii) Solubilization of sparingly soluble in water substances and

determination of their partition coefficients by UF.

iii) Micellar-enhanced ultrafiltration where solubilized substances

(mainly toxic organic substances, heavy metals) are filtered out

using UF.

iv) Interaction behaviour.

v) Water management.

Recent fundamental and applied research activity focuses on problems

related to UF membranes—surfactant processes (flux decline, membrane

fouling, low performance, energy consumptive and cost enhancing pro-

cesses, limited knowledge of mechanisms occurring at the membrane

surface for the removal of organic/inorganic species in connection with the

use of surfactants via UF or MEUF etc.). Investigation includes mainly

determination of interactions at membrane surface, reveal of mechanisms

controlling the separation, examination of factors affecting UF performance,

prevention of fouling, surfactant pretreatment for performance enhance-

ment, modeling and optimization of various processes, selection of the

appropriate surfactant system, examination of selective removal of

various pollutants.

An evaluation of published research on the field of separation from

aqueous streams using surfactants has been done by Akay and Wakeman

(1993) covering a chronological period up to 1992. It includes the following

processes: ultrafiltration (UF), micellar-enhanced ultrafiltration and reverse

osmosis (RO). The effect of process variables (membrane characteristics,

220 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 8: Polymeric Ultrafiltration Membranes and Surfactants

surfactant type, feed concentration, crossflow velocity, transmembrane pres-

sure, and temperature) has been reviewed.

In this review, the relevant literature of the last decade is concentrated

in tables and divided in five categories. Complementary data on the

membranes and surfactants used are given in Appendices A and B.

3.1. Pretreatment for Fouling Control

Ultrafiltration is a very efficient process for the separation of mac-

romolecules such as proteins, polyphenolic compounds and microorgan-

isms. A common problem in the application of ultrafiltration membranes in

separations is the decline of permeate flux. Fouling phenomena frequently

are observed due to solute accumulation at the membrane-solution interface

and solute adsorption onto membrane pores (Fane and Fell, 1987). It is

evident that solute–solute interactions determine the surface properties and

porosity of membrane and can result in irreversible flux loss (Aimar et al.,

1986). Therefore, the need for flux improvement, increased membrane-life

and easier cleaning led to the development of new techniques for the

modification of membrane surface (Brink and Romijn, 1990). The principle

of these techniques is the increase in hydrophilicity and modification of

surface charge by pretreatment with specific substances. So far, the use of

enzymes, carbon coating and surfactants has been proved very successful

for membrane pretreatment. Recent research includes pretreatment with

surfactant solutions particularly nonionic, anionic or their combinations.

Surfactant pretreatment is achieved by adsorption from stagnant solution.

Pretreatment with surfactants has been applied mainly for the removal

of protein BSA by ultrafiltration (Chen et al., 1992; Fane et al., 1985), for

the purification of wastewaters (effluents of papermill, natural brown water)

(Maartens and Jacobs, 2002; Maartens et al., 2000), and for biofouling

prevention through inhibition of bacterial attachment to membrane surface

(Flemming and Schaule, 1988), (Table 1). A significant contribution to this

issue is Speaker’s article on status of surface modification for minimizing

dirt retention using organized monomolecular assemblies with a variety of

hydrocarbon and fluorocarbon surfactants to counter fouling from humic

substances and to reduce flux decline (Speaker, 1993). When long nonionic

surfactants are used for pretreatment, the surface becomes more permeable

and more hydrophilic (monomolecular layer or Langmuir-Blodgett layer) by

reduction of the availability of hydrophobic sites (Speaker, 1993). In con-

trast, small anionic surfactants cause reduction of solute deposition by

altering the electrostatic interactions between solute-membrane surface. Pre-

treatment with mixtures of anionic–nonionic surfactants yields to significant

Polymeric UF Membranes and Surfactants 221

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 9: Polymeric Ultrafiltration Membranes and Surfactants

Ta

ble

1.

Pre

trea

tmen

tw

ith

surf

acta

nts

.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

Fan

eet

al.

(19

85

)D

yn

el(1

.1) ,

10

00

00

PS

(1,2

) ,3

00

00

Reg

.C

ell.

(1.3

) ,3

00

00

N5

,N

13

,N

10

0(2

.1)

UF

flu

xen

han

cem

ent

of

BS

Aso

luti

on

,th

rou

gh

mem

bra

ne

pre

trea

tmen

tw

ith

surf

acta

nt

solu

tio

ns.

Reg

.C

ell.

(1.4

) ,5

00

00

Ad

sorp

tio

nfr

om

stag

nan

tsu

rfac

tan

tso

luti

on

,b

-SC

.

PS

(1.5

) ,1

00

00

PA

N(1

.6) ,

10

00

0

PA

(1.7

) ,1

00

00

0

Sig

nif

ican

tim

pro

vem

ent

infl

ux

for

UF

of

pro

tein

(20

%–

50

%),

inm

emb

ran

ere

use

and

clea

nin

g.

Fle

mm

ing

and

Sch

aule

(19

88

)

PA

,-

Tri

ton

X-1

00

(2.5

)A

mic

rob

iolo

gic

alap

pro

ach

of

bio

fou

lin

g

on

mem

bra

nes

.P

S,

-D

od

ecy

lgu

anid

inea

ceta

te

Mem

bra

ne

imm

ersi

on

insu

rfac

tan

tso

luti

on

.P

ES

,-

Po

lyet

her

ure

a,-

Su

rfac

tan

tsh

ave

bee

nin

ves

tig

ated

for

the

pre

ven

tio

no

fb

acte

rial

adh

esio

nto

the

surf

ace.

Bio

log

ical

affi

nit

yo

fd

iffe

ren

tm

emb

ran

em

ater

ials

tow

ard

sd

iffe

ren

tb

acte

ria

has

bee

nd

etec

ted

.

Ch

enet

al.

(19

92

)P

S(1

.2) ,

30

00

0

PS

(1.8

) ,3

00

00

Aeo

roso

lO

T(2

.2)

San

do

pan

D-T

C(2

.3)

Gar

dis

per

seA

C(2

.4)

Fo

uli

ng

red

uct

ion

inU

Fo

fB

SA

usi

ng

mem

bra

ne

pre

trea

tmen

tw

ith

anio

nic

and

mix

ed

anio

nic

–n

on

ion

icsu

rfac

tan

tso

luti

on

s.

N1

00

(2.1

)P

assi

ve

adso

rpti

on

fro

msu

rfac

tan

tso

luti

on

,b

-SC

.

Flu

xim

pro

vem

ent

ish

igh

erw

hen

anio

nic

no

nio

nic

surf

acta

nts

are

use

din

pre

trea

tmen

t.

Op

tim

izat

ion

of

fou

lin

gre

du

ctio

nan

dm

ech

anis

ms

of

surf

acta

nt

pre

trea

tmen

tar

ein

ves

tig

ated

.

222 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 10: Polymeric Ultrafiltration Membranes and Surfactants

Nw

uh

aan

dN

ow

ory

ta

(19

93

)

PS

(1.6

0) ,

30

00

0

CT

A(1

.61

) ,2

00

00

Tri

ton

X-1

02

(2.6

1)

Ten

git

ol

NP

-7(2

.62

)Im

pro

vem

ent

of

UF

per

form

ance

by

surf

acta

nt

pre

trea

tmen

t.

Ten

cid

-HC

-ST

(2.6

3)

Mem

bra

ne

imm

ersi

on

insu

rfac

tan

tso

luti

on

s,b

-SC

.

Th

efa

cto

rsaf

fect

ing

mem

bra

ne

pre

trea

tmen

t

and

UF

per

form

ance

are

exam

ined

.

Maa

rten

set

al.

(20

00

)

PS

#,

40

00

0T

rito

nX

-10

0(2

.5)

Fo

uli

ng

pre

ven

tio

no

fU

Fm

emb

ran

esfo

rth

e

pu

rifi

cati

on

of

nat

ura

lb

row

nw

ater

and

hu

mic

acid

solu

tio

ns

by

mem

bra

ne

pre

trea

tin

gw

ith

surf

acta

nts

.

Plu

ron

icF

10

8(2

.6)

Mem

bra

ne

pre

trea

tmen

tw

ith

surf

acta

nts

,

Fee

d-a

nd

-ble

edU

Fsy

stem

.

Pre

coat

ing

of

mem

bra

ne

wit

hsu

rfac

tan

tsin

flu

ence

s

fou

lan

tsad

sorp

tio

nan

dre

ten

tio

n,

asw

ell

asU

F

flu

x.

Co

stre

du

ctio

nin

chem

ical

clea

nin

g

trea

tmen

tan

dlo

ng

erm

emb

ran

e-li

fear

eac

hie

ved

.

Maa

rten

san

dJa

cob

s

(20

02

)

PE

S(1

.9) ,

-T

rito

nX

-10

0(2

.5)

Mem

bra

ne

fou

lin

gp

rev

enti

on

and

clea

nin

gin

UF

of

pu

lpan

dp

aper

effl

uen

t.P

luro

nic

F1

08

(2.6

)

Mem

bra

ne

surf

ace

mo

dif

icat

ion

wit

hsu

rfac

tan

t

solu

tio

n.

c-C

FU

Fo

fef

flu

ent.

Red

uct

ion

of

fou

lan

tad

sorp

tio

naf

ter

mem

bra

ne

pre

trea

tmen

tw

ith

surf

acta

nts

and

imp

rov

emen

t

of

the

effe

ctiv

enes

so

fcl

ean

ing

met

ho

ds.

#:

cast

fro

ma

solu

tio

no

fU

DE

LP

35

00

po

lysu

lfo

ne

inN

-met

hy

l-2

-py

rro

lid

on

e,d

ried

wit

hg

lyce

rol,

and

sto

red

atro

om

tem

per

atu

re.

(-):

no

avai

lab

led

ata.

Polymeric UF Membranes and Surfactants 223

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 11: Polymeric Ultrafiltration Membranes and Surfactants

flux improvement and fouling resistance reduction compared with that of the

pretreatment with single surfactant.

In the relevant literature membrane pretreatment has been evaluated as a

simple procedure with practical applications and a number of factors involved

(extent of flux improvement, amount and kind of surfactant used, appropriate

contact time, possibility of reuse and retreatment etc.) have been investigated.

3.2. Determination of Partition Coefficients orEquilibrium Distribution Constants in Solubilization

Ultrafiltration has been used as a method for the determination of

partition coefficients of insoluble in water substances in surfactant solu-

tions. Aboutaleb et al. (1977) applied this technique to study the solubilized

system of benzoic acid in nonionic surfactant solutions. The determination

of the preservative (benzoic acid) distribution coefficient between the

aqueous and micellar phase is of great interest since its activity depends on

the amount free in the solution. Ultrafiltration technique is fast and able to

estimate the preservative activity at low solute concentration. This method

is considered more convincing in comparison with the solubility method

(which is one point technique) and equivalent to molecular sieve technique.

The equilibrium distribution constant of phenol in aqueous solutions

containing surfactant micelles has also been studied (Sabate et al., 1999;

Syamal et al., 1997), since the removal of toxic organic solutes present

even in traces in aqueous streams is a serious separation problem. The

determination of this constant indicates the affinity of phenol for the

micelles and is proved very useful to predict the efficiency of MEUF. A

mathematical mass-transfer model is introduced by Syamal et al. (1997) to

describe the mobility of the solute from the surface to the center of the

micelle. The model based on specific assumptions leads to an appropriate

equation for the equilibrium parameter indicating the dependence of the

extent of solubilization on the operating conditions. The derived equation

provides a simple design criterion for the determination of the efficiency of

MEUF process. Also, Sabate et al. (1999) estimated equilibrium distribution

constants of phenol between surfactant micelles and water by MEUF using

commercial ultrafiltering centrifuge tubes. They suggested a phenomeno-

logical mathematical model to calculate the equilibrium parameter Ks by a

simple method, which does not need expensive equipment. The obtained

values of Ks were similar to those reported in the relative literature. The

computed values of Ks were used to predict the permeate phenol con-

centration in a continuous tangential UF device. The calculated and mea-

sured concentrations were in agreement. More details on this field are given

briefly in Table 2.

224 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 12: Polymeric Ultrafiltration Membranes and Surfactants

Ta

ble

2.

So

lub

iliz

atio

nst

ud

ies.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

Ab

ou

tale

bet

al.

(19

77

)

UM

-05

(1.7

5)

Pel

ico

n1

00

(1.7

6) ,

10

00

Tw

een

20

(2.3

0)

Tw

een

60

(2.3

1)

Det

erm

inat

ion

of

ben

zoic

acid

par

titi

on

coef

fici

ent

by

UF

.

Tw

een

80

(2.2

9)

b-S

C

My

rj5

2(2

.32

)

My

rj5

3(2

.33

)

Em

ulg

inC

10

00

(2.3

4)

Res

ult

so

fU

Fte

chn

iqu

eco

mp

arab

leto

mo

lecu

lar

siev

ing

met

ho

d.

Par

titi

on

coef

fici

ent

isg

iven

by

:K

m=

Cm

/Cw

.

Em

ulg

inC

15

00

(2.3

5)

Sy

amal

etal

.(1

99

7)

Asy

mm

etri

cC

A(1

.30

) ,

10

00

CP

C(2

.12

)Q

uan

tifi

cati

on

of

ph

eno

lso

lub

iliz

atio

nin

cati

on

ic

mic

elle

su

nd

erd

iffe

ren

to

per

atin

gco

nd

itio

ns.

b-S

C

Eq

uil

ibri

um

par

amet

er:

H=

1/F

s(c 0

/cs�

1)

Sab

ate

etal

.(1

99

9)

Reg

.C

ell.

(1.3

1) ,

50

00

,

10

00

0,

30

00

0

SD

S(2

.10

)

CP

C(2

.12

)

C1

6E

20

(2.3

6)

Det

erm

inat

ion

of

equ

ilib

riu

md

istr

ibu

tio

n

con

stan

ts,

Ks,

of

ph

eno

lb

etw

een

surf

acta

nt

mic

elle

san

dw

ater

.

C1

2E

23

(2.3

7)

b-d

ead

end

UF

By

ase

to

feq

uat

ion

KS

iso

bta

ined

.E

stim

atio

ns

of

KS

hav

eal

low

edto

pre

dic

tp

hen

ol

per

mea

te

con

cen

trat

ion

inc-

CF

ME

UF

.

Polymeric UF Membranes and Surfactants 225

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 13: Polymeric Ultrafiltration Membranes and Surfactants

3.3. Micellar-Enhanced Ultrafiltration (MEUF)

The use of micellar systems (or in a larger sense of all kinds of surfactant-

based systems including microemulsion, vesicles, etc.) for separation purposes

has become a field of increasing interest. These systems have proved to be

extremely promising in different potential applications, the most demonstra-

tive of which are: removal of metal ions from aqueous environments, removal

of low molecular weight organic compounds, resolution of enantiomers

(Hebrant et al., 2001).

Micellar-enhanced ultrafiltration can be defined as a technique that

can be used to separate the micellar phase using membranes with a pore

size smaller than the micelle diameter. In this process, surfactant is added

to an aqueous stream containing solutes, which should be removed mainly

for environmental reasons or recovery requirements and which are too

small to be rejected by UF membranes. The surfactant at concentration

greater than its critical micelle concentration (CMC) forms aggregates

(micelles) into which the above substances are dissolved or solubilized.

The stream passes through an ultrafiltration membrane with pore sizes

smaller than the size of micelles. The membrane rejects the micelles con-

taining solutes or pollutants. MEUF was first proposed by Scamerhorn

(Scamehorn and Harwell, 1988) as an alternative separation method to

solvent extraction, which is considered generally superior in effectiveness

and efficiency from economical and environmental point of view in com-

parison to conventional techniques, such as distillation and adsorption.

Dissolved toxic organics or heavy metals can be removed from aqueous

wastewaters without in general introducing substantial toxicity from residual

surfactant. Modifications of MEUF are colloid-enhanced ultrafiltration

(CEUF) methods including ligand-modified micellar-enhanced ultrafiltration

(LM-MEUF) and polyelectrolyte-enhanced ultrafiltration (PEUF). In using

CEUF, a water-soluble colloid is added to an aqueous solution containing

organic and/or inorganic solutes and the removal of colloid and solubilized or

bound solute species is achieved.

In MEUF the following characteristics are common: 1) a secondary

layer of surfactant in liquid crystalline form deposits on the membrane

surface due to membrane polarization effects, 2) the secondary layer causes

membrane fouling, therefore reducing its permeability, 3) the layer en-

hances the ability of the membrane to reject the target solute, 4) the

permeate contains unbound solute and usually monomeric surfactant,

although this statement is not true at very high surfactant concentration in

the feed upstream the membrane and when interactions between monome-

ric surfactant-membrane are significant, 5) a maximum permeate flux is

reached after some time, and thereafter the permeation flux slows down

226 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 14: Polymeric Ultrafiltration Membranes and Surfactants

(Talens-Alesson et al., 2001). This method is limited to transparent so-

lutions above the Kraft point, especially of ionic surfactants but also of

nonionics containing a long alkyl chain. In the latter case, the ultrafiltration

can be carried out at a narrow change of temperature (between the Kraft

point and the cloud point) (Szymanowski, 2000).

The binding force between surfactants and solutes to be recovered is

indispensable to attain effective rejection in MEUF. By the micellar

extraction of metal ions for which many examples have been reported in the

literature two different types of micellar techniques have been applied. In

the first case, a simple electrostatic attraction of metal ion to the surface of

negatively charged micelles occurs. Multivalent metal ions have been

successfully recovered through MEUF using anionic surfactants (e.g. SDS)

having opposite charge (Scamehorn et al., 1994). However, the application

of this method is limited, since it is very sensitive to ionic strength effects

and the extent of binding of multivalent ions is controlled by the ion-

exchange equilibria. In the second case, the formation of a real complex or

cluster between a metal ion and a lipophilic extractant (or ligand, or

chelating agent) solubilized in the hydrophobic core of micelles is formed.

With this technique called ligand-modified micellar-enhanced ultrafiltration

(LM-MEUF), selective rejection of metal ions having the same electric

charge could be achieved (Hebrant et al., 1994; Ismael and Tondre, 1992;

Klepac et al., 1991).

Organic solutes (e.g. phenols) are generally solubilized in micelles and

then their removal is possible (Choi et al., 1998; Hong et al., 1994). The

binding force between organic solute and micelle is determined by strong

ionic or polar interactions, which are affected by a number of factors

(structure of surfactant and organic solute, shape and size of micelle,

presence of electrolytes and additives, pH etc.) (Rosen, 1989b).

Polyelectrolyte-enhanced ultrafiltration (PEUF) is a process in which a

water-soluble polymer or polyelectrolyte, with an opposite valence to that

of the ion to be removed, is added to the polluted aqueous stream. The

target ion binds or adsorbs onto the polyelectrolyte (e.g. cationic

polyelectrolyte-chromate ion) and the stream is subsequently treated by

UF to reject the polymer (Sriratana et al., 1996). Water-soluble poly-

electrolyte-surfactant complexes, involving oppositely charged species, have

been used for the removal of toxic organic or inorganic ions present in

contaminated aqueous streams via MEUF (e.g. tert-butyl phenol) (Guo et al.,

1997). By adding surfactants in UF feed at concentration below CMC,

membrane modification can occur via their absorption on membrane surface

and removal of ions (chromate, nitrate, perchlorate anions) can be achieved.

The use of the extended Nernst-Planck model in conjunction with Donnan

equilibrium leads to prediction of the separation of mixtures of electrolytes

Polymeric UF Membranes and Surfactants 227

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 15: Polymeric Ultrafiltration Membranes and Surfactants

Ta

ble

3.

Mic

ella

r-en

han

ced

ult

rafi

ltra

tio

n,

coll

oid

-en

han

ced

ult

rafi

ltra

tio

n,

surf

acta

nt-

mo

dif

ied

ult

rafi

ltra

tio

n,

lig

and

-mo

dif

ied

and

poly

elec

troly

te-e

nhan

ced

ult

rafi

ltra

tion.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

Ism

ael

and

To

nd

re

(19

92

)

Cel

lulo

sic(1

.70

) ,1

00

00

CT

AB

(2.8

)Im

ple

men

tati

on

of

met

al-s

olu

bil

ized

extr

acta

nts

inth

efi

eld

of

met

alre

cov

ery

.

b-S

C.

To

tal

rem

ov

alo

fN

i(II

)fr

om

mix

ture

wit

hC

o(I

I)

To

nd

reet

al.

(19

93

)C

ellu

losi

c(1.7

0) ,

10

00

0C

TA

B(2

.8)

Sel

ecti

ve

sep

arat

ion

of

met

alio

ns.

C1

2E

O6

(2.2

0)

b-S

C.

Rem

ov

alo

fco

pp

eris

ach

iev

edb

y

tak

ing

into

acco

un

tth

e

tim

ep

aram

eter

.

Ism

ael

and

To

nd

re

(19

93

)

Cel

lulo

sic(1

.69

) ,1

00

00

,

30

00

0

CT

AB

(2.8

)

C1

2E

O6

(2.2

0)

Ex

amin

atio

no

fd

iffe

ren

tas

pec

ts

(eq

uil

ibri

um

,k

inet

icco

nd

itio

ns)

of

the

extr

acti

on

and

bac

k-e

xtr

acti

on

of

met

alio

ns

inm

icel

lar

syst

ems

usi

ng

UF

.

b-S

C.

Mic

ella

rex

trac

tio

n(v

iaC

11-H

Qan

d

HQ

)o

fm

etal

ion

s(C

o(I

I),N

i(II

),

Cu

(II)

)in

mic

ella

rsy

stem

and

po

ssib

ilit

yo

fth

eir

reco

ver

yis

inv

esti

gat

edb

yu

ltra

filt

rati

on

.

Kin

etic

sep

arat

ion

sca

nb

e

ach

iev

edw

hen

‘‘m

icel

lar

extr

acti

on

’’

isco

mb

ined

wit

hu

ltra

filt

rati

on

.

228 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 16: Polymeric Ultrafiltration Membranes and Surfactants

De

laG

uar

dia

etal

.

(19

93

)

CA

,1

00

00

CT

AB

(2.8

)

Bri

j-3

5(2

.25

)S

epar

atio

no

ftr

ace

amo

un

tso

fal

um

iniu

m

fro

maq

ueo

us

solu

tio

nb

yth

efo

rmat

ion

of

aco

mp

lex

wit

hL

G.

b-S

C.

ME

UF

was

succ

essf

ull

yem

plo

yed

to

pre

con

cen

trat

eth

ean

aly

tean

dto

imp

rov

e

the

sen

siti

vit

yo

fit

sd

eter

min

atio

n

by

flam

eat

om

icem

issi

on

spec

tro

met

ry.

Uch

iyam

aet

al.

(19

94

)

-,5

00

0C

PC

(2.1

2)

Sep

arat

ion

of

tox

icT

BP

fro

m

aqu

eou

sst

ream

s.

Usi

ng

po

lyel

ectr

oly

te(P

SS

#)/

surf

acta

nt

com

ple

xes

by

CE

UF

.

b-S

C.

So

lub

iliz

atio

no

fT

BP

inP

SS

#/C

PC

com

ple

xes

was

det

erm

ined

by

dia

lysi

s

tech

niq

ue

and

the

reje

ctio

no

fT

BP

fro

maq

ueo

us

stre

ams

con

tain

ing

thes

eco

mp

lex

esw

as

stu

die

dan

dco

mp

ared

toM

EU

F.

Th

ed

epen

den

ceo

ffl

ux

eso

n

op

erat

ing

con

dit

ion

san

do

nfe

ed

con

cen

trat

ion

so

fC

PC

and

PS

S#

are

rep

ort

ed.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 229

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 17: Polymeric Ultrafiltration Membranes and Surfactants

Sca

meh

orn

etal

.

(19

94

)

CA

(1.1

6) ,

10

00

,5

00

0S

DS

(2.1

0)

Sep

arat

ion

of

div

alen

tca

dm

ium

,zi

nc,

cop

per

and

calc

ium

ion

sfr

om

aqu

eou

sso

luti

on

su

sin

gM

EU

F.

b-S

C.

Rem

ov

alo

fto

xic

met

als

and

thei

rm

ixtu

res

isp

oss

ible

wit

hre

ject

ion

so

f

atle

ast

96

%.

Rei

ller

etal

.(1

99

4)

PS

(1.5

) ,1

00

00

SD

S(2

.10

)

ST

S(2

.29

)S

tud

yo

fad

sorp

tio

no

fu

ran

yl

ion

sat

the

surf

ace

of

mic

elle

s

by

ME

UF

and

lase

r-in

du

ced

spec

tro

flu

ori

met

ry.

c-C

F.

Th

eas

soci

atio

no

fu

ran

yl

ion

to

surf

acta

nt

mic

elle

sw

as

inv

esti

gat

ed.

Itw

aso

bse

rved

that

ura

ny

lio

nis

mo

reti

gh

tly

bo

un

dto

mic

ella

rsu

rfac

eth

an

the

d-b

lock

div

alen

tio

ns

(Cu

(II)

,

Co

(ii)

).A

lim

ited

reje

ctio

nra

te

isp

rese

nte

d.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

230 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 18: Polymeric Ultrafiltration Membranes and Surfactants

Pre

mau

roet

al.

(19

94

)

Hy

dro

ph

ilic

cell

ulo

se

mem

bra

nes

(1.6

4) ,

10

00

0

Tri

ton

X-1

00

(2.5

)S

elec

tiv

ese

par

atio

no

ftr

ansi

tio

n

met

alio

ns

thro

ug

hL

M-M

EU

F.

b-S

C.

Th

eef

fect

ive

accu

mu

lati

on

of

Ni(

II),

Cu

(II)

,C

o(I

I)M

n(I

I)an

dZ

n(I

I)

inch

elat

ing

agg

reg

ates

con

stin

g

of

surf

acta

nt

mic

elle

san

dth

e

lig

and

s:P

AN

and

C4-P

AN

)w

as

exam

ined

inco

mb

inat

ion

wit

hU

F.

Am

ult

ista

ge

pro

cess

isp

rop

ose

din

ord

erto

imp

rov

e

the

sep

arat

ion

effi

cien

cy.

Hu

ang

etal

.(1

99

4a)

An

iso

tro

pic

acry

lan

itri

yl(1

.63

) ,

20

00

So

diu

msa

lto

fD

CA

(2.6

4)

SD

S(2

.10

)

M-C

-Th

inle

cith

in(2

.65

)

Cen

tro

lex

F

leci

thin

(2.6

6)

Pro

tein

Rem

ov

alo

fh

eav

ym

etal

s(C

d,

Pb

,

Cu

,N

iZ

n)

fro

msi

mu

late

dan

d

am

etal

fin

ish

ing

pla

nt

was

tew

ater

s.

c-C

F.

Sel

ecti

ve

and

tota

lre

mo

val

of

met

alio

ns

inco

mb

inat

ion

wit

hn

atu

ral

surf

acta

nts

hav

eb

een

exam

ined

.T

he

effe

cts

of

surf

acta

nt

typ

es,

met

alty

pes

and

surf

acta

nt/

met

alra

tio

on

ME

UF

per

form

ance

hav

eb

een

inv

esti

gat

ed.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 231

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 19: Polymeric Ultrafiltration Membranes and Surfactants

Hu

ang

etal

.(1

99

4b

)A

nis

otr

op

ic

acry

lan

itri

yl(1

.63

) ,2

00

0

So

diu

msa

lto

f

DC

A(2

.64

)R

emo

val

of

hea

vy

met

als

(cad

miu

m,

lead

,co

pp

er,

nic

kel

and

zin

cfr

om

was

test

ream

s.

c-C

F.

Sel

ecti

ve

and

tota

lre

mo

val

of

met

alio

ns

isac

hie

ved

.T

he

op

tim

al

surf

acta

nt/

met

alra

tio

for

sub

stan

tial

met

alre

mo

val

(rej

ecti

on

>9

9.9

%)

isar

ou

nd

2,5

for

DC

A.

Ho

ng

etal

.(1

99

4)

PS

(1.2

9) ,

30

00

,1

00

00

,

30

00

0

CP

C(2

.12

)

CT

AC

(2.2

4)

Co

nti

nu

ou

so

fse

par

atio

no

fp

hen

ol

fro

m

aqu

eou

sst

ream

sb

yM

EU

F.

c-C

Fin

.Ho

llo

w-f

iber

equ

ipm

ent.

Th

eef

fect

so

fo

per

atin

gco

nd

itio

ns

(pre

ssu

red

iffe

ren

ce,

MW

CO

’s,

and

mo

lar

rati

oo

fsu

rfac

tan

tto

solu

teo

nth

em

emb

ran

e

per

form

ance

hav

eb

een

inv

esti

gat

ed.

Th

eef

fect

so

f

con

cen

trat

ion

po

lari

zati

on

on

reje

ctio

nef

fici

ency

hav

e

bee

nel

uci

dat

ed.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

232 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 20: Polymeric Ultrafiltration Membranes and Surfactants

Heb

ran

tet

al.

(19

94

)C

ellu

losi

c(1.2

5) ,

10

00

0C

TA

B(2

.8)

C1

2E

O6

(2.2

0)

Rem

ov

alo

fn

ick

elb

yU

Fth

rou

gh

com

ple

xat

ion

wit

hlo

ng

-ch

ain

alk

ox

yp

ico

lin

icac

ids

and

alk

ox

yp

yri

din

eal

do

xim

esin

mic

ella

rm

edia

.

b-S

C.

Th

ek

inet

ics

of

com

ple

xat

ion

bet

wee

nN

i(II

)io

ns

and

com

ple

xin

gag

ents

inm

icel

les

hav

eb

een

inv

esti

gat

edan

dth

eir

app

lica

tio

nin

UF

sep

arat

ion

has

bee

nst

ud

ied

.

Ah

mad

iet

al.

(19

94

)V

ario

us

mem

bra

nes

and

the

mo

stsu

itab

leo

nes

:

RG

O3

(1.7

3) ,

30

00

0-V

F(1

.74

) ,

30

00

.50

00

Elm

pu

rN

-1(2

.69

)R

emo

val

of

hea

vy

met

als

(Cu

,C

d,

Zn

,N

i)u

sin

gle

cith

inb

yM

EU

F.

b-S

C.

Th

eb

ind

ing

beh

avio

ur

of

bio

deg

rad

able

surf

acta

nt

inre

lati

on

to

the

met

als

was

inv

esti

gat

ed.

Co

mp

etit

ive

bin

din

gan

dp

reci

pit

atio

nm

ayo

ccu

rin

the

pre

sen

ceo

fm

ore

than

on

em

etal

.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 233

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 21: Polymeric Ultrafiltration Membranes and Surfactants

Sri

rata

na

etal

.(1

99

6)

CA

(1.2

1) ,

10

00

0M

ER

QU

AT

-10

0(2

.70

)R

emo

val

of

chro

mat

ean

ion

sfr

om

wat

er

by

PE

UF

.

b-S

C.

Gel

con

cen

trat

ion

and

chro

mat

ere

ject

ion

ath

igh

po

lyel

ectr

oly

teco

nce

ntr

atio

n

was

exam

ined

.

Inth

eab

sen

ceo

fo

ther

add

edel

ectr

oly

tes,

chro

mat

ere

ject

ion

su

pto

99

,8%

wer

eo

bse

rved

.

Sin

gh

(19

96

)C

A(1

.27

) ,5

00

0

CA

(1.1

9) ,

10

00

0

SD

S(2

.10

)

Igep

alR

C-5

20

(2.2

6)

Rem

ov

alo

fto

luen

ean

dtr

ich

loro

eth

yle

ne

fro

mw

ater

via

ME

UF

.

PV

DF

(1.2

8) ,

18

00

0Ig

epal

CO

-66

0(2

.17

)b

-SC

and

c-C

F.

Tw

een

80

(2.2

7)

Sp

an8

0(2

.28

)T

he

effi

cacy

of

surf

acta

nts

along

wit

ha

surf

acta

nt

stab

iliz

edo

il

emu

lsio

nfo

rre

mo

vin

go

f

vo

lati

leo

rgan

icco

mp

ou

nd

sb

y

UF

was

inv

esti

gat

ed.

A

mat

hem

atic

alm

od

elw

as

dev

elo

ped

and

the

dat

a

pro

vid

eda

des

ign

of

UF

wat

er

trea

tmen

tp

lan

t.F

lux

ver

sus

con

cen

trat

ion

foll

ow

sth

e

gel

-po

lari

zati

on

mo

del

.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

234 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 22: Polymeric Ultrafiltration Membranes and Surfactants

Rei

ller

etal

.(1

99

6)

PS

,1

00

00

SD

S(2

.10

)U

seo

fan

anio

nic

surf

acta

nt

top

erfo

rm

ME

UF

sep

arat

ion

of

Cu

(II)

inth

e

pre

sen

ceo

fa

met

alli

gan

d(E

DT

A,

tart

rate

ion

s)an

du

ran

yl

ion

.

b-S

Can

dM

EU

F.

Th

eio

nic

exch

ang

em

od

elh

asb

een

use

d

top

red

ict

the

infl

uen

ceo

fp

osi

tiv

em

etal

ion

com

ple

xat

ion

up

on

ME

UF

.T

he

effe

cts

of

pH

and

lig

and

con

cen

trat

ion

on

the

met

ald

e-ex

trac

tio

nef

fici

ency

fro

m

mic

ella

rso

luti

on

hav

eb

een

inv

esti

gat

ed.

98

%C

u(I

I)re

cov

ery

was

ach

iev

ed.

Sy

amal

etal

.(1

99

7)

Ass

ym

etri

cC

A(1

.30

) ,1

00

0C

PC

(2.1

2)

Sep

arat

ion

of

ph

eno

lfr

om

wat

er

solu

tio

ns.

b-S

C.

Ch

arac

teri

zati

on

of

the

filt

rati

on

of

surf

acta

nt

solu

tio

nin

term

so

f

per

mea

tefl

ux

and

con

cen

trat

ion

and

ph

eno

lso

lub

iliz

atio

nu

nd

er

dif

fere

nt

op

erat

ing

con

dit

ion

sh

ave

bee

nst

ud

ied

.R

emo

val

of

ph

eno

lis

con

tro

lled

by

ano

pti

mu

m

surf

acta

nt/

solu

tera

tio

.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 235

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 23: Polymeric Ultrafiltration Membranes and Surfactants

Gu

oet

al.

(19

97

)-,

50

00

CP

C(2

.12

)

SD

S(2

.10

)S

epar

atio

no

fT

BP

fro

mw

ater

by

surf

acta

nt-

po

lyel

ectr

oly

te

(PS

S#)

com

ple

xes

.

b-S

C.

So

lub

iliz

atio

nan

du

ltra

filt

rati

on

of

org

anic

solu

tein

po

lym

er-s

urf

acta

nt

solu

tio

ns

and

surf

acta

nt

solu

tio

ns

hav

eb

een

exam

ined

.T

he

uti

lity

of

po

lyel

ectr

oly

te

tore

du

cem

on

om

erle

akag

eb

yco

llec

tin

g

surf

acta

nt

mo

no

mer

sw

asco

nfi

rmed

.

Mo

rel

etal

.(1

99

7)

CA

(1.2

6) ,

10

00

TT

AB

(2.9

)R

emo

val

of

nit

rate

ion

sfr

om

wat

erb

yU

F.

CT

AB

(2.8

)b

-C.

CT

AC

(2.2

4)

CP

C(2

.12

)

SD

S(2

.10

)

En

han

cem

ent

of

nit

rate

ion

sse

par

atio

n

thro

ug

hio

nic

rep

uls

ion

by

mem

bra

ne

mo

dif

icat

ion

,p

rod

uce

db

ya

stro

ng

adso

rpti

on

of

surf

acta

nt

mo

lecu

les

on

the

mem

bra

ne,

wh

ich

acts

on

the

Do

nn

an

po

ten

tial

dif

fere

nce

.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

236 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 24: Polymeric Ultrafiltration Membranes and Surfactants

Ak

ita

etal

.(1

99

7)

CA

(1.1

8) ,

30

00

CA

(1.1

9) ,

10

00

0

PO

NP

En

(2.2

1)

Plu

ron

icP

84

(2.2

2)

Rem

ov

alo

fg

old

(III

)fr

om

dil

ute

hy

dro

chlo

ric

acid

med

ia.

Am

iet

30

8(2

.23

)b

-SC

.

CP

C(2

.12

)

SD

S(2

.10

)T

he

fact

ors

(su

rfac

tan

tco

nce

ntr

atio

n,

eth

yle

ne

ox

ide

nu

mb

ero

fP

ON

PE

n,

MW

CO

and

app

lied

pre

ssu

re)

affe

ctin

gth

ere

ject

ion

of

go

ld

hav

eb

een

inv

esti

gat

ed.

Hig

hse

lect

ive

sep

arat

ion

of

fro

mso

me

hea

vy

met

als

can

be

atta

ined

by

use

of

the

no

nio

nic

surf

acta

nt

wit

ho

ut

any

com

ple

xin

gag

ent.

Ch

oi

etal

.(1

99

8)

PS

,1

00

00

Plu

ron

icP

10

3,

P8

5,

F1

08

(2.1

9)

Rem

ov

alo

fp

hen

ol

and

1-n

apth

ol

fro

m

aqu

eou

sso

luti

on

su

sin

g

blo

ckco

po

lym

ers.

c-C

F.

Th

eo

pti

mu

mco

nd

itio

ns

for

ME

UF

pro

cess

tore

mo

ve

thes

eso

lute

s

fro

mw

aste

wat

erw

ere

exam

ined

.

Am

eth

od

for

recy

clin

gan

dre

gen

erat

ion

of

the

po

lym

erb

ased

on

the

con

cep

to

f

mic

ella

rte

mp

erat

ure

ran

ge

fou

nd

tob

e

ver

yef

fect

ive.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 237

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 25: Polymeric Ultrafiltration Membranes and Surfactants

Ho

ng

etal

.(1

99

8)

CA

,1

00

0,

30

00

DC

MA

-3N

a(2.1

8)

Sep

arat

ion

of

div

alen

tm

etal

cati

on

s

(cu

pri

c,zi

nc,

cad

miu

man

dn

ick

el)

usi

ng

bio

surf

acta

nt

ME

UF

.

b-S

C.

Th

ed

epen

den

ceo

fth

ese

par

atio

n

per

form

ance

on

the

MW

CO

of

the

mem

bra

nes

and

the

mo

lar

rati

oo

f

bio

surf

acta

nt

tom

etal

cati

on

sh

as

bee

nin

ves

tig

ated

.

Hig

hre

ject

ion

so

fm

etal

sw

ere

ach

iev

ed

wit

heq

uim

ola

rsu

rfac

tan

t/m

etal

rati

o.

Bin

din

gaf

fin

ity

:C

d>

Cu

=Z

n>

Ni.

Her

bra

nt

etal

.(1

99

8)

Cel

lulo

sic(1

.25

) ,1

00

00

CT

AB

(2.8

)A

syst

emat

icco

mp

aris

on

bet

wee

nM

EU

F

and

solv

ent

extr

acti

on

for

the

rem

ov

alo

f

cop

per

ion

sfr

om

aqu

eou

sso

luti

on

s.

C1

2E

O6(2

.20

)

b-S

C.

Bo

thm

eth

od

su

sin

ga

var

iety

of

com

ple

xin

gag

ents

eith

erso

lub

iliz

ed

inth

eo

rgan

icso

lven

tu

sed

or

in

surf

acta

nt

mic

elle

sh

ave

bee

n

inv

esti

gat

edo

nth

eb

asis

of

yie

ldo

f

cop

per

extr

acti

on

.T

he

adv

anta

ges

and

dra

wb

ack

so

fb

oth

tech

niq

ues

are

rep

ort

ed

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

238 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 26: Polymeric Ultrafiltration Membranes and Surfactants

Tze

ng

etal

.(1

99

9)

CA

(1.2

2) ,

30

00

0

CA

(1.1

9) ,

10

00

0

CP

C(2

.12

)T

he

reco

ver

yo

fth

uri

ng

ien

sin

fro

m

ferm

enta

tio

nb

roth

sv

iaM

EU

F.

CA

(1.1

8) ,

30

00

PS

(1.2

3) ,

10

00

0

b-S

Can

dsc

ale-

up

by

two

-ste

pM

EU

F.

PS

(1.2

4) ,

30

00

Tw

ost

epM

EU

Fp

roce

ssre

sult

edin

a

sig

nif

ican

tim

pro

vem

ent

in

thu

rin

gie

nsi

nre

cov

ery

and

inth

e

inse

ctic

idal

effe

cto

nfl

yla

rvae

.

Fil

lip

iet

al.

(19

99

)A

nis

otr

op

icC

A(1

.21

) ,

50

00

SD

S(2

.10

)

IGE

PA

LC

O-6

60

(2.1

7)

Use

of

anio

nic

–n

on

ion

icsu

rfac

tan

t

mix

ture

tore

du

cesu

rfac

tan

tu

sag

e

and

surf

acta

nt

loss

inM

EU

Ffo

r

rem

ov

alo

fm

etal

ion

so

ro

rgan

ic

com

po

un

ds

(Zin

c,T

BP

).

b-S

C.

Ad

din

gn

on

ion

icsu

rfac

tan

tto

anio

nic

surf

acta

nt

atlo

wco

nce

ntr

atio

ns

pro

ved

the

imp

rov

emen

to

f

reje

ctio

no

fb

oth

zin

cca

tio

ns

and

TB

P.

Th

efo

rmat

ion

of

mic

elle

sin

the

vic

init

yo

fC

MC

and

nea

rth

e

mem

bra

ne

surf

ace

and

the

effe

cts

of

con

cen

trat

ion

po

lari

zati

on

hav

e

bee

nin

ves

tig

ated

.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 239

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 27: Polymeric Ultrafiltration Membranes and Surfactants

Ak

ita

etal

.(1

99

7)

CA

(1.1

7) ,

10

00

CA

(1.1

8) ,

30

00

CA

(1.1

9) ,1

00

00

PO

EN

PE

O1

0(2

.16

)

SD

S(2

.10

)S

epar

atio

no

fC

o(I

I)/N

i(I

I)u

sin

g

org

ano

ph

osp

oro

us

acid

extr

acta

nts

via

ME

UF

.

PS

(1.2

0) ,

10

00

0b

-SC

.

Sel

ecti

ve

sep

arat

ion

of

Co

(II)

ov

erN

i(II

)in

the

pre

sen

ceo

fa

mic

elle

-so

lub

iliz

ed

hy

dro

ph

ob

icli

gan

dh

asb

een

inv

esti

gat

ed

and

the

fact

ors

inv

olv

edh

ave

bee

n

exam

ined

and

aco

mp

aris

on

wit

hth

e

con

ven

tio

nal

solv

ent

extr

acti

on

met

ho

dh

asb

een

atte

mp

ted

.

Ad

mac

zak

and

Szy

man

ow

ski

(19

99

)

Reg

.C

ell.

(1.1

0) ,

10

00

0O

MD

-n(2

.14

)

CT

AB

(2.8

)

SD

S(2

.10

)

Th

ese

par

atio

no

fp

hen

ol

and

4-n

itro

ph

eno

l

by

ult

rafi

ltra

tio

no

fco

llo

idal

solu

tio

ns

form

edb

yv

ario

us

surf

acta

nts

.

Glu

cop

on

21

5b

-SC

.

CS

UP

(2.1

5)

Ox

yet

hy

late

dm

eth

yl

do

dec

ano

ates

wit

ha

deg

ree

of

ox

yet

hy

lati

on

inth

era

ng

eo

f

3–

14

hav

eb

een

exam

ined

for

org

anic

s

rem

ov

alin

com

par

iso

nw

ith

oth

er

con

ven

tio

nal

surf

acta

nts

thro

ug

h

ME

UF

exp

erim

ents

.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

240 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 28: Polymeric Ultrafiltration Membranes and Surfactants

Jad

hav

etal

.(2

00

1)

CA

(1.1

6) ,

10

00

CP

C(2

.12

)R

emo

val

of

ab

inar

ym

ixtu

reo

f

org

anic

solu

tes

(ph

eno

l,an

ilin

e)

inan

aqu

eou

sso

luti

on

by

ME

UF

.

b-S

C.

So

lub

iliz

atio

no

fo

rgan

ics

inm

icel

les

was

asce

rtai

ned

.T

he

effe

cto

f

op

erat

ing

par

amet

ers

(ap

pli

ed

pre

ssu

re,

solu

tes,

surf

acta

nt

bu

lk

con

cen

trat

ion

)o

nth

eex

ten

to

f

sep

arat

ion

of

org

anic

solu

tes

has

bee

nst

ud

ied

.A

mat

hem

atic

alm

od

el

was

dev

elo

ped

.

Tal

ens-

Ale

sso

net

al.

(20

01

)

Reg

.C

ell.

(1.1

0) ,

10

00

0O

MD

-n(2

.14

)In

ves

tig

atio

no

fth

ere

sist

ance

and

per

mea

tio

nfl

ux

of

mic

ella

rso

luti

on

s

of

ox

yet

hy

late

dm

eth

yl

do

dec

ano

ate

of

var

iou

sh

yd

rop

ho

bic

ity

for

the

rem

ov

alo

fp

hen

ol

and

4-n

itro

ph

eno

l.

b-S

C.

The

rela

tionsh

ips

bet

wee

nav

erag

ed

resi

stan

cean

dp

erm

eati

on

flu

xes

and

a

mo

lar

rati

op

oll

uta

nt/

surf

acta

nt

top

red

ict

the

effi

cien

cyo

fth

ese

par

atio

nh

ave

bee

nev

alu

ated

.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 241

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 29: Polymeric Ultrafiltration Membranes and Surfactants

Res

ista

nce

so

fse

con

dar

yla

yer

are

calc

ula

ted

and

itis

con

firm

edth

en

arro

w

ran

ge

of

ox

yet

hy

lati

on

of

use

ful

surf

acta

nts

for

the

rem

ov

alo

fh

yd

rop

hil

ic

solu

tes

lik

ep

hen

ols

.

Mu

llig

anet

al.

(20

01

)N

itro

cell

ulo

se(1

.15

) ,5

00

00

Bio

surf

acta

nts

(2.1

3)

Stu

dy

of

the

asso

ciat

ion

of

zin

can

d

copper

tobio

surf

acta

nts

mic

elle

s

and

thei

rre

mo

val

by

UF

.

b-S

C.

Th

ete

chn

iqu

eo

fu

ltra

filt

rati

on

and

zeta

po

ten

tial

mea

sure

men

tsw

ere

use

dto

det

erm

ine

the

mec

han

ism

of

met

alre

mo

val

by

the

surf

acta

nts

.

Heb

ran

tet

al.

(20

01

)C

ellu

losi

c(1.2

5) ,

10

00

0T

rito

nX

-10

0(2

.5)

Bri

j3

5(2

.25

)

CT

AB

(2.8

)

Sep

arat

ion

of

euro

piu

m(I

II)

(rar

eea

rth

met

al)

by

ase

ries

of

mic

elle

-so

lub

iliz

ed

extr

acta

nts

der

ived

fro

m5

-py

razo

lon

e

via

ult

rafi

ltra

tio

n.

b-S

C.

Th

eef

fici

enci

eso

fth

eex

trac

tan

tsin

euro

piu

mse

par

atio

nth

rou

gh

ME

UF

hav

eb

een

exam

ined

.T

he

yie

ldo

fex

trac

tio

nw

asm

easu

red

asa

fun

ctio

no

fp

Han

d

extr

acta

nt/

met

alra

tio

.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

242 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 30: Polymeric Ultrafiltration Membranes and Surfactants

Gza

raan

dD

hah

bi

(20

01

)

PS

(1.1

4) ,

10

00

0C

TA

B(2

.8)

CP

C(2

.12

)R

emo

val

of

chro

mat

ean

ion

sfr

om

aqu

eou

sso

luti

on

sb

yM

EU

Fu

sin

g

cati

on

icsu

rfac

tan

ts.

c-C

F.

Rej

ecti

on

of

chro

mat

ean

ion

sh

as

bee

nin

ves

tig

ated

atsu

rfac

tan

t

con

cen

trat

ion

sb

elo

wan

dab

ov

e

CM

Co

fsu

rfac

tan

ts.

Th

eef

fect

of

pH

,io

nic

stre

ng

than

d

con

cen

trat

ion

po

lari

zati

on

has

bee

nst

ud

ied

.A

bo

ve

CM

C

reje

ctio

nre

ach

ed9

9,5

%.

Sab

ate

etal

.(2

00

2)

PS

,5

00

0,

50

00

0C

PC

(2.1

2)

Co

mp

aris

on

of

po

lysu

lfo

ne

and

cera

mic

mem

bra

ne

for

the

sep

arat

ion

of

ph

eno

lin

ME

UF

.

c-C

F

Th

eef

fect

of

op

erat

ion

var

iab

les

(pre

ssu

rean

dre

ten

tate

flu

x)

and

mem

bra

ne

pro

per

ties

(nat

ure

and

MW

CO

)o

np

erm

eate

flu

x,

surf

acta

nt

and

ph

eno

l

reje

ctio

nhav

ebee

nan

alyze

d.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 243

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 31: Polymeric Ultrafiltration Membranes and Surfactants

Yu

rlo

va

etal

.(2

00

2)

Aro

m.

Po

lysu

lfo

nam

ide(1

.12

) ,-

Aro

m.

Poly

sulf

onam

ide,

-

SD

S(2

.10

)

OP

-10

(2.1

1)

Pu

rifi

cati

on

of

con

tam

inat

edw

ater

s

wit

hN

i(II

)io

ns

via

ME

UF

.

b-S

C.

Th

efe

asib

ilit

yo

fu

sin

ga

com

bin

atio

no

fn

on

ion

ic–

anio

nic

mic

elle

san

dth

ed

eter

min

atio

no

f

op

tim

um

val

ues

of

the

op

erat

ing

con

dit

ion

so

nth

ep

erfo

rman

ceo

f

UF

hav

eb

een

inv

esti

gat

ed.

Yo

on

etal

.(2

00

3)

Su

lf.

PE

S(1

.11

) ,8

00

0T

TA

B(2

.9)

SD

S(2

.10

)M

od

ific

atio

no

fa

neg

ativ

ely

char

ged

UF

mem

bra

ne

usi

ng

cati

on

ic/a

nio

nic

surf

acta

nts

to

enh

ance

per

chlo

rate

reje

ctio

nfr

om

var

iou

sso

urc

eso

fw

ater

.

b-S

C.

Per

chlo

rate

reje

ctio

nw

asex

amin

ed

inte

rms

of

two

fun

dam

enta

l

mec

han

ism

s:st

eric

/siz

eex

clu

sio

n

and

elec

tro

stat

icex

clu

sio

n.

Gre

ater

than

exp

ecte

dp

erch

lora

te

reje

ctio

nb

yU

Fb

ased

mo

stly

on

ster

ic/s

ize

excl

usi

on

was

ob

serv

ed

asa

resu

lto

fa

dec

reas

eo

fth

e

mem

bra

ne

po

resi

ze.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

244 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 32: Polymeric Ultrafiltration Membranes and Surfactants

Ko

rzy

stk

aet

al.

(20

03)

Reg

.C

ell.

(1.1

0) ,

10

00

0O

MD

-11

(2.7

)

CT

AB

(2.8

)R

emo

val

of

ph

eno

lsan

dth

eir

der

ivat

ives

by

UF

of

coll

oid

al

solu

tio

ns

con

tain

ing

the

tox

ic

solu

tes

and

mix

ture

so

fsu

rfac

tan

ts.

b-S

C.

Th

eef

fect

of

com

po

siti

on

of

mix

ed

surf

acta

nt

syst

emo

nth

ep

erm

eate

flu

xes

,o

nth

ere

sist

ance

of

the

seco

nd

ary

lay

eran

do

nth

e

reje

ctio

no

fth

ep

hen

ols

has

bee

nd

eter

min

ed.

Juan

get

al.

(20

03

)G

E(1

.77

) ,1

00

0

GH

(1.7

8) ,

25

00

GM

(1.7

9) ,

80

00

.

AE

S5

(1.8

0) ,

20

00

SD

S(2

.10

)S

epar

atio

nan

dre

mo

val

of

met

alio

ns

(Cu

(II)

,C

o(I

I),

Zn

(II)

,M

n(I

I),

Sr(

II),

Cs(

I)an

dC

r(II

I))

fro

m

dil

ute

solu

tio

ns

usi

ng

ME

UF

.

AE

S1

0(1

.81

) ,5

00

0b

-SC

.

Th

ein

flu

ence

of

dif

fere

nt

fact

ors

(mem

bra

ne

MW

CO

and

mat

eria

l,

mo

lar

con

cen

trat

ion

rati

oo

fth

e

surf

acta

nt/

met

als,

ion

icst

ren

gth

,

tran

smem

bra

ne

pre

ssu

re)

on

met

al

reje

ctio

n(i

nsi

ng

lean

db

inar

y

met

alsy

stem

s)h

asb

een

exam

ined

.

Th

ere

cov

ery

and

reu

seo

fsu

rfac

tan

t

fro

mre

ten

tate

was

stu

die

d.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 245

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 33: Polymeric Ultrafiltration Membranes and Surfactants

Bae

ket

al.

(20

03

)Y

M1

0(1

.82

) ,1

00

00

YM

03

(1.8

3) ,

30

00

OD

A(2

.71

)S

urf

acta

nt

bas

edse

par

atio

no

fan

ion

ic

met

als

(ch

rom

ate

and

ferr

iccy

anid

e)

by

ME

UF

.

b-S

C.

Th

ere

mo

val

of

anio

nic

met

als

usi

ng

cati

on

icsu

rfac

tan

th

asb

een

inv

esti

gat

edin

the

syst

ems:

chro

mat

e/O

DA

,fe

rric

cyan

ide/

OD

A

and

chro

mat

e/fe

rric

cyan

ide/

OD

A.

Ta

ble

3.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

246 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 34: Polymeric Ultrafiltration Membranes and Surfactants

at the membrane/solution interface (Gzara and Dhahbi, 2001; Morel et al.,

1997; Yoon et al., 2003).

Previous research on the removal of organic compounds from aqueous

solutions by MEUF had concentrated on: n-alcohols such as hexanol, heptanol,

octanol (Gibbs et al., 1987), 4-tert-butyl-phenol (Dunn and Scamehorn, 1985,

1987), aromatic compounds, chloroaromatic compounds, aromatic amines

(Premauro and Prevot Bianco, 1995). As far as the application of MEUF for

the removal of heavy metals is concerned, the separation of zinc (Scamehorn

and Harwell, 1988) and copper from mixtures with calcium (Klepac et al.,

1991) are reported.

Generally, the recent research on MEUF (Table 3) is focused on the

evaluation of membrane performance by determination of optimum

operation conditions and includes not only batch-type stirred cell

experiments but, also, continuous separation using hollow fiber or cross-

flow membrane modules. The factors considered are pressure difference,

membrane MWCO, molar ratios of surfactants to solute, kind of surfactant

and additives, pH, ionic strength etc. The leakage of monomeric surfactant

to permeate is of great interest for the current research. The use of non

toxic, biodegradable surfactants such as oxymethyldodecanoates (Adamczak

and Szymanowski, 1999), biosurfactants (Mulligan et al., 2001), natural

surfactants (Huang et al., 1994ab), anionic-nonionic surfactants mixtures (for

the reduction of CMC) (Fillipi et al., 1999), and polyelectrolytes (poly-

electrolyte-surfactant complex) (Guo et al., 1997) is suggested.

3.4. Interaction Behaviour

In principle, an ultrafiltration membrane works by the sieving effect

with a pressure difference as the driving force. However, interactions

developed between solutes and the membrane surface could lead to

modification of the sieving effect and eventually affect substantially the

performance of UF membrane. Membranes can be fouled by adsorption or

deposition of some substances present in a process solution. The

interactions responsible for the adsorption include the contributions of

various mechanisms by which substances may adsorb onto solid substrate.

Broadly, these contributions can be due to electrical interactions (ion

exchange and ion pairing), to strictly dispersion and hydrophobic forces and

to the dipolar and electrostatic effects (acid–base interactions, hydrogen

bonding and polarization of p electrons).

Adsorption of surfactants onto membrane surface plays an important

role for the characterization of membranes, their removal from solutions

streams and cleaning processes. Therefore, since the characterization of

membrane tendency to interact with solute due to membrane surface

Polymeric UF Membranes and Surfactants 247

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 35: Polymeric Ultrafiltration Membranes and Surfactants

Ta

ble

4.

Inte

ract

ion

beh

avio

ur.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lt

Kro

vv

idi

(19

92

)S

pec

trap

or,

50

0

Sp

ectr

apo

r,1

00

0

Reg

.C

ell.

(1.1

0) ,

10

00

0

Tri

ton

X-1

00

(2.5

)R

evea

lo

fin

div

idu

alre

sist

ance

sto

mas

s

tran

spo

rtac

ross

the

mem

bra

ne

inU

F

wit

hsu

rfac

tan

tso

luti

on

s.

b-S

C.

UF

exp

erim

ents

wit

hco

llo

idal

and

no

n-c

oll

oid

alaq

ueo

us

solu

tio

ns

of

no

n-i

on

icsu

rfac

tan

tw

ere

carr

ied

ou

t

ino

rder

tou

nd

erst

and

inte

ract

ion

sw

ith

the

mem

bra

ne.

Do

uli

aet

al.

(19

92

)C

A(1

.66

) ,2

00

00

PS

(1.6

5) ,

20

00

0

Tri

ton1

seri

es(2

.67

)

Do

ban

ol1

seri

es(2

.68

)A

nal

tern

ativ

em

eth

od

toze

tap

ote

nti

al

and

con

tact

ang

lem

easu

rem

ents

for

mem

bra

ne

char

acte

riza

tio

nis

sug

ges

ted

by

the

aid

of

surf

acta

nts

.

c-C

F.

Inte

ract

ion

beh

avio

ur

inu

ltra

filt

rati

on

of

ho

mo

log

ou

sse

ries

of

no

nio

nic

surf

acta

nts

has

bee

nst

ud

ied

thro

ug

hfl

ux

beh

avio

ur

ino

rder

toch

arac

teri

zesu

rfac

ep

rop

erti

es

of

mem

bra

nes

248 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 36: Polymeric Ultrafiltration Membranes and Surfactants

Yam

agiw

aet

al.

(19

93

a)

PS

,5

00

00

Po

lyo

lefi

n,

20

00

0

DIS

FO

AM

CE

-12

0

R(2

.48

)In

ves

tig

atio

no

fm

emb

ran

efo

uli

ng

inU

F

of

hydro

phobic

nonio

nic

surf

acta

nts

use

das

anti

foam

ing

agen

ts(e

.g.

in

ferm

enta

tio

nb

roth

s).

c-C

F.

An

tifo

amfo

uli

ng

was

cau

sed

by

hy

dro

ph

ob

icin

tera

ctio

nb

etw

een

the

mem

bra

ne

and

the

surf

acta

nt.

Yam

agiw

aet

al.

(19

93

b)

PS

,5

00

00

PO

E,

20

00

0

DIS

FO

AM

CE

-12

0R

(2.4

8)

Eff

ect

of

anti

foam

fou

lin

go

nso

lute

reje

ctio

nb

yU

Fm

emb

ran

e.

c-C

F.

An

tifo

amfo

uli

ng

has

sig

nif

ican

t

effe

cts

no

to

nly

on

flu

xb

ut

also

on

solu

te(g

luco

se,

po

lyet

hy

len

egly

cols

and

dex

tran

s)re

ject

ion

.

Mak

ayas

sian

d

Tre

iner

(19

93

)

PS

S(1

.59

) ,5

00

0T

TA

C(2

.57

)

TB

zC(2

.59

)In

ves

tig

atio

no

fth

eb

ehav

iou

ro

f

mo

no

mer

surf

acta

nt

insi

ng

lean

d

mix

edca

tio

nic

surf

acta

nt

solu

tio

ns

and

det

erm

inat

ion

of

the

mic

ella

r

com

po

siti

on

inth

ere

gio

no

fth

e

seco

nd

CM

C.

c-C

F.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 249

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 37: Polymeric Ultrafiltration Membranes and Surfactants

UF

met

ho

dis

feas

ible

tod

eter

min

e

stru

ctu

ral

chan

ge

and

mic

ella

r

com

po

siti

on

inaq

ueo

us

solu

tio

ns

of

bin

ary

cati

on

icsu

rfac

tan

tm

ixtu

res.

Kim

etal

.(1

99

3)

PS

(1.8

) ,3

00

00

PS

(1.5

2) ,

10

00

00

SD

S(2

.10

)

CT

AB

(2.8

)C

lean

ing

of

UF

mem

bra

nes

fou

led

by

pro

tein

s.

PS

(1.5

3),

10

00

00

b-S

Can

dc-

CF

.

Inv

esti

gat

ion

of

the

rela

tio

nsh

ipb

etw

een

the

mem

bra

ne

fou

led

by

pro

tein

dep

osi

tio

nan

do

fcl

ean

ing

pro

cess

in

ord

erto

exte

nd

mem

bra

ne

life

,

op

tim

ize

clea

nin

gan

den

han

ce

UF

per

form

ance

.

Wak

eman

and

Ak

ay

(19

94

)

PE

S(1

.51

) ,3

00

0,

40

00

,

10

,00

0,

10

00

00

HM

WS

P(I

)(2.4

6)

HM

WS

P(I

I)(2

.47

)U

ltra

filt

rati

on

of

emu

lsio

ns

and

susp

ensi

on

sst

abil

ized

wit

han

ion

ic

and

cati

on

ich

yd

rop

ho

bic

ally

mo

dif

ied

wat

er-s

olu

ble

po

lym

ers.

c-C

F.

Inv

esti

gat

ion

of

UF

beh

avio

ur

of

the

abo

ve

po

lym

ers

thro

ug

hfl

ux

dec

ay

and

reje

ctio

n.

Po

pes

cuet

al.

(19

94

)P

S(1

.50

) ,-

CP

B(2

.42

)

CT

AB

(2.8

)P

rod

uct

ion

of

UF

asy

mm

etri

cm

emb

ran

e

isaf

fect

edb

yth

ead

dit

ion

of

smal

l

amo

un

tso

fsu

rfac

tan

ts.

b-C

UF

Ta

ble

4.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lt

250 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 38: Polymeric Ultrafiltration Membranes and Surfactants

DP

B(2

.43

)

NaO

I(2.4

4)

NaS

t(2.4

5)

SD

S(2

.10

)

The

infl

uen

ceof

surf

acta

nts

use

din

mem

bra

ne

pre

par

atio

no

nth

ew

etta

bil

ity

of

hy

dro

ph

ob

icm

icro

po

rou

ssu

rfac

es

was

stu

die

db

yd

eter

min

ing

the

con

tact

-an

gle

and

UF

rate

so

fm

emb

ran

e

asw

ell

asb

yad

sorp

tio

nex

per

imen

ts.

Mar

kel

set

al.

(19

94

)P

ES

(1.4

9) ,

50

00

,

50

00

0

CP

C(2

.12

)D

eter

min

atio

no

fre

ject

ion

char

acte

rist

ics

of

the

UF

mem

bra

ne

for

mic

ella

r

surf

acta

nt

solu

tio

ns.

b-S

C

An

un

stea

dy

mas

s-tr

ansf

erm

od

elis

dev

elo

ped

for

un

stir

red

bat

chU

Fat

con

stan

tfl

ux

toin

clu

de

am

icel

lisi

ng

surf

acta

nt

solu

te.

Rep

uls

ive

elec

tro

stat

ic

inte

ract

ion

san

dsu

rfac

tan

tad

sorp

tio

n

infl

uen

cere

ject

ion

.

Mar

kel

set

al.

(19

95

A)

PE

S(1

.49

) ,5

00

0,

50

00

0

CP

C(2

.12

)D

evel

op

men

to

fan

effi

cien

td

esig

n

pro

ced

ure

and

ap

ract

ical

and

reli

able

mo

del

for

the

pre

dic

tio

no

fp

erm

eate

flu

xin

UF

bas

edo

nre

lev

ant

ph

ysi

cal

ph

eno

men

a.

c-C

F.

An

osm

oti

cp

ress

ure

and

fou

lin

gre

sist

ance

mo

del

isu

sed

top

red

ict

flu

xin

the

cro

ss-f

low

UF

of

mic

elle

sso

luti

on

s.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 251

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 39: Polymeric Ultrafiltration Membranes and Surfactants

Sin

gh

(19

96

b)

CA

(1.1

9) ,

10

00

0

CA

(1.6

2) ,

50

00

Tw

een

80

(2.2

7)

Igep

alR

C-5

20

(2.2

6)

SD

S(2

.10

)(l

imit

ed

Inv

etig

atio

no

fu

ltra

filt

rati

on

reje

ctio

no

f

surf

acta

nt

mic

elle

sb

yd

yn

amic

lig

ht

scat

teri

ng

.

exp

erim

ents

wit

hc-

CF

.

on

lyth

eC

A(1

.62

) )T

he

abse

nce

of

mic

elle

sin

UF

per

mea

teu

sin

gth

ete

chn

iqu

eo

f

dy

nam

icli

gh

tsc

atte

rin

gh

asb

een

det

erm

ined

and

asw

ell

asth

e

dia

met

ero

fth

eex

amin

edm

icel

les.

Hu

ang

and

So

rnas

un

dar

an(1

99

6)

CA

(1.1

7) ,

10

00

CA

(1.1

8) ,

30

00

TT

AC

(2.5

7)

NP

-15

(2.5

8)

Inv

esti

gat

ion

so

fch

ang

esin

mic

elle

com

po

siti

on

and

mo

no

mer

con

cen

trat

ion

inm

ixed

surf

acta

nt

solu

tio

ns

b-S

C

Th

em

icel

liza

tio

nb

ehav

iou

ro

f

cati

on

ic–

no

nio

nic

hy

dro

carb

on

surf

acta

nt

mix

ture

sh

asb

enn

stu

die

d

usi

ng

UF

tech

niq

ue

and

am

od

el

inv

olv

ing

coex

isti

ng

mix

edm

icel

les

isp

rop

ose

d.

Do

uli

aet

al.

(19

97

)P

S(1

.65

) ,2

00

00

CA

(1.6

6) ,

20

00

0

PV

DF

(1.6

7) ,

20

00

0

Tri

ton1

seri

es(2

.66

)

Do

ban

ol1

seri

es(2

.67

)C

har

acte

riza

tio

no

fU

Fm

emb

ran

eb

y

surf

acta

nt

met

ho

d.

Ta

ble

4.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lt

252 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 40: Polymeric Ultrafiltration Membranes and Surfactants

PV

DF

(1.6

8) ,

20

00

0B

atch

adso

rpti

on

exp

erim

ents

.

Inte

ract

ion

sb

etw

een

surf

acta

nts

and

mem

bra

nes

wer

eex

amin

edb

y

adso

rpti

on

exp

erim

ents

.

Po

nti

eet

al.

(19

97)

PE

S(1

.43

) ,

30

00

–1

00

00

0

PS

(1.4

5) ,

10

00

0

CA

(1.4

6) ,

10

00

00

Tri

ton

X-1

00

(2.5

)C

har

acte

riza

tio

no

fU

Fo

rgan

ic

mem

bra

nes

bas

edo

nst

ream

ing

po

ten

tial

mea

sure

men

tsan

dap

pli

cati

on

toco

ntr

ol

clea

nin

gtr

eatm

ents

.

Inv

esti

gat

ion

of

surf

ace

mo

dif

icat

ion

by

surf

acta

nt

adso

rpti

on

incl

ud

esp

arti

cula

rly

stre

amin

gp

ote

nti

ald

eter

min

atio

ns

of

surf

ace

char

ge

of

mem

bra

nes

inv

ario

us

con

dit

ion

so

fp

H,

ion

icst

ren

gth

,an

dp

ore

size

.M

emb

ran

ecl

ean

ing

pro

ced

ure

sh

ave

bee

nst

ud

ied

inte

rms

of

per

mea

bil

ity

,

stre

amin

gp

ote

nti

alan

dw

etta

bil

ity

.

Po

nti

eet

al.

(19

98)

PE

S(1

.43

) ,

30

00

–1

00

00

0

Tri

ton

X-1

00

(2.5

)C

ontr

ol

fouli

ng

and

clea

nin

gpro

cedure

s

of

UF

mem

bra

nes

by

ast

ream

ing

po

ten

tial

met

ho

d.

CT

A(1

.44

) ,1

00

00

0

DT

AB

(2.4

2)

Su

rfac

tan

tad

sorp

tio

no

nU

Fm

emb

ran

es

was

stu

die

din

ord

erto

mo

del

the

dep

osi

tio

no

fn

atu

ral

org

anic

mat

ter

on

the

mem

bra

ne.

Val

idat

ion

of

the

pro

po

sed

stre

amin

gp

ote

nti

alm

eth

od

in

con

tro

llin

gth

eef

fici

ency

of

acl

ean

ing

agen

tto

the

reco

ver

ing

of

a

mem

bra

ne

fou

led

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 253

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 41: Polymeric Ultrafiltration Membranes and Surfactants

Ha-

Tra

net

al.

(19

98

)P

S(1

.14

) ,1

00

00

CT

AB

(2.8

)E

xam

inat

ion

of

the

rela

tio

nsh

ipb

etw

een

mem

bra

ne

clea

nin

gef

fici

ency

and

wat

erq

ual

ity

.

b-S

C.

Th

eef

fici

ency

of

mem

bra

ne

clea

nin

g

has

bee

nst

ud

ied

wit

hw

ater

con

tain

ing

par

ticu

late

san

d

som

ed

isso

lved

salt

s.

Kim

etal

.(1

99

8)

PS

(1.3

9) ,

-

Reg

.C

ell.

(1.4

0) ,

30

00

Reg

.C

ell.

(1.4

1) ,

50

00

CnE

m(2

.41

)R

emo

val

of

tox

icar

om

atic

com

po

un

din

aqu

eou

sso

luti

on

sv

iam

icel

lar

enh

ance

du

ltra

filt

rati

on

Reg

.C

ell.

(1.1

0) ,

10

00

0b

-SC

.

Reg

.C

ell.

(1.4

2) ,

30

00

0In

ves

tig

atio

no

fin

tera

ctio

ns

of

no

nio

nic

surf

acta

nts

and

mem

bra

nes

thro

ug

h

UF

exp

erim

ents

.

Urb

ansk

iet

al.

(20

02

)R

eg.

Cel

l.(1

.10

) ,1

00

00

CT

AB

(2.8

)

SD

S(2

.10

)

Glu

cop

on

21

5

CS

UP

(2.1

5)

Sep

arat

ion

of

wat

erso

lub

leo

rgan

ics

for

recy

clin

gan

dre

use

of

ind

ust

rial

aqu

eou

sst

ream

s.

b-S

C.

Ex

amin

atio

no

fU

Fo

fm

icel

lar

surf

acta

nt

solu

tio

ns

inth

ep

rese

nce

and

abse

nce

elec

tro

lyte

san

dfo

cus

on

the

form

atio

no

fad

dit

ion

al

mem

bra

ne

resi

stan

ce.

Ta

ble

4.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lt

254 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 42: Polymeric Ultrafiltration Membranes and Surfactants

Miz

og

uch

iet

al.

(20

02

)P

oly

sacc

har

ide

(1.3

8) ,

10

00

LD

AO

(2.4

0)

Dev

elo

pm

ent

of

UF

pro

cess

for

no

n-i

on

icsu

rfac

tan

tse

par

atio

n

app

lica

ble

toa

new

syst

emo

f

hig

hd

ensi

tyth

erm

alen

erg

y

tran

spo

rtat

ion

for

loca

lh

eati

ng

and

coo

lin

g.

b-S

C.

Inv

esti

gat

ion

of

UF

beh

avio

ur

of

an

ewty

pe

no

n-i

on

icsu

rfac

tan

t

aro

un

dC

MC

.

Ko

zlo

v(2

00

2)

Aro

mat

icp

oly

amid

e(1.3

7) ,

-C

atam

ine

AB

(2.3

9)

Ult

rafi

ltra

tio

no

fac

qu

eou

s.

Cat

amin

eA

Bso

luti

on

s.

b-C

.

Th

est

ud

yo

fm

icel

lar

solu

tio

ns

of

cati

on

icsu

rfac

tan

tin

clu

des

the

effe

cts

of

init

ial

po

lari

zati

on

ph

eno

men

aan

dth

em

od

ific

atio

n

of

mem

bra

ne.

Kap

lan

etal

.(2

00

2)

PE

S(1

.36

) ,1

00

00

0T

wee

n2

0(2

.30

)A

dso

rpti

on

of

lyso

zym

eo

n

mem

bra

ne

mat

eria

lan

dcl

ean

ing

wit

hn

on

-io

nic

surf

acta

nt

char

acte

rize

dth

rou

gh

con

tact

ang

lem

easu

rem

ents

.

Ch

arac

teri

zati

on

of

mem

bra

ne

bef

ore

pro

tein

adso

rpti

on

and

afte

rcl

eanin

gw

ith

non-i

onic

surf

acta

nt

giv

esin

sig

hts

inth

e

mem

bra

ne

beh

avio

ur.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 255

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 43: Polymeric Ultrafiltration Membranes and Surfactants

By

hli

nan

d

Jon

sso

n(2

00

2)

Reg

.C

ell.

(1.3

2) ,

10

00

0

Reg

.C

ell.

(1.3

3) ,

20

00

0

Reg

.C

elL

.(1.3

4) ,

30

00

0

Tri

ton

X-1

00

(2.5

)In

flu

ence

of

no

n-i

on

icsu

rfac

tan

to

nth

e

per

form

ance

of

dif

fere

nt

typ

es

of

mem

bra

nes

.

PE

S(1

.35

) ,2

00

00

c-C

F.

Th

eef

fect

of

adso

rpti

on

and

con

cen

trat

ion

po

lari

zati

on

on

mem

bra

ne

per

form

ance

was

stu

die

d

atsu

rfac

tan

tco

nce

ntr

atio

nb

elo

w

and

abo

ve

CM

C.

Ta

ble

4.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lt

256 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 44: Polymeric Ultrafiltration Membranes and Surfactants

Ta

ble

5.

Wat

erm

anag

emen

t.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

An

gan

dA

bd

ul

(19

94

)

CM

50

(1.5

7) ,

50

00

0

XM

50

(1.1

5) ,

50

00

0

PM

50

0(1

.58

) ,5

00

00

0

Wit

con

ol

SN

70

(2.6

0)

Ev

alu

atio

no

fan

ult

rafi

ltra

tio

nm

eth

od

for

surf

acta

nt

reco

ver

yan

dre

use

fro

maq

ueo

us

was

test

ream

sd

uri

ng

insi

tuw

ash

ing

of

a

site

con

tam

inat

edP

CB

san

do

ils.

Ho

llo

w-f

iber

UF

.

Lab

ora

tory

and

fiel

dfe

asib

ilit

yst

ud

ies

wer

e

con

du

cted

and

ind

icat

e

that

no

nio

nic

surf

acta

nt

can

be

reco

ver

ed

fro

mle

ach

ate

mix

ture

con

tain

ing

PC

Bs

and

oil

sb

yU

F.

Mar

kel

set

al.

(19

95

b)

PE

S(1

.47

) ,5

00

0

PE

S(1

.48

) ,5

00

00

CP

C(2

.12

)D

esig

nm

eth

od

olo

gy

for

mic

ella

r-en

han

ced

ult

rafi

ltra

tio

nin

ord

erto

red

uce

the

con

cen

trat

ion

of

org

anic

po

llu

tan

tin

wat

erst

ream

s.

UF

‘‘F

eed

’’an

d‘‘

Ble

ed’’

syst

em.

Asy

stem

atic

calc

ula

tio

nal

pro

ced

ure

isd

evel

op

ed

for

the

des

ign

of

ME

UF

totr

eat

aqu

eou

sst

ream

s

con

tam

inat

edw

ith

org

anic

po

llu

tan

ts

(ch

loro

ben

zen

e,tr

ich

loro

eth

yle

ne,

tetr

ach

loro

eth

yle

ne

and

tolu

ene)

.T

he

des

ign

isco

nsi

der

edto

ensu

reg

oo

dm

ass

tran

sfer

,

con

tro

lo

fsu

rfac

tan

tco

nce

ntr

atio

nat

the

mem

bra

ne

surf

ace

and

mee

ts

the

EP

Ast

and

ard

sin

the

per

mea

te.

(co

nti

nu

ed)

Polymeric UF Membranes and Surfactants 257

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 45: Polymeric Ultrafiltration Membranes and Surfactants

Jon

sso

nan

dJo

nss

on

(19

95

)

PS

(1.5

4) ,

80

00

PE

S(1

.55

) ,4

00

0

PE

S(1

.56

) ,2

50

00

Car

-was

hin

gch

emic

als

con

tain

ing

var

iou

s

surf

ace

acti

ve

agen

ts

Rem

ov

alo

fd

egre

asin

gag

ents

use

dat

car

was

hes

by

UF

.

Th

ein

flu

ence

of

com

mer

cial

deg

reas

ing

agen

tsu

sed

at

car

was

hes

on

the

flu

xan

dre

ten

tio

no

fm

emb

ran

es

has

bee

nst

ud

ied

wit

hth

eai

mo

fre

pla

cin

gth

e

pet

role

um

-bas

edag

ents

wit

hle

ssh

arm

ful

on

es.

Sab

atin

iet

al.

(19

98

)

-,1

00

00

DO

WF

AX

83

90

(2.5

4)

Tw

een

80

(2.2

7)

ST

EO

LC

S-3

30

(2.5

5)

SD

-4(2

.56

)

Th

ero

leo

fm

emb

ran

ep

roce

sses

(UF

)in

surf

acta

nt

dec

on

tam

inat

ion

and

reco

ver

yto

surf

acta

nt-

enh

ance

dsu

bsu

rfac

ere

med

iati

on

.

Res

ult

so

fa

fiel

dd

emo

nst

rati

on

stu

dy

illu

stra

tin

gth

e

com

bin

edsu

rfac

tan

t-en

han

ced

con

tam

inan

tex

trac

tio

n

and

surf

acta

nt

reg

ener

atio

nan

dre

con

cen

trat

ion

pro

cess

esar

ep

rese

nte

dd

ocu

men

tin

gth

ep

erfo

rman

ce

of

ho

llo

wfi

ber

and

ult

rafi

lter

mem

bra

nes

.

Go

ers

etal

.(1

99

8)

PS

,1

00

00

Red

uct

ion

of

wat

erco

nsu

mp

tio

nan

dw

aste

wat

er

ind

eter

gen

tp

rod

uct

ion

.

Cap

illa

rym

od

ule

.

An

inv

esti

gat

ion

was

con

du

cted

ino

rder

to

op

tim

ize

chan

ges

of

pro

du

ctin

reg

ard

toth

e

vo

lum

eso

ffr

esh

wat

eran

dw

aste

wat

er

inv

olv

edan

dto

reco

ver

pro

cess

wat

er

con

sid

erin

gp

roce

ss-r

elat

edte

chn

ical

con

cep

ts.

Ta

ble

5.

Co

nti

nu

ed.

Ref

eren

ceM

emb

ran

e-M

WC

OS

urf

acta

nt

Aim

–ex

per

imen

tal-

resu

lts

258 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 46: Polymeric Ultrafiltration Membranes and Surfactants

Fil

lip

iet

al.

(19

98

)M

od

ifie

dC

AE

con

om

ican

aly

sis

of

cop

per

rem

ov

alfr

om

wat

erb

yli

gan

d-m

od

ifie

dm

icel

lar-

enh

ance

d

ult

rafi

ltra

tio

n.

Th

isst

ud

yp

rov

ides

app

rox

imat

e

com

par

ativ

eec

on

om

ics

bet

wee

nth

e

LM

-ME

UF

cop

per

sep

arat

ion

met

ho

dan

dth

e

con

ven

tio

nal

cop

per

solv

ent

extr

acti

on

pro

cess

.

Go

ers

etal

.(2

00

0)

PE

S(1

.54

) ,5

00

0

PV

DF

(1.5

5) ,

10

00

0

SD

S(2

.10

)

Tex

apo

nN

70

(2.4

9)

Op

tim

ized

pro

du

ctan

dw

ater

reco

ver

yfr

om

bat

ch-p

rod

uct

ion

rin

sin

gw

ater

s.

PV

DF

(1.5

6) ,

35

00

0M

arin

alp

aste

A5

6(2

.50

)P

ilo

t-sc

ale

pla

nt.

Eu

mu

lgin

ET

5(2

.51

)

Gen

apo

lU

DD

-07

9(2

.57

)

AP

GP

lan

taca

re2

00

0(2

.53

)

Pro

du

ctco

nce

ntr

ate

can

be

reco

ver

edfr

om

rin

sin

gw

ater

so

fsu

rfac

tan

tan

dd

eter

gen

t

bat

chp

rod

uct

ion

pro

cess

esb

yu

sin

gU

F

mem

bra

nes

.A

nec

on

om

ico

pti

miz

atio

no

f

the

reco

ver

yp

roce

ssw

asst

ud

ied

.

Fo

stm

eier

etal

.

(20

02

)

Nad

irP

oo

5F

(1.7

0)

D5

kD

esal

(1.7

1)

6M

Des

al(1

.72

)

–M

anag

emen

to

fri

nsi

ng

wat

ers

ina

liq

uid

det

erg

ent

pro

du

ctio

np

lan

tb

y

UF

/NF

trea

tmen

t.

Pil

ot-

scal

ep

lan

t

Polymeric UF Membranes and Surfactants 259

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 47: Polymeric Ultrafiltration Membranes and Surfactants

properties is of great importance, a research activity has been concentrated on

this issue (Table 4). Particularly, the characterization of membranes by

determination of interactions involved in a specific system has been studied by

the aid of surfactants solutions. Methods alternatives to contact angle and zeta

potential measurements including UF and/or adsorption experiments and

using various surfactant solutions at concentrations below and above CMC

have been examined. By this method, the above-mentioned interactions and

their influence to flux decline, flux recovery, fouling tendency of hydrophilic

and hydrophobic membranes (Doulia et al., 1997; Kaplan et al., 2002) have

been investigated. UF experiments have also been performed for the

determination of structural change and micellar compositions of aqueous

mixed surfactant solutions with the aim of examination and prediction of

membrane behaviour, affecting substantially MEUF performance (Byhlin and

Jonsson, 2002; Mizoguchi et al., 2002). The role of interactions in UF

processes, where surfactants are present (e.g. cleaning UF membranes fouled

by proteins, antifoam fouling etc) has been studied in order to extend

membrane life, optimize process and enhance UF effectiveness (Kim et al.,

1993; Yamagiwa et al., 1993ab). Generally, the main factors (chemical nature

of surfactants and membranes, surfactant concentration, pH, ionic strength,

additives etc) affecting adsorption behaviour of a solution-membrane system

have been examined (Ha-Tran et al., 1998; Huang and Sornasundaran, 1996;

Schott, 1964).

Previous studies on interactions of surfactants solutions with ultrafil-

tration membranes are mentioned in the literature. McBain et al. (1933)

studied the ultrafiltration of soap solutions (potassium laureate), Schott (1964)

examined the ultrafiltration of nonionic detergents as a method of their

purification, Lee-Osborne et al. (1983) studied the monomer-micellar equi-

librium of sodium alkyl benzene sulfonate, Krovvidi et al. (1984) investigated

the transport of monomer surfactant molecules through porous membranes and

Jonsson and Jonsson (1991) studied the influence of nonionic and ionic

surfactants on hydrophobic and hydrophilic ultrafiltration membranes.

3.5. Water Management

The stringent environmental and ecological requirements have spurred

the search for industrial waste treatment options with low energy, labor and

capital cost. Surfactants are frequently present in waters or wastewaters of

detergent or surfactant production plants, in cleaning and rinsing water plant

networks and in effluents from processes using surfactants (metal removal in

mining industry, surfactant washing method to remediate a contaminated site

etc). The investigation of ultrafiltration application for the treatment of

industrial effluents containing surfactants focuses mainly on the optimization

260 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 48: Polymeric Ultrafiltration Membranes and Surfactants

of cleaning and rinsing plant network in terms of reduction of water consump-

tion by recycling, recovery and reuse of water (Forstmeier et al., 2002; Goers

et al., 1998). The activity on this field includes applied research projects on

specific industrial cases, the objectives of which are briefly given in Table 5.

4. CONCLUSIONS

It is evident that data on surfactant-membrane research field are

abundant since a great variety of surfactants and membranes are available

connected with different processes. The recent research activity includes

pretreatment with surfactants enhancing UF performance, MEUF as a very

promising method alternative to extraction, determination of interactions

between surfactant and membrane (significant for improvement and

prediction of membrane behaviour) and economical and environmental

aspects of UF-surfactant related processes. It should be noticed that by the

use of surfactants in membrane processes a new effective separation

methods has been developed, equivalent or more effective than conven-

tional separation methods and with occasionally better environmental and

economical characteristics. The determination of interactions, unique for a

given system, leads to a better understanding of the mechanisms involved at

membrane-solute interface with beneficial impacts on practical predictions,

design and improvement of UF behaviour.

5. APPENDIX A

Membrane trade names and material

Number Membrane trade name Membrane material

1.1 Amicon XM100 Dynel

1.2 Amicon PM30 PS

1.3 Amicon YM30 Reg. Cell.

1.4 Amicon YM5 Reg. Cell.

1.5 Millipore PTGC PS

1.6 IRIS 3038TS PAN

1.7 CJT 35 PA

1.8 Millipore PTTK PS

1.9 Tubular membrane from

Weir-Enving (Pty) Paarl,

South Africa

PES

(continued)

Polymeric UF Membranes and Surfactants 261

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 49: Polymeric Ultrafiltration Membranes and Surfactants

(1.10) Millipore PLGC Reg. Cell.

(1.11) GM (Desal) Sulf. PES coated with an

ultrathin polyimide

(1.12) UPM-10 (Vladipor, Russia) Aromatic polysulfonamide

(5–20 nm)

(1.13) UPM-20 (Vladipor, Russia) Aromatic polysulfonamide

(5–20 nm)

(1.14) Millipore PTGC OMS10 PS

(1.15) XM-50 (Romicon Inc.) PVC-based plastic fiber

membrane co-polymer with

methylmethacrylate

(1.16) Spectra1 (Spectrum Medical

Industries, USA)

CA

(1.17) YM 1 (Amicon Co.) CA

(1.18) YM 3 (Amicon Co.) CA

(1.19) YM 10 (Amicon Co.) CA

(1.20) PM10 (Amicon Co.) PS

(1.21) Spectrum Anisotropic CA

(1.22) YM 30 (Amicon Co.) CA

(1.23) H1P10 43 PS

(1.24) H1P3 20 PS

(1.25) Millipore Cellulosic disk

(1.26) Millipore PCAC 04710 CA

(1.27) Spectrum C-5K CA

(1.28) Koch HFM-181 PVDF

(1.29) Amicon Co. PS

(1.30) Permionics India Ltd. Assymetric CA

(1.31) Millipore UFC4 Reg. Cell.

(1.32) C10 (Hoechst) Reg. Cell.

(1.33) C20 (Hoechst) Reg. Cell.

(1.34) C30 (Hoechst) Reg. Cell.

(1.35) PES 20 (Hoechst) PES

(1.36) Orelis 3028 PES

(1.37) UPM-50M Aromatic polyamide

(1.38) YM-1 (Amicon) polysaccharide

(1.39) Udel, P-1700 made in

the laboratory

PS

(1.40) Millipore PLBC CA

(1.41) Millipore PLCC Reg. Cell.

(1.42) Millipore PLTK Reg.Cell.

(1.43) IRIS 3028 Lot no. CGA:

969/3, 960/5, 969/3

(Tech-Sep)

PES

Appendix A. Continued.

Number Membrane trade name Membrane material

262 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 50: Polymeric Ultrafiltration Membranes and Surfactants

(1.44) Provided from Lyonnaise

des Eaux

CTA

(1.45) IRIS 3026 lot no. 955/2

(Tech Sep)

PS

(1.46) Millipore PCAPOM S10,

lot no. H2PM97948

CA

(1.47) Filtron PES 5,000 (Filtron,

Danvers, MA)

PES

(1.48) Filtron PES 50,000 (Filtron,

Danvers, MA)

PES

(1.49) NOVA2 disks (Filtron Inc.,

Danvers MA)

PES

(1.50) Udel-type polysulphone made

in the laboratory with

various surfactacts used in

casting solutions

PS

(1.51) FLOWGEN NM/003, NM010,

NM/100, OM/100, OM/994

PES

(1.52) Millipore PTHK PS

(1.53) Memtec MPS PS

(1.54) PU608 (PCI Membrane Systems) PS

(1.55) ES404 (PCI Membrane Systems) PES

(1.56) ES625 (PCI Membrane Systems) PES

(1.57) CM50 (Romicon Inc.) Polyvinyl chloride based plastic

co-polymer with acrylonitrile

fiber membrane

(1.58) PM500 (Romicon Inc.) PS

(1.59) IRIS 3026 PSS

(1.60) SM 14659 (Sartorius, Germany) PS

(1.61) SM 14549 (Sartorius, Germany) CTA

(1.62) Spectrum C-5K CA

(1.63) RGO3 (Osmonics Inc.) Made from anisotropic

acrylonitrile

(1.64) Spectra/Por-C10 Cellulose

(1.65) GR 61PP (DDS(Dow)) PS

(1.66) CA 600PP (DDS(Dow)) CA

(1.67) ETNA 2OA (DDS(Dow)) PVDF-modified

(1.68) FS 61PP (DDS(Dow)) PVDF-hydrophobic

(1.69) Millipore or amicon Cellulosic disk membranes

(1.70) P005F (Nadir) Not specified in paper

(continued)

Appendix A. Continued.

Number Membrane trade name Membrane material

Polymeric UF Membranes and Surfactants 263

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 51: Polymeric Ultrafiltration Membranes and Surfactants

6. APPENDIX B

(1.71) D5k Desal Not specified in paper

(1.72) 6M Desal Not specified in paper

(1.73) RGO3 Acrylanitril

(1.74) 0-VF Vinylidine flouride

(1.75) UM-05 (Amicon) Not specified in paper

(1.76) Pellicon 100 (Millipore) Diaflo membrane

(1.77) GE (Osmonics Inc.) PA-TFC

(1.78) GH (Osmonics Inc.) PA-TFC

(1.79) GM (Osmonics Inc.) PA-TFC

(1.80) AES5 (Osmonics Inc.) PES

(1.81) AES10 (Osmonics Inc.) PES

(1.82) YM10 (Millipore) Reg. Cell.

(1.83) YM03 (Millipore) Reg. Cell.

Appendix A. Continued.

Number Membrane trade name Membrane material

Chemical names and manufacturers of surfactant trade names

Number Tradename Company Chemical name

Nonionics

2.1 N5, N13, N100 ICI Australia Ltd. Nonyl phenol ethoxylates,

with average degree

of ethoxylation

n = 5, 13, 100

2.5 Triton X-100 BDH Chemicals Ltd.,

Fluka BioChemika

Octyl phenol ethoxylate,

n = 9–10

2.6 Pluronic F-108 BDH Chemicals Ltd. PEO-PPO-PEO

blockopolymer with

PPO/PEO ratio = 0.19

2.7 OMD-11 Kedzierzyn-Kozle

institute of heavy

organic synthesis

Oxyethylated methyl

dodecanoate with the

average degree of

oxyethylation equal

to 11

2.11 OP-10 Intercom, Ukraine Monoalkylphenol

polyethoxylate

264 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 52: Polymeric Ultrafiltration Membranes and Surfactants

2.14 OMD-n Institute of Heavy

Organic Chemicals,

Kedzieryzyn-Kozle,

Poland

Homologue oxyethylated

methyl dodecanoates

with average

oxyethylation degress

equal to 7, 9, 11, 14

2.15 Glucopon 215

CS UP

Henkel, Germany Alkylpolyglucoside

2.16 PONPE10 Tokyo Kasei Kogyo Nonyl phenol ethoxylates,

n = 10

2.17 IGEPAL

CO-660

Rhone-Poulenc

Corporation

Nonyl phenol ethoxylate,

n = 10

2.19 Pluronic P103,

P85, F108

Asahi Electrochemical PEO-PPO-PEO

blockcopolymer with

PPO/PEO ratio = 1.79,

0.77, 0.19 accordingly

2.20 C12EO6 Nikko Chemicals

(Japan)

n-dodecyl ethoxylate, n = 6

2.21 PONPEn As (2.16) Nonyl phenol ethoxylates,

n = 10, 15, 20

2.22 Pluronic P84 Asahi Denka

Kogyo K.K.

PEO-PPO-PEO

blockopolymer with

MW = 4200

2.23 Amiet 308 Kao Co. Polyoxyethylene stearic

amine with a total

amine value of 74–89

2.25 Brij 35 Fluka Biochemika Brij series are lauryl,

cetyl ethoxylates

manufacturer Atlas

Chemical Industries#

2.26 Igepal RC-520 Rhone-Poulence Dodecylphenol ethoxylate

2.27 Tween 80 ICI America Polyoxyethylene(20)

sorbitan monooleate

2.28 Span 80 ICI America Sorbitan monooleate

2.30 Tween 20 Atlas Chemical

Industries Inc., USA

Polyoxyethylene(20)

sorbitan monolaurate

2.31 Tween 60 Atlas Chemical

Industries Inc., USA

Polyoxyethylene(20)

sorbitan monostearate

2.32 Myrj 52 Atlas Chemical

Industries Inc., USA

Polyoxyethylene(40)

monostearate

(continued)

Appendix B. Continued.

Number Tradename Company Chemical name

Polymeric UF Membranes and Surfactants 265

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 53: Polymeric Ultrafiltration Membranes and Surfactants

2.33 Myrj 53 Atlas Chemical

Industries Inc., USA

Polyoxyethylene(50)

monostearate

2.34 Emulgin

C 1000

Henkel International Cetylstearyl ethoxylate,

n = 20

2.35 Emulgin

C 1500

Henkel International Cetylstearyl ethoxylate,

n = 30

2.36 C16E20 Sigma Co. Cetyl ethoxylate,

n = 20

2.37 C12E23 Sigma Co. Dodecyl ethoxylate,

n = 23

2.39 LDAO – N-Lauryl-N,

N-dimethylaminoxide

2.40 CnEm Nikko Polyoxyethyleneglycol

alkyl ether:

H(CH2)nO(CH2CH2O)mH,

where (n = 10, m = 8),

(n = 12, m = 5, 6, 7, 8),

(n = 14, m = 8),

(n = 16, m = 8)

2.48 DISFOAM

CE-120R

Nippon Fat and Oil

Co. Ltd

Oleyl ehoylate propoxylate

2.51 Emulgin ET 5 Henkel Alkyl ethoxylate,

C14–C18, n = 5

2.52 Genapol

UDD-079

Clariant Alkyl ethoxylate,

max. C11, n = 7

2.53 APG Plantacare

2000

Henkel Alkyl polyglucoside

2.58 NP-15 Nikko Chemicals Pentadecyl nonylphenol

ethoxylate

2.60 Witconol SN70 – Alkyl ethoxylates, C10 to

C12, n = 5

2.61 Triton X-102 Rohm and Haas Octylphenol ethoxylate,

n = 12

2.67 Triton1 Series Rhom and Haas Octylphenol ethoxylates,

n = 8, 10, 12

2.68 Dobanol1

series

Shell Alkyl ethoxylates where

(R = C9, n = 5),

(R = C10, n = 6),

(R = C11, n = 8)

Anionics

2.2 Aerosol

OT-100

Cyanamid Australia Sodium di-2-ethylhexyl

sulfosuccinate

Appendix B. Continued.

Number Tradename Company Chemical name

266 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 54: Polymeric Ultrafiltration Membranes and Surfactants

2.10 SDS Merk, BDH Gr. Brit.,

Katayama Chemical

Industries,

Sodium Dodecyl Sulfate

Fisher Scientific,

Katayama Chemical

Industries, Ltd.,

Aldrich Co.,

BioRad (USA)

2.13 Biosurfactants Produced in laboratory Surfactin from Bacillus

subtilis Rhamnolipids from

Pseudomonas aeruginosa

Sophorolipids from

Torulopsis bombicola

2.18 DCMA-3Na Synthesized by

spiculisprosic acid

anhdride (Penicillum

spiculisporum)

Trisodium salt of

2-(2-carboxyethyl)-3-

decyl maleic anhydride

2.29 STS Fluka Co Sodium Tetradecyl

Sulfate

2.44 NaOl Loba Feinchemie Sodium Oleate

2.45 NaSt Loba Feinchemie Sodium Stearate

2.46 HMSWP (I) Specialty Polymers

Division of National

Starch and

Chemical Ltd.

A copolymer of acrylic

acid and a long chain

ester salt

2.49 Teapon N 70 Henkel Sodium dodecyl

ethersulphate, n = 3

2.50 Marinal Paste

A 56

Henkel Sodium dodecyl sulphate

2.54 DOWFAX

8390

– –

2.55 STEOL CS

330

– –

2.56 SD-4 – –

2.62 Tengitol

NP-7

Union Carbide

cooperation

2.63 Tencid-HC-ST Henkel KGaA –

2.64 sodium salt of

DCA

Sigma Sodium deoxycholate

(continued)

Appendix B. Continued.

Number Tradename Company Chemical name

Polymeric UF Membranes and Surfactants 267

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 55: Polymeric Ultrafiltration Membranes and Surfactants

Cationics

2.8 CTAB Merk, Germany

Chemapol, Czech

Republic

Cetyltrimethylammonium

bromide

2.9 TTAB – Tetradecyltrimethyl-

ammonium bomide

2.12 CPC Aldrich, Sigma

Chemicals Co,

Wako Pure Chemical

Industries Ltd.

Cetylpyridinium cloride

2.24 CTAC – Cetyltrimethylammonium

Chloride

2.38 Catamine AB – Alkyldimethylohenyl-

ammonium chloride

A mixture of

[CnH2n + 1N(CH3)2-

CH2C6H5]Cl where

n = 10–18

2.41 DTAB – Dodecyltrimethylsm-

monium bromide

2.42 CPB Loba Feinchemie Cetylpyridinium bromide

2.43 DPB Loba Feinchemie Dodecylpyridinium

bromide

2.47 HMSWP(II) Specialty Polymers

Division of National

Starch and

Chemical Ltd.

A copolymer of

dimethyldiallyl-

ammonium chloride

and butyl acrylate

2.57 TTAC American Tokyo

Kasei, Inc.

n-tetradecyltrimethyl-

ammonium chloride

2.59 TBzC Aldrich Dimethylbenzyltetra-

decyllamonium chloride

2.70 MERQUAT

100

Calgon Corp. Poly(diallyldimethyl

ammonium chloride)

2.71 ODA TCI Chemicals octadecylamine

Anionics–Nonionics

2.3 Sandopan

D-TC

Sandoz Australia

Pty. Ltd.

Carboxylate of a synthetic

fatty alcohol with n = 7

2.4 Gardisperse

AC

Albright and Wilson

Australia Ltd.

Sodium salt of alkyl

phenoxypolyethylene

sulfate with n = 4

Appendix B. Continued.

Number Tradename Company Chemical name

268 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 56: Polymeric Ultrafiltration Membranes and Surfactants

ABBREVIATIONS

b-C Batch cell

BSA Bovine Serum Albumin

b-SC Batch stirred cell

C11-HQ 7-(4-ethyl-1-methyloctyl)-8-hydroxyquinoline

C4-PAN#

CA Cellulose Acetate

c-CF Continuous crossflow

CEUF Colloid-enhanced Ultrafiltration

Cm Concentration of the solute in the micelle (w/w)

CMC Critical Micelle Concentration

co Phenol concentration in bulk phase

cs Phenol concentration in micelle phase

CTA Cellulose Triacetate

Cw Concentration of the solute in the aqueous phase (w/w)

DCMA 2-(2-carboxyethyl)-3-decyl maleic anhydride

Dynel Poly co(acrylonitrile/vinyl chloride)

EDTA Ethylene-diamine-tetra-acetic acid

EO Ethylene Oxide

H Equilibrium parameter

HQ 8-Hydroxyquinoline

Km Distribution coefficient

Ks Equilibrium distribution constant

Lecithin based surfactants

2.65 M-C-Thin

lecithin

Lucas Meyer (Illinois) Based on Lecithin

2.66 Centrolex

F-lecithin

Lucas Meyer (Illinois) Based on Lecithin

2.69 Elmpur N-1 – Lecithin

(–): No available data;

n: degree of ethoxylation.

Appendix B. Continued.

Number Tradename Company Chemical name

Polymeric UF Membranes and Surfactants 269

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 57: Polymeric Ultrafiltration Membranes and Surfactants

LM-MEUF Ligand-Modified Micellar-Enhanced Ultrafiltration

MW Molecular Weight

MWCO Molecular Weight Cut-Off

NPE Nonylphenol polyethoxylate

Om Phenol concentration in the micellar phase

PA Polyamide

PAN Polyacrylonitrile

PAN#

PA-TFC Polyamide thin-film composite

PEO Polyethyleneoxide

PES Polyethersulfone

PEUF Polyelectrolyte-enhanced Ultrafiltration

PPO Polypropylene

PS Polysulfone

PSS Sulfonated polysulfone

PSS# Sodium poly (styrene sulfonate)

PVDF Polyvinylidenefluoride

Reg. Cell. Regenerated Cellulose

SDS Sodium Docecyl Sulfate

Sm Surfactant concentration as micelles

Sulf. PES Sulfonated polyethersulfone

%s Micelle mole fraction in the bulk

ACKNOWLEDGMENT

One of the authors, namely Ioannis Xiarchos, wishes to record his gra-

titude for financial support from the State Scholarship Foundation of Greece.

REFERENCES

Aboutaleb, A. E., Sakr, A. M., Elsabbagh, H. M., Abdeltrahman, S. I. (1977).

Application of the ultrafiltration technique for studying solubilized

systems. Arch. Pharm. Chemi, Sci. Ed. 5:105–110.

Adamczak, H., Szymanowski, J. (1999). Ultrafiltration of micellar solutions

containing phenols and oxyethylated methyl dodecanoates of various

hydrophilicity. Riv. Ital. Sostanze Grasse 76:557–564.

270 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 58: Polymeric Ultrafiltration Membranes and Surfactants

Ahmadi, S., Tseng, L. K., Batchelor, B. (1994). Micellar-enhanced ultra-

filtration of heavy metals using lecithin. Sep. Sci. Technol. 29(18):

2435–2450.

Aimar, P., Baklouti, S., Sanchez, V. (1986). Membranes-solute interactions:

influence on pure solvent transfer during ultrafiltration. J. Membr. Sci.

29:207–224.

Akay, G., Wakeman, R. J. (1993). Ultrafiltration and microfiltration of

surfactant dispersions—an evaluation of published research. Trans.

IChemE 71 Part A(4):411–420.

Akita, S., Yang, L., Takeuchi, H. (1997). Micellar-enhanced ultrafiltration of

gold (III) with nonionic surfactant. J. Membr. Sci. 133:189–194.

Ang, C. C., Abdul, A. S. (1994). Evaluation of an ultrafiltration method for

surfactant recovery and reuse during in situ washing of contaminated

sites: laboratory and field studies. Ground Water Monit. Remediat.

14(3):160–171.

Baek, K., Kim, B.-K., Cho, H.-J., Yang, J.-W. (2003). Removal character-

istics of anionic metals by micellar-enhanced ultrafiltration. J. Hazard.

Mater. B99:303–311.

Bhattacharyya, D., Bewley, L. J., Grieves, B. R. (1974). Ultrafiltration of

laundry waste constituents. J. WPFC 46(10):2372–2386.

Brink, S. E. L., Romijn, J. D. (1990). Reducing the protein fouling of

polysulfone surfaces and polysulfone ultrafiltration membranes:

optimization of the type of presorbed layer. Desalination 78:209–

233.

Byhlin, H., Jonsson, A. (2002). Influence of adsorption and concentration

polarisation on membrane performance during ultrafiltration of non-

ionic surfactant. Desalination 151:21–31.

Chen, V., Fane, A. G., Fell, C. D. J. (1992). The use of anionic surfactants for

reducing fouling of ultrafiltration membranes: their effects and

optimization. J. Membr. Sci. 67:249–261.

Cheryan, M. (1998). Performance and engineering models. Ultrafiltration

and Microfiltration Handbook. Technomi Publishing Company, Inc.,

pp. 116–133.

Cheryan, M., Rajagopalan, N. (1998). Membrane processing of oily

streams. Wastewater treatment and waste reduction. J. Membr. Sci.

151:13–28.

Choi, Y. C., Soo, L. B., Dong -Jin, L., Yutuka, I., Toshio, K. (1998). Micellar

enhanced ultrafiltration using PEO -PPO-PEO block copolymers. J.

Membr. Sci. 148:185–194.

De la Guardia, M., Cardells-Peris, E., Rubio-Morales, A. (1993). Preconcen-

tration of aluminium by micellar-enhanced ultrafiltration. Anal. Chim.

Acta 276:173–179.

Polymeric UF Membranes and Surfactants 271

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 59: Polymeric Ultrafiltration Membranes and Surfactants

Doulia, D., Gekas, V., Tragardh, G. (1992). Interaction behaviour in ultra-

filtration of nonionic surfactants. Part 1. Flux behaviour. J. Membr. Sci.

69:251–258.

Doulia, D., Tragardh, G., Gekas, V. (1997). Interaction behaviour in ultra-

filtration of non-ionic surfactants, Part II: static adsorption below CMC.

J. Membr. Sci. 123:133–142.

Dunn, R. O., Jr., Scamehorn, J. F. (1985). Use of micellar-enhanced ultra-

filtration to remove dissolved organics from aqueous streams. Sep. Sci.

Technol. 20(4):257–284.

Dunn, R. O., Jr., Scamehorn, J. F. (1987). Concentration polarization effects

in the use of micellar-enhanced ultrafiltration to remove dissolved

organic pollutants from wastewater. Sep. Sci. Technol. 22(2 and 3):

763–789.

Fane, G. A., Fell, D. J. C. (1987). A review of fouling and fouling control in

ultrafiltration. Desalination 62:117–136.

Fane, A. G., Fell, C. D. J., Kim, K. J. (1985). The effect of surfactant

pretreatment on the ultrafiltration of proteins. Desalination 53:37–55.

Fillipi, B. R., Scamehorn, J. F., Christian, S. D., Taylor, R. W. (1998). A

comperative economic analysis of copper removal from water by

ligand-modified micellar-enhanced ultrafiltration and by conventional

solvent extraction. J. Membr. Sci. 145:27–44.

Fillipi, B. R., Brant, L. W., Scamehorn, J. F., Christian, S. D. (1999). Use of

micellar-enhanced ultrafiltration at low surfactant concentrations and

with anionic-nonionic surfactant mixtures. J. Colloid Interface Sci.

213:68–90.

Flemming, H. C., Schaule, G. (1988). Biofouling on membrane—a micro-

biological approach. Desalination 70:95–119.

Forstmeier, M., Goers, B., Wozny, G. (2002). UF/NF treatment of rinsing

water in a liquid detergent production plant. Desalination 149:175–

177.

Gibbs, L. L., Scamehorn, J. F., Christian, S. D. (1987). Removal of n-alcohols

from aqueous streams using micellar-enhanced ultrafiltration. J.

Membr. Sci. 30:67–74.

Goers, B., Hintzsche, E., Schneider, J., Gunter, W. (1998). Reduction of

water consumption and wastewater treatment in detergent production.

Henkel-Ref., Int. Ed. 34:43–49.

Goers, B., Mey, J., Wozny, G. (2000). Optimised product and water

recovery from batch-production rinsing waters. Waste Manag.

20:651–658.

Guo, W., Uchiyama, H., Tucker, E. E., Christian, S. D., Scamehorn, J. F.

(1997). Use of polyelectrolyte-surfactants complexes in colloid-

enhanced ultrafiltration. Colloids Surf., A. 123:695–703.

272 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 60: Polymeric Ultrafiltration Membranes and Surfactants

Gzara, L., Dhahbi, M. (2001). Removal of chromate anions by micellar-

enhanced ultrafiltration using cationic surfactants. Desalination

137:241–250.

Ha-Tran, H., Minh, W., Dianne, W. E. (1998). The relationship between

membrane cleaning efficiency and water quality. J. Membr. Sci. 145:99–

110.

Hebrant, M., Boursine, A., Tondre, C. (1994). Complexation kinetics and

ultrafiltration removal of nickel (II) by long-chain alkoxypicolinic acids

and alkoxypyridine aldoximes in micellar media. Langmuir 10:3994–

4000.

Herbrant, M., Francois, N., Tondre, C. (1998). Comparison of micellar ultra-

filtration and solvent extraction for the removal of copper ions from

aqueous solutions. Colloids Surf., A 143:77–88.

Hebrant, M., Provin, C., Brunette, J.-P., Tondre, C. (2001). Micellar extraction

of europium (III) by a bolaform extractant and parent compounds derived

from 5-pyrazolone. Colloids Surf., A 181:225–236.

Hong, J.-J., Yang, M.-S., Lee, C. H. (1994). Continuous seperation of phenol

from an aqueous stream using micellar-enhanced ultrafiltration

(MEUF). J. Chem. Eng. Jpn. 27(3):314–320.

Hong, J.-J., Yang, M.-S., Lee, H.-C., Choi-Kook, Y., Kajiuchi, T. (1998).

Ultrafiltration of divalent metal cations from aqueous solution using

polycarboxylic acid type biosurfactant. J. Colloid Interface Sci.

202:63–73.

Huang, L., Sornasundaran, P. (1996). Changes in micelles composition and

monomer concentration in mixed surfactant solutions. Langmuir

12:5790–5795.

Huang, C.-Y., Batchelor, B., Koseoglu, S. S. (1994a). Crossflow surfactant-

based ultrafiltration of heavy metals from waste streams. Sep. Sci.

Technol. 29(15):1979–1998.

Huang, C.-Y., Batchelor, B., Koseoglu, S. S. (1994b). Surfactant-enhanced

ultrafiltration of heavy metals from waste streams with pilot-scale

system. Hazard. Waste Hazard. Mater. 11(3):385–395.

Ismael, M., Tondre, C. (1992). Kinetically controlled separation of nickel(II)

and cobalt(II) using micelle-solubilized extractant in membrane

processes. Langmuir 8:1039–1041.

Ismael, M., Tondre, C. (1993). Extraction and back-extraction of metal ions

in micellar systems using ultrafiltration: thermodynamic and kinetic

aspects. J. Colloid Interface Sci. 160:252–257.

Jadhav, R. S., Verma, N., Sharma, A., Bhattacharya, K. P. (2001). Flux and

retention analysis during micellar enhanced ultrafiltration for the

removal of phenol and aniline. Sep. Purif. Technol. 24:541–557.

Jonsson, S.-A., Jonsson, B. (1991). The influence of nonionic and ionic

Polymeric UF Membranes and Surfactants 273

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 61: Polymeric Ultrafiltration Membranes and Surfactants

surfactants on hydrophobic and hydrophilic ultrafiltration membranes.

J. Membr. Sci. 56:49–76.

Jonsson, C., Jonsson, S.-A. (1995). The influence of degreasing agents at car

washes on the performance of ultrafiltration membranes. Desalination

100:115–123.

Juang, R. S., Xu, Y. Y., Chen, C. L. (2003). Separation and removal of metal

ions from dilute solutions using micellar-enhanced ultrafiltration. J.

Membr. Sci. 218:257–267.

Kammermeyer, K., Hwang, S. T. (1984). Introduction. In: Krieger, R., ed.,

Membranes in Separations. Vol. 7. Techniques of Chemistry, Malaba,

pp. 1–7.

Kaplan, M. C., Jegou, A., Chaufer, B., Baudry-Rabiller, M., Michalsky, M.

C. (2002). Adsorption of lysozyme on membrane material and cleaning

with non-ionic surfactant characterized through contact angle measure-

ments. Desalination 146:149–154.

Kim, J.-K., Sun, P., Chen, V., Wiley, D. E., Fane, A. G. (1993). The cleaning of

ultrafiltration membranes fouled by protein. J. Membr. Sci. 80:241–249.

Kim, C. K., Kim, S. S., Kim, M. D. W., Lim, J. C., Kim, J. J. (1998).

Removal of aromatic compounds in the aqueous solution via micelles

enhanced ultrafiltration: Part 1. Behavior of nonionic surfactants. J.

Membr. Sci. 147:13–22.

Klepac, J., Simmons, D. L., Taylor, R. W., Scamehorn, J. F., Christian, S. D.

(1991). Use of ligand-modified micellar-enhanced ultrafiltration in the

selective removal of metal ions from water. Sep. Sci. Technol.

26(2):165–173.

Korzystka, B., Adamczak, H., Sobczynska, A., Szymanowski, J. (2003).

Ultrafiltration characteristics of colloid solutions containing oxyethy-

lated methyl dodecanoate, hexadecyltrimethylammonium bromide and

selecyed phenols and pollutants. Colloids Surf., A 212:175–183.

Kozlov, V. S. (2002). Ultrafiltration of aqueous catamine AB solutions, (short

communications). Colloid J. 64(4):519–521.

Krovvidi, R. K. (1992). Ultrafiltration studies with surfactant solutions.

Downstream Process, Biotechnol. Proc. Int. Semin., 1991. New Delhi,

India: Tata McGraw Hill, pp. 111–121.

Krovvidi, R. K., Muscat, A., Stroeve, P., Ruckenstain, E. (1984). Transport of

monomer surfactant molecules and hindered diffusion of micelles

through porous membranes. J. Colloid Interface Sci. 100(2):497–505.

Lee-Osborne, I. W., Schechter, R. S., Wade, W. H. (1983). Monomer-

micellar equilibrium of aqeous surfactant solutions by the use of

ultrafiltration. J. Colloid Interface Sci. 94(1):179–186.

Maartens, A., Jacobs, P. E. (2002). UF of pulp and paper effluent: membrane

fouling-prevention and cleaning. J. Membr. Sci. 209:81–92.

274 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 62: Polymeric Ultrafiltration Membranes and Surfactants

Maartens, A., Swat, P., Jacobel, E. P. (2000). Membrane pretreatment: a

method for reducing fouling by natural organic matter. J. Colloid

Interface Sci. 221:137–142.

Makayssi, A., Lemordant, D., Treiner, C. (1993). Structural change and

micelles composition in aqueous solutions of binary cationic surfactant

mixture as deduced from cross-flow ultrafiltration experiments.

Langmuir 9:2808–2813.

Markels, J. H., Lynn, S., Radke, C. J. (1994). Micellar ultrafiltration in an

unstirred batch cell at constant flux. J. Membr. Sci. 86:241–261.

Markels, J. H., Lynn, S., Radke, C. J. (1995a). Cross-flow ultrafiltration of

micellar surfactant solutions. AIChE J. 41(9):2058–2066.

Markels, J. H., Lynn, S., Radke, C. J. (1995b). Design of micellar-enhanced

ultrafiltration. Ind. Eng. Chem. Res. 34:2436–2449.

Mawson, J. A. (1997). Review: regeneration of cleaning and processing

solutions using membrane technologies. Trends Food Sci. Technol.

8:7–12.

McBain, J. W., Kawakami, Y., Lucas, H. P. (1933). The ultrafiltration of soap

solutions. J. Am. Chem. Soc. 55:2762–2769.

Mizoguchi, K., Fukui, K., Yanagishita, H., Nakane, T., Nakata, T. (2002).

Ultrafiltration behavior of a new type of non-ionic surfactant around

the cmc. J. Membr. Sci. 208:285–288.

Morel, G., Ouazzani, G. A., Lachaise, J. (1997). Surfactant modified ultra-

filtration for nitrate ion removal. J. Membr. Sci. 134:47–57.

Mulligan, C. N., Yong, R. N., Gibbs, B. F. (2001). Heavy metal removal from

sediments by biosurfactants. J. Hazard. Mater. 85:111–125.

Myers, D. (1988a). Surfactants in solution: micellization and related asso-

ciation phenomena. Surfactant Science and Technology. VCH Pub-

lishers, Inc. pp. 82–107.

Myers, D. (1988b). The organic chemistry of surfactants. In: Surfactant

Science And Technology. VCH Publishers, Inc. 31–74.

Nwuha, V. O., Noworyta, A. (1993). Enhancement of flux by surfactant

treatment of UF membrane. Environ. Prot. Eng. 19(1–4):54–65.

Pontie, M., Chasseray, X., Lemordant, D., Laine, J. M. (1997). The streaming

potential method for the characterization of ultrafiltration organic

membranes and the control of cleaning treatments. J. Membr. Sci.

129:125–133.

Pontie, M., Bourlier-Durand, L., Lemordant, D., Laine, J. M. (1998). Control

fouling and cleaning procedures of UF membranes by a streaming

potential method. Sep. Purif. Technol. 14:1–11.

Popescu, G., Nechirof, Gh., Olteanu, M. (1994). The influence of surfactants

on the wetting of hydrophobic microporous surfaces. Colloids Surf., A

90:1–8.

Polymeric UF Membranes and Surfactants 275

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 63: Polymeric Ultrafiltration Membranes and Surfactants

Premauro, E., Prevot Bianco, A. (1995). Solubilization in micellar systems.

analytical and environmental applications. Pure Appl. Chem.

67(4):551–559.

Premauro, E., Prevot Bianco, A., Zelano, V., Hinze, W. L., Viscardi, G.,

Savarino, P. (1994). Preconcentration and selective metal ion sepa-

ration using chelating micelles. Talanta 41(8):1261–1267.

Reiller, P., Lemordant, D., Moulin, C., Beacaire, C. (1994). Dual use of

micellar-enhanced ultrafiltration and time-resolved laser-induced

spectrofluorimetry for the study of uranyl exchange at the surface of

alkylsulfate micelles. J. Colloid Interface Sci. 163:81–86.

Reiller, P., Lemordant, D., Hafiane, A., Moulins, C., Beaucaire, C. (1996).

Extraction and release of metal ions by micellar-enhanced ultrafiltra-

tion: influence of complexation and pH. J. Colloid Interface Sci.

177:519–527.

Rosen, M. J. (1989a). Characteristics features of surfactants. In: Surface and

Interfacial Phenomena. 2nd ed. John Wiley & Sons, pp. 1–32.

Rosen, M. J. (1989b). Solubilization by solutions of surfactants: micellar

catalysis. Surface and Interfacial Phenomena. 2nd ed. John Wiley &

Sons, pp. 170–184.

Sabate, J., Pujola, M., Centelles, E., Galan, M., Llorens, J. (1999).

Determination of equilibrium distribution constants of phenol between

surfactant micelles and water using ultrafiltering centrifuge tubes.

Colloids Surf., A 150:229–245.

Sabate, J., Pujola, M., Llorens, J. (2002). Comparison of polysulfone and

ceramic membranes for the separation of phenol in micellar-enhanced

ultrafiltration. J. Colloid Interface Sci. 246:157–163.

Sabatini, D. A., Harwell, J. H., Hasegawa, M., Knox, R. (1998). Membrane

processes and surfactant-enhanced subsurface remediation: results of a

field demonstration. J. Membr. Sci. 151:87–98.

Scamehorn, J. F., Harwell, J. H. (1988). Surfactant-based treatment of aqueous

process streams. In: Wasan, D. T., Ginn, M. E., Shah, D. O., eds.

Surfactants in Chemical/Process Engineering. Vol. 28. Surfactants

Science Series, New York: Marcel Dekker, pp. 78–98.

Scamehorn, J. F., Sherril, C. D., Dawlat, E. -S. A., Uchiyama, H. (1994).

Removal of divalent metal cations and their mixtures from aqueous

streams using micellar-enhanced ultrafiltration. Sep. Sci. Technol.

29(7):809–830.

Schott, H. (1964). Ultrafiltration of nonionic detergent solutions. J. Phys.

Chem. 68(12):3612–3619.

Scott, K. (1996). Overview of the application of synthetic membrane

processes. In: Scott, K., Hughes, R., eds. Industrial Membrane Se-

paration Technology. Blackie Academic & Professional, pp. 15–17.

276 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 64: Polymeric Ultrafiltration Membranes and Surfactants

Singh, R. (1996a). Removal of volatile organic compounds by ultrafiltration.

Desalination 104:203–224.

Singh, R. (1996b). Investigation of ultrafiltration rejection of surfactant

micelles by dynamic light scattering. Sep. Sci. Technol. 31(9):1351–

1356.

Speaker, L. M. (1993). Status of surface modification for minimizing dirt

retention: organized monomolecular assemblies. Crit. Rev. Surf. Chem.

pp. 219–246.

Sriratana, S., Scamehorn, J. F., Chavadej, S., Saiwan, C., Christain, S. D.,

Tucker, E. E. (1996). Use of polyelectrolyte-enhanced ultrafiltration to

remove chromate from water. Sep. Sci. Technol. 31(18):2493–2504.

Syamal, M., De, S., Bhattacharya, K. P. (1997). Phenol solubilization by cetyl

pyridinium chloride micelles in micellar enhanced ultrafiltration. J.

Membr. Sci. 137:99–107.

Szymanowski, J. (2000). Surfactant enhanced non-classical extraction. J.

Radioanal. Nucl. Chem. 246(3):635–642.

Tadros, Th.F. (1984). Preface. Surfactants. Academic Press Inc: London,

pp. v–vii.

Talens-Alesson, F. I., Adamczak, H., Szymanowski, J. (2001). Micellar-

enhanced ultrafiltration of phenol by means of oxyethylated fatty acid

methyl esters. J. Membr. Sci. 192:155–163.

Tondre, C., Son, G.-S., Hebrant, M., Scrimin, P., Tecilla, P. (1993). Micellar

extraction: removal of copper(II) by micelle-solubilized complexing

agents of varying HLB using ultrafiltration. Langmuir 9:950–955.

Tzeng, Y.M. Tsung, H. Y. Chang, Y. N. (1999). Recovery of thuringiensin

with cetylpyridinium chloride using micellar-enhanced ultrafiltration

process. Biotechnol. Prog. 15:580–586.

Uchiyama, H., Christian, S. D., Tucker, E. E., Scamehorn, J. F. (1994).

Solubilization and separation of p-tert-butylphenol using surfactant

complexes in colloid-enhanced ultrafiltration. J. Colloid Interface Sci.

163:493–499.

Urbanski, R., Goralska, E., Bart, H.-J., Szymanowski, J. (2002). Ultrafiltration

of surfactant solutions. J. Colloid Interface Sci. 253:419–426.

Wakeman, R. J., Akay, G. (1994). Flux decay and rejection during micro- and

ultra-filtration of hydrophobically modified water-soluble polymers. J.

Membr. Sci. 91:145–152.

Yamagiwa, K., Kobayashi, H., Ohkawa, A., Onodera, M. (1993a). Membrane

fouling in ultrafiltration of hydrophobic nonionic surfactant. J. Chem.

Eng. Jpn. 26(1):13–18.

Yamagiwa, K., Kobayashi, H., Ohkawa, A. (1993b). Effect of antifoam

fouling on solute rejection by ultrafiltration membrane. J. Chem. Eng.

Jpn. 26(1):18–20.

Polymeric UF Membranes and Surfactants 277

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012

Page 65: Polymeric Ultrafiltration Membranes and Surfactants

Yoon, J., Yoon, Y., Amy, G., Cho, J., Foss, D., Kim, H.-T. (2003). Use of

surfactant modified ultrafiltration for perchlorate (ClO4� ) removal.

Water Res. 37(9):2001–2012.

Yurlova, L., Kryvoruchko, A., Kornilovich, B. (2002). Removal of Ni(II)

ions from wastewater by micellar-enhanced ultrafiltration. Desalination

144:255–260.

Zydney, A. L. (1996). Solute and solvent transport through semipermeable

membranes. Microfiltration and Ultrafiltration/Principles and Appli-

cations. New York: Marcel Dekker, Inc. p. 297.

278 Xiarchos et al.

Dow

nloa

ded

by [

Uni

vers

ity o

f G

uelp

h] a

t 01:

21 1

2 O

ctob

er 2

012