polinsar forest parameters retrieval

31
PolInSAR Forest Parameters Retrieval Results using the ESA ALOS-PALSAR Prototype Processor Marco Lavalle 1-3 , D.Solimini 1 , E.Pottier 2 , Y.-L. Desnos 3 , N. Miranda 3 , B. Rosich 3 , M. Santuari 3 1 DISP, Tor Vergata University, Rome, Italy 2 IETR UMR CNRS 6164, University of Rennes 1, Rennes, France 3 European Space Agency, ESA-ESRIN, Frascati, Italy PolInSAR Workshop 26-31 Jan 2008

Upload: others

Post on 04-Jun-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PolInSAR Forest Parameters Retrieval

PolInSAR Forest Parameters RetrievalResults using the ESA ALOS-PALSAR Prototype Processor

Marco Lavalle1-3, D.Solimini1, E.Pottier2, Y.-L. Desnos3 , N. Miranda3, B. Rosich3, M. Santuari3

1DISP, Tor Vergata University, Rome, Italy2 IETR UMR CNRS 6164, University of Rennes 1, Rennes, France

3European Space Agency, ESA-ESRIN, Frascati, Italy

PolInSAR Workshop 26-31 Jan 2008

Page 2: PolInSAR Forest Parameters Retrieval

Outline

Introduction• PolInSAR basic idea and inversion approach

Forest parameters estimation• Optimum PolInSAR coherence• Coherent model analysis• Processing and observations of ALOS-PALSAR data

Results of preliminary forest height inversion

Conclusions

2

Page 3: PolInSAR Forest Parameters Retrieval

IntroductionPolarimetric SAR Interferometry

3

PolInSAR basic idea (Cloude, Papathanassiou 1997)InSAR coherence has different sensitivity according to polarizationTo discriminate among different components of the vertical structure of vegetation

ALOS PALSARL-band46 days revisit time

Key observableComplex degree of coherence γ~

Page 4: PolInSAR Forest Parameters Retrieval

IntroductionForest parameters inversion from SAR data: general scheme

4

SAR / PolSAR / PolInSARdata processing

Observables extractionσ H/A/α γ

Parameters inversion

Forward model

SAR data

Forest parametersestimation

PolinSAR technique

Page 5: PolInSAR Forest Parameters Retrieval

IntroductionRandom Volume over Ground (RVoG) Model

5

( )⎥⎦

⎤⎢⎣

⎡−

++= vv

zjkRVoG w

we z γμ

μγγ ~1)(1

)(~~ 0 r

r

)(zρ γ~vh

)(wrμ

Vegetation height:

Vertical reflectivity function:

Gound/Volume Ratio:

1) Line fitting in the complex plane

2) Vegetation bias removal

3) Height and extinction estimation

Forward model

Inversion procedure

vγ~

gγ~

)~Im(γ

)~Re(γ

Page 6: PolInSAR Forest Parameters Retrieval

6

SMALL BASELINE (<200m)

? ?

LARGE BASELINE (>800m)

High decorrelation

vγ~

gγ~ gγ~

vγ~

Line fitting fails

)~Im(γ

)~Re(γ

)~Im(γ

)~Re(γ

RVoG inversion with PALSAR dataMain issue

Page 7: PolInSAR Forest Parameters Retrieval

Proposed approachForest parameters inversion from SAR data: general scheme

7

PolInSARdata processing

Optimum coherence(max magnitude difference)

γ

Parameters inversionScattering centre difference with DEM

correction and equivalent vertical wavenumber

Forward model

SAR data

Forest parametersestimation

)~Im(γ

)~Re(γ

φΔ

Page 8: PolInSAR Forest Parameters Retrieval

Proposed approachCoherent PolInSAR Scattering Model

8

PolSARProSIM• Maxwell-based scattering model (Williams, 2006)• Fully coherent PolInSAR simulator• Only target decorrelation

Input Parameters• Acquisition geometry (satellite altitude, baseline, inc. angle)• Forest (height, density, tree type)• Soil (roughness, moisture content, terrain slope)

Simulated scenario:• ALOS/PALSAR• pine forest

range

azim

uth

Page 9: PolInSAR Forest Parameters Retrieval

Proposed approachPolInSAR optimum coherence

9

Coherence region in the complex plane calculated through the field of values F of the normalized coherency matrix

Different Optimisation algorithms (SVD, numerical radius, phase diversity, etc.)Iteration for the maximization of magnitude difference

Forest height = 20 m

∗∗ ==⎯→⎯−∈ joptioptjiFji

γφγφγγγγ

~,~~~max21,

gγ~

vγ~

Example of coherence boundary

HH

HV

VH

VV

2/12212

2/111

−− Ω TT

Page 10: PolInSAR Forest Parameters Retrieval

Proposed approachForest height estimation

10

Simple scattering phase center difference• physically related to the problem

Scattering phase center positions•Depends on many factors (acquisition geometry, forest parameters, soil properties)

Main challenges1)where are located exactly the scattering phase centers while varying the polarization?2)how to cope with temporal decorrelation?

)~Im(γ

)~Re(γ

φΔ

coherence region

Page 11: PolInSAR Forest Parameters Retrieval

Model AnalysisCoherence vs Vegetation Height

11

Simulated scenario• ALOS/PALSAR• Baseline 100 m

vφ~

Page 12: PolInSAR Forest Parameters Retrieval

Model AnalysisCoherence vs Local Terrain Slope

12

Page 13: PolInSAR Forest Parameters Retrieval

Model AnalysisGround-to-Volume ratio

13

Page 14: PolInSAR Forest Parameters Retrieval

Model AnalysisCoherence vs Forest Density

14

vφ~

Page 15: PolInSAR Forest Parameters Retrieval

Effect of the temporal decorrelationCoherence region

15

)~Im(γ

)~Re(γ

φΔ

low temporal decorrelation

high temporal decorrelation

SAME PHASE WIDTH

The phase mean value of the estimated coherencecan be used for the inversion

?

Page 16: PolInSAR Forest Parameters Retrieval

Processing chainGeneral Scheme

16

PolSARPro SimulatorPolSARPro Simulator

PALSAR PolInSARdataset

Input parameters

Comparison and Forest Parameters InversionComparison and Forest Parameters Inversion

Quantitative Estimation

PolInSAR phase optimization

PolInSAR phase optimization

Polarimetric Calibration and Co-registration

Polarimetric Calibration and Co-registration

DEMPolInSAR phase

optimizationPolInSAR phase

optimization

treesheight slope density

Page 17: PolInSAR Forest Parameters Retrieval

Results using ALOS‐PALSAR data

17

Page 18: PolInSAR Forest Parameters Retrieval

Results – ALOS PALSAR

18

2 PALSAR PolInSAR acquisitions• Germany / Traunstein area• Descending pass• Baseline 210 m

Pauli‐2Pauli‐1

Page 19: PolInSAR Forest Parameters Retrieval

ALOS PALSAR processing

19

Old distortion matrix removed and newcalibration matrices applied (Shimada, IGARSS’07)

Faraday rotation correctionFaraday rotation correction

SLC CoregistrationSLC Coregistration

Flat Earth RemovalFlat Earth Removal

PALSAR RAW DATA L1.0

Ellipsoid WGS-84No digital elevation model

ESA PALSAR Prototype ProcessorESA PALSAR Prototype Processor

Coarse and fine coregistration (including spectral shift and filtering)

Interferogram generationInterferogram generation

Faraday rotation estimated using the method of Bickel and Bates

Polarimetric CalibrationPolarimetric Calibration

Page 20: PolInSAR Forest Parameters Retrieval

0

π

ResultsFlattened interferogram

20

HH interferogram HV interferogram

Page 21: PolInSAR Forest Parameters Retrieval

Results – ALOS PALSARMax coherence level

21

lake

forests

fields

urban

coherence level

Pauli-1

Page 22: PolInSAR Forest Parameters Retrieval

0

π

ResultsOptimum interferogram

22

Min PhaseMax Phase

Maximization of the magnitude difference

( )γ~Re

( )γ~Im

Page 23: PolInSAR Forest Parameters Retrieval

0 m 80 m

Results – ALOS PALSAREstimation of phase centers height

23

Height map

z

gvv k

hφφ −

=

No residual topographyLow coherence values not masked

Simple difference between optimized phase centers:

π

Page 24: PolInSAR Forest Parameters Retrieval

DEM in slant range geometry

24

SRTM DEM SAR geometry

Slope

-20% -10% 0% 10% 20%

Terrain slopeMean = 2%Min/Max = ± 30%

Page 25: PolInSAR Forest Parameters Retrieval

Height correctionEffect of the terrain slope

25

( )z

gslopevv k

hφφφ −−

=

-4 m

15 mNot linear dependence of optimized coherence on terrain slope (from EM model analysis)

Correction map due to terrain slope

Page 26: PolInSAR Forest Parameters Retrieval

Height correctionEffect of the volume penetration

26

Dependence of optimized coherence on vegetation height

Page 27: PolInSAR Forest Parameters Retrieval

Phase center height mapEstimation of forest height

27

( )α

φφφφ

z

gpenetrslopevv k

h−−−

=

Dependence of coherence on terrain slope (from EM model)

0 m 80 m

Height map

eqz

z

kk

=αpenetrφ

Page 28: PolInSAR Forest Parameters Retrieval

Phase center height mapEstimation of forest height

28

Amount of height correction depends on the local terrain slope and forest height

T33 elements

Page 29: PolInSAR Forest Parameters Retrieval

Proposed approach VS RVoGPreliminary forest parameters inversion

29

PolSARProSIM approach RVoG inversion

ProCon

Page 30: PolInSAR Forest Parameters Retrieval

Conclusions & Future works

30

Forest parameters retrieval approach– Uses a PolInSAR coherent EM model (PolSARProSIM)– Optimum interferograms are based on the maximization of the magnitude

difference among coherence values– Preliminary inversion based on compensation of terrain slope effects and volume

wave penetration

Application to PALSAR data– Temporal decorrelation is the main limitation of PolInSAR technique– Preliminary inversion has promising results

Future challenges– Development of a full inversion procedure including other scene parameters– Integration of SAR/PolSAR information

Page 31: PolInSAR Forest Parameters Retrieval

Proposed approachPolInSAR optimum coherence

31

Coherence region in the complex plane calculated through the field of values F of the normalized coherency matrix 

Different Optimisation algorithms (SVD, numerical radius, phase diversity, etc.)Iteration for the maximization of magnitude difference

Forest height = 5 m Forest height = 20 m

HH

HV

VH

VV

∗∗ ==⎯→⎯−∈ joptioptjiFji

γφγφγγγγ

~,~~~max21,

gγ~

vγ~

vγ~

gγ~

Example of coherence boundary

HH

HV

VH

VV

2/12212

2/111

−− Ω TT