polar cap emission: modeling acceleration and beam geometry

17
Polar Cap Emission: Modeling Acceleration and Beam Geometry A.K. Harding NASA Goddard Space Flight Center Collaborators: M. Baring, I. Grenier, P. Gonthier, A. Muslimov, B. Zhang Polar cap acceleration & Pairs Electric field screening – Limits on acceleration High-energy luminosity Geometry of g-ray and radio beams

Upload: others

Post on 12-Mar-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Polar Cap Emission: ModelingAcceleration and Beam Geometry

A.K. HardingNASA Goddard Space Flight Center

Collaborators: M. Baring, I. Grenier, P. Gonthier, A. Muslimov, B. Zhang

• Polar cap acceleration & Pairs

• Electric field screening – Limits on acceleration

• High-energy luminosity

• Geometry of g-ray and radio beams

Pulsar Acceleration and Pairs

WB

LightCylinder

W . B = 0

WB

LightCylinder

W . B = 0

B

e+

e-

g

e-

Polar Cap Acceleration and Pair Cascades

Polar cap Outer gap

Polar Cap Acceleration

• What’s new?

• GR inertial frame dragging Muslimov & Tsygan 1992

• Inverse Compton pairs Zhang et al 1997, Harding & Muslimov 1998

Acceleration limit?

EB

P

z P unsaturated

P saturated

r I

MRg

|| .

/. ,

,=

¥

RST=

-

- -10

13

5 106 12

0 15

1 2

3 1

3

esu k

k

The Pair Formation Front

z0g - e-

PFF-

NS SURFACE

e-min

min

S z R S Sa p0 0= = +min[ ( ) ( )]min ming e

• Curvature Radiation

• Resonant ICS

• Non-resonant ICS

e grCR

hmc c

= 32

3bgz

P B

P B0

11 1412

4 7

7 412

10 3

12

168ª

RST-

-.

.

.

/ /

/

e gRICS crB B= 2 b gz

P B

P B0

2 312

1

5 412

3 20 01

7

17ª

RST-

-.

/

/ /

e gNRICS =

zP B

P B0

2 312

2 3

5 412

10 01

3

RST-

-.

/ /

/

10-3 10-2 10-1 100 101

B0/B

cr

10-6

10-5

10-4

10-3

10-2

10-1

100

P (s)

x = 0.7

CR, ICS Pair Front

CRICS, T6 = 0.5

ICS, T6 = 5.0ICS, T6 = 1.0

e- e+

e- e+

e- e+

e- e+

e- e+

e-p

Screening region

E||(r)

E||=0

Onset of e+e-

to neutron star surface

Polar cap model:Electric field screening & Polar cap

heating

Maximum fraction of returning positrons:

f zGJ

GJ

GJ z

++= =

-

rr

r rr

kk2

3

2 10

0( )

L f z nprim+ +=max ( ) &F 0

Pair Source Function

0 500 1000 1500

x (cm)

0.000

0.005

0.010

0.015

N pai

r / p

rimar

y

0.0e0 5.0e3 1.0e4 1.5e4 2.0e4 2.5e4

x (cm)

0.0e0

5.0e-5

1.0e-4

1.5e-4

N pai

r / p

rimar

y

Your text

First generation

All generations

Curvature radiation

Inverse Compton radiation

0 100 200 300 400 500 600 700

x (cm)

0.000

0.002

0.004

0.006

0.008

0.010

r/r G

J

EII

|Dr/rGJ|

r/rGJ

0

500

1000

1500

2000

eEII /m

c2

Screening E||

0 4000 8000 12000 16000

x (cm)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

r/r G

J

EIIDr/rGJ

r/rGJ

0

20

40

60

80

eEII /m

c2

Curvature radiation

Inverse Compton radiation

Voltage at the Pair Formation Front and g-ray Luminosity

L z n z n R cprim GJ PCg pª =F F( ) & ( )0 02

• Curvature Radiation

• Resonant ICS

• Non-resonant ICS

F( )( / )

.

.&

/

/

/ /

//

z VP

P

LP B

P BE

o

rot

=RST

fi =RST

UVWµ

-

-

-

102

100 3

01

13 61 14

1 4

3227 14

126 7

9 412

1 2

t

g erg / s

F( )

.

.&

/ /

/ /

/

/ //

z VP

P

LP

P BE

o

rot

=RST

fi =RST

UVW/µ

-

-

-

-

103

2

100 3

0 05

117 6

61 2

5 461 4

3113 6

11 4121 2

1 2

t

t

g erg / s

F( )

.

.&

/ /

/

/ /

//

z VP

P

LP B

P BE

o

rot

=RST

fi =RST

UVW/µ

-

-

-

-

102

100 3

01

111 2

61 6

3 4

3013 6

122 3

11 412

1 2

t

g erg / s

Nearly constant!!

1030 1031 1032 1033 1034 1035 1036 1037 10381030

1031

1032

1033

1034

1035

1036

Hig

h E

nerg

y Lu

min

osity

(er

g/s)

L ~ Lsd

Spin-Down Luminosity (erg/s)

1055

-52

Gem

inga

0656

+14 19

51+

32 Vel

a17

06-4

4 1509

-58

Cra

b

Lpred

CR pair death lineJ0

218+

4232

1046

-58

OFF-BEAM

Altitude of lastpairs

ON-BEAM

Synchrotron

Curvature

Geometry of PC g-ray beams

W B

Radio Cone

On-beam g-ray ConeRadio Core

Geometry radio and g-ray beams

Vela pulsar radio profile

(Johnston et al. 2001)

Radio profiles of EGRET pulsars

Unidentified EGRET sources in the GouldBelt

• Distances 100-300 pc

• Luminosities:

• Possible origin: Accreting BHs? X

Accreting NSs? X

O or WR stars? X

Radio-quiet pulsars?Maybe

Grenier 2000

L( )> ª ¥ -100 6 1030 1MeV erg s

Simulation of off-beam and on-beamg-ray pulsars

(Perrot, Grenier & Harding 2002)

Summary

Polar cap models

What works ….

• Predicted luminosity

• High-energy spectral turnovers

• Off-pulse (off-beam) emission

Problems …

• Predicted (standard) size of g-ray beam

• Geometry of radio and g-ray beams

L Erotg µ & /1 2