points quantiques et ferromagnétismecoherent non- local effects in disordered mesoscopic devices...

40
Points quantiques et ferromagnétisme T. Kontos Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris France Experiment :C. Feuillet-Palma, T. Delattre J.-M. Berroir, B. Plaçais, G. Fève,D.C. Glattli. Acknowledgements : A. Thiaville, S. Rohart, H. Jaffrès, G.E.W. Bauer, A. Fert, X. Waintal, C. Mora, M. Brune, J.M. Raimond. Theory : A. Cottet

Upload: others

Post on 24-Jan-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Points quantiques et ferromagnétisme

    T. KontosLaboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris

    France

    Experiment:C. Feuillet-Palma, T. DelattreJ.-M. Berroir, B. Plaçais, G. Fève,D.C. Glattli.

    Acknowledgements : A. Thiaville, S. Rohart, H. Jaffrès, G.E.W. Bauer,A. Fert, X. Waintal, C. Mora, M. Brune, J.M. Raimond.

    Theory: A. Cottet

  • Electron spin manipulation in nanocircuits

    J. Petta et al. Science ‘05K.C. Nowack et al. Science ‘07

    Spin manipulation in confined conductors

    Orthogonal (real or effective) magnetic fields needed to perform coherent manipulationsDetection via transport measurement

    Use of specific material properties (spin-orbit, nuclear spins…)Can one use ferromagnetic hybrid nanostructures to implement

    spin manipulation/detection setups?

  • Circuit Quantum Electrodynamicswith electronic spins confined in nanoconductors?

    Detection via dispersive shift of cavity resonance (not transport)

    Manipulation and coupling using cavity QED techniques

    Inclusion of electronic spins in superconducting coplanar waveguide cavities (similar to superconducting Qbits)

    Use of intrinsic nanoconductor properties possible (spin-orbit, hyperfine interaction)But ferromagnetic contacts can be used to “engineer” spin/photon coupling

  • Phase coherent spin dependent phenomena in nanoscale conductors

    1. Direct (first) experimental demonstration of orbitally phase coherent spintronics (multiterminal spin transport experiment)2. Use of this coupling for spin quantum bit with ferromagnetic contacts for circuit QED

    Spin dependent quantum interference expected + electronic phase directlycoupled to local electric field

    OUTLINE

    pL pRσ,eσ,e

    Resonance condition for θ=0 [θ= π] :WW

    RWW

    L ,][,2 σσ ϕϕδ −++0 Zjπj ∈= ,2

    Lke=0δ+

    Directly coupled to local electric field

  • A magnetic tunnel junction…

    VSD

    HcL < HcRHcRHcL

    R

    H

    Jullière’s model

    )(

    2222

    2

    ↓↑

    ↓↑

    +∝

    NNTG

    NNTG

    P

    AP

    2

    2

    12

    PP

    RRRTMR

    P

    PAP

    −=

    −=

    Spin signalTMR

    Phase of carriers completely ignored

    ↓↑

    ↓↑

    +−

    =NNNN

    P

  • Spin FET behavior in SWNTs

    Oscillations of TMR as a function of gate voltage.

    Spin dependent resonant tunneling mechanism (quantitative theory A. Cottet et al.)

    S. Sahoo, TK et al., Nature Phys., 1, 99 (2005), H.T. Man et al., Phys. Rev. B R 73, 241401 (2006), A. Cottet, TK et al. Semicond. Sci. Tech. 21, S78 (2006), A. Cottet and M.-S. Choi PRB ‘06

    -0,4 -0,2 0,0 0,2 0,4

    162

    164

    166

    168

    170

    R(kΩ

    )

    B(T)

    T= 1.86KVG= +4.328VL=500nm

    -0,4 -0,2 0,0 0,2 0,4

    2300

    2400

    2500

    R(

    kΩ)

    B(T)

    T= 1.86KVG= +4.302VL=500nm

    Both signs of TMR can be observed.

    Phase-coherent phenomena particularly visible in multi-terminal devices (non-local effects)

    VSD

    VGCG

  • Quantum coherent transport vs spintronics

    Coherent non-local effects in disordered mesoscopic devices and non-local spin dependent voltages in disordered incoherent conductors

    « Theorist’s blob » experiment

    C.P. Umbach et al., APL, 50, 1289 (1987)F.D. Jedema et al., Nature, 416, 713 (2002)See also M. Johnson and R. H. Silsbee, PRL 55, 1790 (1985)

    « Non-local » spin injection

    Nanotubes ideally suited for the study of the interplay of orbitalcoherence and spin transport

  • Quantum coherent transport vs spintronics

    h/e modulations due to Aharonov-Bohm effect in the outer loop (not in the classical path)

    « Theorist’s blob » experiment

    C.P. Umbach et al., APL, 50, 1289 (1987)

    Small effect here (1 e2/h over 500 e2/h)

  • Quantum coherent transport vs spintronics

    Hysteretic switching of non-local voltage as a function of magnetic field

    F.D. Jedema et al., Nature, 416, 713 (2002)See also M. Johnson and R. H. Silsbee, PRL 55, 1790 (1985)

    « Non-local » spin injection

  • Quantum coherent transport vs spintronics

    Few channel regime in NTs make quantum effect a priori prominent.

    « Theorist’s blob » experiment

    C.P. Umbach et al., APL, 50, 1289 (1987)F.D. Jedema et al., Nature, 416, 713 (2002)See also M. Johnson and R. H. Silsbee, PRL 55, 1790 (1985)

    « Non-local » spin injection

  • Device geometry

    Transverse anisotropy for magnetization of NiPd stripesNon-local geometry for charge and spin transport

    MFM, S. Rohart, A. Thiaville (LPS,Orsay)

    Side gates in addition to back gate to control locally the sections of NTC. Feuillet-Palma et al. PRB 81, 115414 (2010).

  • Nanotubes based multi quantum dots

    e- e-

    Reservoir L Reservoir R

    Vsd

    VSG1VSG1=0 and VSG2=0

    e-

    VSG2

    e-

  • Nanotubes based multi quantum dots

    VSG1=0 and VSG2non zero

    e- e-

    Reservoir L Reservoir R

    Vsd

    VSG1

    e-

    VSG2

    e-

  • Nanotubes based multi quantum dots

    VSG1non zero and VSG2=0

    e- e-

    Reservoir L Reservoir R

    Vsd

    VSG1

    e-

    VSG2

    e-

  • Nanotubes based multi quantum dots

    VSG1 non zero and VSG2 non zero Resonances on lignes VSG1 +α VSG2 =cste

    e- e-

    Reservoir L Reservoir R

    Vsd

    VSG1

    e-

    VSG2

    e-

  • Non-local voltage signal

    -100 -50 0 50 100

    -0.2

    0.0

    0.2VSG2 = -6.0 VVSG1 = -8.76 VVBG = -11.772 V

    V 34(µ

    V)

    H(mT)Tartan pattern for non-local voltage as a function of side gates

    Characteristic hysteretic switching of non-local voltage

    H

    1 2 3 4

    Leads to oscillations of non-local voltage in P config as a function of back gatesee also G. Gunnarsson, J. Trbovic, C. Schönenberger PRB 77, 201405(R) (2008)

    A priori interplay between non local spin transport and orbital coherence

  • MG controlled by remote side gate

    Sign change in MV specific to coherent case

    N-F Non local Conductance F-N Non local Voltage

    Anomalous hysteresis in the current

    Non local spin transitor action in G and V

    -100 -50 0 50 100

    0,375

    0,4000,600

    0,625 VSG2= -0.8V

    VSG2= -9.4V

    V 34(µ

    V)H(mT)

    -100 -50 0 50 1000.005

    0.010

    VSG2= -0.8V

    VSG2= 4.8V

    G 12(e

    ²/h)

    H(mT)

    H

    1 2 3 4

    MV=V34P-V34APMG=1-G12AP/G12P

    G12AP

    G12PV34P

    V34AP

  • Resistor network model ?

    VV3 V4

    R1

    R1

    R4

    R4

    ↑3R↑2R

    ↓3R↓2R

    R12

    R12

    R23

    R23

    R34

    R34

    ↑2r ↑2r

    ↓2r ↓2r ↓3r↓3r

    ↑3r↑3r

    r1r1

    r1 r1 r4 r4

    r4 r4

    N-F current independent of magnetization relative orientations (also foundIn more sophisticated models e.g. Takahashi & Maekawa).

    Non-local spin signal obtained because spin asymmetry

    Model conventionally used in incoherent spin transport

    N NFF

  • Multi-terminal scattering appoach

    The scattering approach provides an explanation for both non local signals in V and G.

    0 2 4 6

    -0.01

    0.00

    ∆VM

    R (%

    )

    ∆VP / V

    δgS

    180

    210

    240

    δBg=3π

    0 2 4 60.0

    0.5

    1.0

    1.5

    GM

    R (%

    )

    GPh

    /e2

    δSg

    -5

    0

    δBg=3π

    A. Cottet, C. Feuillet-Palma and TK Phys. Rev. B 79, 125422 (2009)

    Difficult to obtain N-F current magnetic configuration dependent in the diffusiveIncoherent regime

  • Spectroscopy of conductance

    Interference fringes observed in the conductance

    Multiple Fabry-Perot electronic interferometers physics

    Energy scale correspond to one NT section here

    C. Feuillet-Palma et al. PRB 81, 115414 (2010).

  • Magnetic configuration dependent phase shift

    Modulations of GP due to Fabry-Perot physics

    Gate modulations of MG phase shifted

    Orbitally coherent spintronics

    Quantitative agreement with scattering theory

    The orbital phase depends on magnetic configuration !

    Theory : A. Cottet, C. Feuillet-Palma and TK Phys. Rev. B 79, 125422 (2009)

    -30

    -20

    -10

    0

    -10 -5 0 5 100.005

    0.010

    0.015

    MG

    (%)

    G P(e

    2 /h)

    VSG2 (V)

    C. Feuillet-Palma et al. PRB 81, 115414 (2010).

  • The theorist‘s blob experiment for spintronics

    No classical analog of such a spintronic device (no classical signal)

    Exact analog of Aharonov-Bohm loop outside classical path

    We should observe a « spin signal » between the two N’s

    Aharonov-Bohm phase

    Spin dependent geometric phase

  • The theorist‘s blob experiment for spintronics

    No signal at 4.2 K for G12 but signal at 1.65K !

    Signal both at 4.2K and 1.65K (same amplitude) between the two F‘s

    H

    1 2 3 4

    G

    H

    1 2 3 4

    G

    C. Feuillet-Palma et al. in preparation

    (preliminary)

  • Temperature dependence of spin signal

    MR between the two ferromagnets essentially constant

    Sharp decrease of MR between normal electrodes

    Accounted by theory with no adjustment parameters essentiallyC. Feuillet-Palma et al. in preparation

    MGNN

    MGFF

    (preliminary)

  • Conclusion part I

    Observation of local gate controlled “non local” magnetoresistance in mutli-terminal SWNT devices

    Multi-terminal devices are multi-electronic interferometers

    Anomalous magnetoresistance between a N contact and a F contact in conductance due to delocalization of electronic waves

    Observation of spin signals with no classical analog

    Orbitally phase coherent spintronics

    Behaviour qualitatively and quantitatively reproduced within the scattering approach

    A new way to couple the orbital and spin degree of freedom

  • Cavity Quantum Electrodynamics:from optical systems to superconducting chips

    A. Wallraff et, Nature 431, 162 (2004).

    Superconducting quantum bit coupled to a superconducting coplanar waveguide

    cavity

    M. Brune et al., Phys. Rev. Lett. 76, 1800 (1996).

    Jaynes-Cummings Hamiltonian

    Rydberg atom coupled to asuperconducting mirror cavity

  • Circuit Quantum Electrodynamicswith spins confined in nanoconductors?

    Basic requirements:

    - Strong spin/photon coupling g- Local spin manipulation

    There exists schemes based on spin-orbit coupling or hyperfine interactionNowack et al. (2007), Trif et al. PRL 101, 217201 (2008), Burkard et al. (2006), etc…

    Our motivation:

    -A scheme free from external magnetic fields

    -A strongly tunable g

    +∆

    =21

    21 112ggJ

    First observation with superconducting qubits: J. Majer et al., Nature 449, 443 (2007)

    rωω −=∆)2(1

    01)2(1

  • Effective Zeeman fields in nanoconductors with ferromagnetic contacts

    A very general effect seen in:

    - Thin superconducting layers Tedrow et al., Phys. Rev. Lett. 56, 1746 (1986)

    - InAs quantum dots and nanowires Hamaya et al, APL 91, 022107 (2007)L. Hofstetter et al., arXiv:0910.3237

    - Single Wall Carbon nanotubes Sahoo et al, Nature Phys. 1, 99 (2005).Hauptmann et al, Nature Phys. 4, 373 (2008).

    Here: quantum dots contacted to thick ferromagnetic insulators (FIs)

    hybridization of the dot orbitals with the first atomic layers of the FIs

  • General principle of the ferromagnetic spin qubit

    A. Cottet and TK, arXiv:1005.1901

  • Spin/photon coupling

    Transverse effective field due to the (gate controlled) spatial modification of the double dot eigenstates

    (1)

    Dots L and R controlled by local gates

  • Hamiltonian of the ferromagnetic spin qubit

    H =^

    D is a function of VgL and VgR and also possibly Vac

    2δL(R) : effective Zeeman splitting in dot L(R)

    We assume δL = δR = δ for simplicity

  • Stability diagram and energy levels of the circuit

    t=0

    dashed lines: t=0

    θ=π/6

    A. Cottet and TK, arXiv:1005.1901

  • Stability diagram and energy levels of the circuit

    t=0

    dashed lines: t=0, full lines: t=2δ/3

    θ=π/6

    A. Cottet and TK, arXiv:1005.1901

  • Stability diagram and energy levels of the circuit

    θ=π/6

    t=0

    dashed lines: t=0, full lines: t=2δ/3

    DON=2.8δν01=7.7 GHzν12=4.4 GHz

    2δ=32µeV

    A. Cottet and TK, arXiv:1005.1901

  • Spin/photon coupling

    DON=2.8δ, gON=5.6 MHz

    DOFF=20δ, gOFF=13 kHz

    gON/gOFF=450π/6

    Rabi oscillation possible using an oscillating Vac

    Spin/photon coupling g tunable with D and θ

    θ=π/6, 2δ=32µeV, Vrms=2µeV

  • Evaluation of decoherence processes

    Example of a Single Wall Carbon Nanotube Based Setup

    Description with a Dirac-like hamiltonianwith realistic parameters

    Several decoherence sources:

    Spin orbit coupling T1~ ms [Bulaev et al., PRB 77, 235301 (2008)]

    Low frequency charge noise

    PhononsSpecific to our setup

    ∆ K-K‘ ~3meV [Liang (2002), Sapmaz (2005)]

  • Dephasing due to low-frequency charge noise

    ν01~2δL

    Charge noise mediated by fluctuations of D

    Charge noise mediated by fluctuations of δL

    Estimates using a semiclassical approximation and extrapolating the charge noiseamplitude given in Herrman et al., Phys. Rev. Lett. 99, 156804 (2007)

    π/6

    Chemical potential of dot L (meV)

  • Relaxation due to phonons

    Suspended carbon nanotube:

    Non-suspended carbon nanotube:

    Stretching vibrons confined in dots L and R

    λ=100 nm

  • Expected performances

    Non-suspended carbon nanotube setup:

    DON=2.8δ, gON =5.6MHz, T2=1.2µs strong coupling regime reached

    DON=20δ, gOFF=13kHz, T2=2ms quantum register at the OFF point

    A generic setup Our setup does not require spin-orbit coupling or hyperfine interaction

    A relatively robust setup δ can be adjusted by choosing the dot size and the active dot orbital,regardless of the FI contact properties

    These performances may be further enhanced with suspended nanoconductors

    A. Cottet and TK, arXiv:1005.1901

  • Conclusion part II

    New scheme for manipulating single electronic spins in nanocircuits

    Prediction of observation of strong coupling regime for realistic parameters

    Theoretical proposal based on orbitally phase coherent spintronics

    Possibility to explore cavity QED with electronic spins

    Maybe a new platform to study decoherence in strongly correlatedsystems ?

    Strongly tunable coupling g + quantum register behavior

    A. Cottet and TK, arXiv:1005.1901

    C. Feuillet-Palma et al. PRB 81, 115414 (2010)

    A. Cottet, C. Feuillet-Palma and TK Phys. Rev. B 79, 125422 (2009)

    Diapositive numéro 1Diapositive numéro 2Diapositive numéro 3Diapositive numéro 4Diapositive numéro 5Diapositive numéro 6Diapositive numéro 7Diapositive numéro 8Diapositive numéro 9Diapositive numéro 10Diapositive numéro 11Diapositive numéro 12Diapositive numéro 13Diapositive numéro 14Diapositive numéro 15Diapositive numéro 16Diapositive numéro 17Diapositive numéro 18Diapositive numéro 19Diapositive numéro 20Diapositive numéro 21Diapositive numéro 22Diapositive numéro 23Diapositive numéro 24Diapositive numéro 25Diapositive numéro 26Diapositive numéro 27Diapositive numéro 28Diapositive numéro 29Diapositive numéro 30Diapositive numéro 31Diapositive numéro 32Diapositive numéro 33Diapositive numéro 34Diapositive numéro 35Diapositive numéro 36Diapositive numéro 37Diapositive numéro 38Diapositive numéro 39Diapositive numéro 40