point processes brillinger

Upload: mp113

Post on 07-Aug-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 point processes brillinger

    1/45

    s ta t i s t i ca l Inference

    fo r

    Stationary Point.

    Processes

     

    by David R.

    B r i l l i n g e r

    The

    University

    of C a lifo rn ia , Berkeley

    I n t

    rOd ct

    ion

    This

    work i s

    divided into

    t h r e e

    p r i n c i p a l

    sections

    which a l s o

    correspond to th e

    t h r e e

    l e c t u r e s

    given a t Bloomington.

    The t o p i c s cO ver, some u s e f u l

    point process

    parameters and the i r p r o p e r t i e s ,

    estimation

    o f time

    domain parameters

    and th e

    estimation

    o f

    f r e ~ ~ e n e

    domain

    parameters.

    The

    work

    may

    be

    viewed

    as

    an

    extension o f

    some

    o f

    th e

    r e s u l t s in

    Cox and Lewis

      19.66, 1972) to apply   ~

    vector-vall1ed

    processes and

    to higher order

    parameters.   t w i l l proceed

    a t a

    h eu ris tic le v el

    r a t h e r than formal.

    A

    fo rm al ap pro ach

    may

    be

    f o ~ n

    in

    Da.ley

    and ·Vere-Jones   1972) fo r example.

    The

    notation J f w i l l be used

    fo r J

    f x ) d ~ x , U being

    Lebesgue

    meas·ure. A

    general

    lemma

    concernin g

    th e

    e ~ -

    istence of

    c o n s i s t e n t

    estimates

    is

    given in Section

    IV.

     

    Point Process

    Parameters

    Consider i so l a t e d points of

    r

    d i f f e r e n t types

    randomly

    d i st r i b u t e d along th e

    r e a l l ine

    R.

     

    Prepared

    while

    th e

    alxthor was a M i l l e r

    Research

    Professor

    and

    with

    th e

    support

    o f

    N.S.F.

    Grant

    GP-

    31411.

    55

  • 8/20/2019 point processes brillinger

    2/45

    D VID R.  RILLINGER

      x ~ p l e s that w

    have

    in mind include,

    the

    times

    of

    heart

    beats or

    earthqua.kes

    in

    the

    case

    r

    =

    1,

    the

    times

    of nerve

    pulses

    released by a network of r

    nerve

    eel1s

     

    the

    case of general r . Let

    Na A

    denote

    the

    number of points

    of

    type

    a fa l l ing

    in

    the

    inter val A   R and

    le t

    Na(t)

    =

    Na(O,tJ for

    a

    =

    l , ••• , r .

    1 .

    Suppose

    Pr ob

    [point

    of type a in   t , t +h]}  lp a t h

    as

    h   0 • Pa(t)

    provides

    a

    measure of

    the intensity

    with which

    points

    of type a occur near t .

     

    can

    often conclude that

    2.

    Suppose,

    for t

    1

    f

    t

    2

    .

    Prob

    [point of

    type

    a

    in

      t

    1

    ,

    t

    l

    + h

    l

    J and point

    of

    type

    b

    in

      t

    2

    ,

    t

    2

    +

    h

    2

    J}

    as h

    l

    , h

    2

    IO·Pab(t

    1

    , t

    2

    )

    provides ameas ure

    of the

    intensi ty with w aich points of

    type

    a occur near ·

    t

    l

    and

    simultaneously points of type b occur

    near

    t

    2

    A related useful measure is provided by

    Prob[point

    of type a

    in   t1 , t l+h

    J I point

    of

    type

    b

    a t

    t

    2

    }

    56

  • 8/20/2019 point processes brillinger

    3/45

    fo r

    a

      b

    STATISTICAL INTERFERENCE

    as h 0

    0

    The r a t i o

    P ab t

    1

    , t

    2

    ) / P b t

    2

    )

    i s seen to

    provide a measure of

    the

    i n t e n s i t y with which type

    a

    point,s

    occ ur:

    near

    t

    1

    , given t h a t

    t h e r e

    i s

    a type

    b

    point a t

    t

    2

    In th e

    case t h a t type a

    points are

    distribu·ted

    independently of

    type

    b

    point

    s ,

    Pa b t

    1

    , t

    2

    ) =

    P a t

    1

    )P b t

    2

    ) ,

    and

    th e r a t i o   e o ~ e s

     Pa t

    1

    ) , th e f i r s t order i n t e n s i t y .

    The

    function

    Pa b t

    1

    , t

    2

    ) i s

    l i k e the

    second

    order

    moment runction

    of

    ordinary time

    s e r i e s ; however in

    p r a c t i se i t

    seelns

    t o be

    ml ch more u s e f u l as

    i t

    has a

    f u r t h e r

    i n t e r p r e t a t i o n as

    a

    p r o b a b i l i t y .

    Often

    i t

    i s

    true

    t h a t

    t t

    = J J

    P a b t l , t2 )d tld t2

    o 0

    t t

    = fa f o Pa b t l , t 2 ) d t l d t 2  

    t

    J

    Pa t)

    d t

    fo r a

    =

    b

    o

    3. Suppose next t h a t ,

    f o r

     t1,

    •• •

    , t

    k

    d i s t i n c t an d

    v 1 , . o . , v

    r

    non-negative i n t e g e r s wit.h

    S urn

    k

    Prob

    [type

    a

    p o i n t

    in

    each

    of

      t . ,

    t

     

    h . ] ,

    J J J

    j = L v 1 , ••• , ~ v and a = l , ••• ,r }

    b

  • 8/20/2019 point processes brillinger

    4/45

    D VID   RILLINGER

    Prob{type a . point in   t . , t .+h . l j = l , ••• ,k}

     

    J

    J J  

    - PaI ak(tI , · · · , tk) hI · · ·h

    k

    as

    h1,

    •••

    ,h

    k

    0;

    k

    =

    1,2 .0

    • •

      The function

    P (\)1)· · · (\)r)

    is

    ca.lled   pr.o.d-uct d E l ~ 1 - - i · : t - y  o·f or4er k.

    Such

    a function was

    introduced by

    S.

    O Rice in

    a

    pa rt icu la r s it ua ti on and by A.   ~ k r i s h n n in a

    general s i t u a t i o ~ ,

    see

    Srinivasan

     1974 . No claim

    i s

    made that

    the

    probabili ty in

    (1) always .depends

    on

    hI

    ••. ,h

    k

    in such

    a direct

    manner. Rather i t is

    the

    claim tha t

    this

    happens

    for

    an

    interest ing

    class

    of e x a ~ p l e s . B r ~ l l i n g e r  1972 gives an expression

    for

    4.

    The Erobabili ty g e ~ ~ r a t i n g f u n c t i o ~ a l of the

    process

    ~ t = [Nl(t) , ••• ,Nr(t)} i s defined

    by

    E[exp[J log

    Sl(t) dNl(t)  

    J log Sr(t) dNr(t)}]

    for

    suitable

    functions

    Sl

    ••

    o ~ r .

    Writing

    i t

    as

    r

     er

    {I

      I; ( f)-I)}]

    a:=l   type a

    point

    a

    and

    expanding,

    we can see

    that i t

    is given by

    58

  • 8/20/2019 point processes brillinger

    5/45

    STATISTICAL INTERFERENCE

    where we define

     

    0

    v

    ~

    t   • • •

    t

    v -

     

    This

    fUnctional

    is of use in computing probabi l i t ies

    of

    int r st for

    the

    process. For example

    sett ing

    ~ a t

    =

    z

    for

    t

    E A

    a

    =

     

    for

    t

     

    and

    deterlnining

    the coefficient

    of

    j l

    j r

    z l  

    we

    see

    that

    v1-j l  

    •••

     

    v   jo

     -1 r r

     2

    e m y l ikewise determine condit ional product

    densit ies such as

    59

  • 8/20/2019 point processes brillinger

    6/45

    E

    \ ~ j

    r r

    D VID

    R

    RILLINGER

      Yl) • • • Yr)

    p   t

    l

     ···

    , t

    k

    N

    l

     A = j l

    •••

    ,Nr A) =

    jr )

    1

    ••

    0)/ 2)

    These

    c onditiona l

    product densities

    are

    u s e f u l

    in

    s ta t i s t i ca l inference. They provide likelihood

    functions and also

      o ~ the

    i n v e s t i g a t i o n

    of the

    ,distribution

    of

    s ta t is t ics

    c onditiona lly   the

    observed

    number

    of

    p o i n t s .

      Were

    N A

    =

    0 ,

    one

    wouldn t want

    to

    claim much.)

    The integrated product

    densities

    give the

    factoria l moments o f

    the

    process. For e.xaJ.ilple,

    if N v) =

    N N-l)

     

    N - v + l ) , then

      \)1) • • • \ r)

    E Nl A)

    )

    •• oN

      A) ) =

     

    \ 1 r \)r k

    A

    Also

    of

    use are

    the c umulant d e n s i t i e s ,

      \)l) · · · \)r)

    q   t1 ,

    ••• , t

    k

    )

    given by

      3

    60

  • 8/20/2019 point processes brillinger

    7/45

    ST TISTIC L INTERFERENCE

    They measure

    the degree of

    dependence

    of

    increments

    of the process a t d if fe r e n t t

    j

    Certain o th er c on di ti on al

    product

    d e n s i t i e s

    are

    of us e . We mention

    Prob{type a point in each of

    ( t j , t j+h jJ ,

    j

    =

      vb

     

    vb and a = 1,.g. ,rtNl{O}   l} /

    b a

    bsa

    and f o r rrl, ••• ,rr

    k

     

    Prob{type

    1 point in

      t , t + h ] \  

    po in ts of

    type

    1 , v

    2

    p oints of type 2 , • • • a t

     

    1

    ,

     

    2

    ,

    • • •

    ,  

    k

    respectively}/h

     

    l

    +l v

    2

      · · · v

    - p r ( t ,

     1 1

    '1 2 ' ' ' . '  r

    k

     

    vI)g·· v

    r

     

    P  rr1, ••• ,rr

    k

     

    I f a l l points up to t a re in clud ed, this becomes the

    complete i n t e n s i t y

    lim Prob{type 1 point in   t , t + h ] ,  (u) , u

    s

    ~

    5.

    Certain

    p r o b a b i l i t i e s and mOlnents

    a re of

    s p e c i a l

    in teres t . We

    l i s t

    some o f

    t h e s e .

    61

  • 8/20/2019 point processes brillinger

    8/45

    DAVID R BRILLINGER

      i)

    th e renewal fUnctions

    Uab. t

    =

    E{Na t)

     

    Nb

    {

    =

    I}

    fo r

    t

    >

    0

    t

      J Pab u,O) du / Pb O a b=l • ••  r

    o

    The renewal

    density is Pab t,O)/pb O)

      i i th e forward

    recurrence

    time d is trib u tio n

    is

    given by

    Prob[event

    before or

    a t

    t}

    = Prob[time of

    next event

    from

    0 is

      t}

    1 - Prob[N t)   O}

    1 _ ~ l lV r

    p v)

    \ J ~

    \

    6 t]\J

      i i i

    th e survivor function or d is trib u tio n of

    l ifetime)

    Prob[time of

    next event

    from 0 is >

    t

     

    N[O}

    l}

    Prob{N t)   0 \ N{O} I}

    = p O -l r ~ ~ V S p V+l O,o.o

      ~ •   O,t]\J

    1 - F t) say.

      iv) the hazard function

    or force

    of mortali ty

    ~ t

    =

    f t / l

    - F t)).

     

    Prob {point in   t , t+h ) t N

    {O}

     

    N t)

    =

    O}/h

    where

    F t)

    is

    given

    in

      i i i

    and

    f t is

    i t s

    derivative.

    62

  • 8/20/2019 point processes brillinger

    9/45

    STATISTICAL

    INTERFERENCE

    (v) the variance time curve

    var

    N(t)

    = E/N(t)(N(t) - 1) + E N(t) - E

    N(t))2

    t t

    (2)

    t

    =

    J J

    p   t

    l

    , t

    2

    )dt

    l

    dt

    2

    + J p(t)

    dt

    a a t a

      p

      t

    dt)2

    a

    (vi) the Palm functions

    Ql(j1, •••

    , j r

    ; t

    =

    prob{N

    1

    ( t)

    =

    j1, · ·o,N

    r

    (t)

    =

    j r

    I

    NI{a}

    =

    I}

    vl-j l+· ·o+v

    - j

    = 1 (-1) r r

    j1

    J

    ••• j r P1(6)v   (v

    l

    -3

    1

      ••• (vr-J

    r

      J

    1 1 r r

     

    1

    +1 v

    2

      · · · v

    r

    p r

    J

    v

    1

    +••• +v

    r

    (0 •• 0

    (0,  

    6.

    We

    next

    indicate the

    values of

    a few

    of

    these

    parameters for some examples

    of in teres t .

    Example

    1 .

    The Poisson process with mean intensity

    p(t)oThe

    numbers

    of

    points in dis joint intervals

    I

    1

    ,o

    •• , I

    k

    are independent Poisson variates with

    means P I l , .o . ,P I

    k

     

    respectively where

    P(I) =

    J

    p(t) dt.

    Here

    I

    and so

    G[E]

    = exp[ (s(t)

    - 1

    p(t)

    dt}

    Prob

    {N A

    j} =

      P(A)j

    exp{-P(A)}

    J •

     k

    I

     

    _

    jJ

     

    t l , . oo , t

    k

    I

    N A

    =

    J

    = Z j k l ~ o

    ••

     

    63

  • 8/20/2019 point processes brillinger

    10/45

    DAVID R BRILLINGER

    I f

    pet)

    =

    stp( t)

    dt and N (s),

    s E R is

    a

    o

    Poisson

    process

    with mean

    intensity

    1, then the

    general

    process

    may be represented

    as

    N t = N (P(t))

    Example

    2.

    The

    doubly

    stochastic

    Poisson process

    o

    Suppose

    [ x l t ) , ~

    •• , x r t ) ~ t E R+, is a process with

    non-negative sample

    paths,

    moments

    m v1 · · · vr t1 , · ·· , t

    k

      =

    E{Xl(tl)· · ·Xl(tvl)

    X2(tvl+l)· · ·Xr(tk)}

    and moment generating functional

    M[Sl,o

    •• ,9

    r

    J = E[exp[J8

    l

    ( t )x

    1

    ( t )dt

     

    jer(t)Xr(t)d t})

    Suppose af ter a real izat ion

    of

    th is

    process is

    obtained, independent Poissons with mean intensi t ies

    x1(t ) , ••• ,xr t a re genera ted . Then

     v1 o.o v

    r

      v1 ·o. v

    r

     

    p   t

    1

    ,

    •••

    , t

    k

      m (t1,o •• , t

    k

     

    G [ ~ l , · . o ~ r J

    =

    M[Sl-1 •••  S r-

    1

    ]

    = E[exp{ (Sl(t)-1)x1(t)dt+•••

    }]

    I f Xa(t) =   xa(t)dt,

    and

    Nl s , •••

    , N ~ s

    are

    independent Poissons with mean intensi t ies

    1,

    then

    th is

    process may

    be

    represented as

    64

  • 8/20/2019 point processes brillinger

    11/45

    ST TISTI L

    INTERFEREN E

    N:L .Xl t))

    ••

    8 , N ~ X r t ) )

    This

    process

    seems

    to

    be

    u s e fu l fo r

    checking out

    general

    formulas

    t h a t

    have b ee n d ev el op ed , such

    as

      2)

    an d (3),

    among

    other things.

    EXaJ;llple 3: The c l u s t e r

    process.

    Suppose N

     

    t) , ••• ,

    N ~ t )

    i s

    a primary process of c llls te r

    centers

    with

    p r o b a b i l i t y

    generating

    functional

    G [ ~ l , •• o ~ r J .

    Suppose t h a t

    secondary points are gener.ated

    in

    independent

    c l u st e r s

    centered

    a t

    th e

    points

    of

      •

    Suppose t h a t th e p g f

    o

    fo r c l u s t e r points o f

    type

    a

    centered a t t

    is

    G a [ s l t J .

    Then

    th e p g f

    o

    of the o v e r a l l process is

    G [ ~ l

    , l ; r J

    = E r n l ; l [ c r ~

    J ~ k J   n E ; r [ c r ~ +   J ~ k J }

    j k

    j k

    =

    E { ~ G l [ g l l c r ~ J

    •••

    ~

    G r [ g r l c r ~ J }

    J J

    =   [ l [ S l \ · J · · · r [ ~ r \ · J J

    I f r =

    2 ,

    and

    th e f i r s t

    component

    is th e primary

    process and

    th e

    second component

    corresponds

    to

    c lu s te rs of one member, then we have a process of

    the

    character

    of the

    G G oo

    queue.

    Example ·4. The renewal process.

    Here

    th e

    points

    correspond to th e

    par t ia l

    sums of a random walk

    with

    p os itiv e s te ps .

    Suppose r = 1 , t

    l

    < t

    2

     

    t

    k

    , then

    65

  • 8/20/2019 point processes brillinger

    12/45

    DAVID R. BRILLINGER

    As

    the

    process

    has stat ionary

    increments,

    i t has a

    spectral representat ion

    and i f SU

    denotes

    the shi f t transformation,

    S U ~ t ~ t + u ,

    then

    Pa

    Pab t

    l

    - t

    2

     

    \}l · · · \}r

    p .

      t l - t

    k

     ···

    t k_ l - t

    k

     

    Pa t

    Pab t

    l

     t

    2

     

    \}l · · · \}r

    p

     tl ··· t

    k

     

    p t

     ... t  

    1 .

    which

    the process

    is

    stationary,

    tha t i s probabil-

    i ty dis tr ibut ions

    are

    invariant under t rans la t ions

    of t . This means for example,

    p 1 t

    1

     p 2 t

    2

     t

    1

     

    p 2 t

    3

     t

    2

     

    p 1 t

    1

     

    p 1 t

    2

     

    P  2 t

    k

    , t

    k

    _

    1

     

    p l t

     

    k - l

    where p l

    and p 2

    sat is fy renewal

    eq :uations, see

    p.   5 in Srinivasan

     197

    4

     .

    Example 5. Zero cross ing processes . Expressions

    may

    be

    se t down

    for

    the

    product

    densit ies

    of point

    processes corresponding to the zeros of random

     

    d b _ e t t e : : r 1 ~ 7 2 .

    7. We now turn

    to

    a

    consideration

    of

    the

    case in

  • 8/20/2019 point processes brillinger

    13/45

    ST TISTI L INTERFEREN E

    Na t = JC exp{itA}-l / iA ] dZa A

    _co

    ~ o r a  

    l r

    We

    may

    define

    cumulant spectra of

    order k by

     V1 ··· V

    r

     

    o Al+.o.+Ak

    f  Al,

    ••• ,Ak_l dAl

    ••• dAk

    =

    cum{dZl Al ,··G,dZl AVl ,···,dZr Ak }

    with o e

    the

    Dirac delt.a. ~ u n t i o n Alternately,

    making use

    of

    product densi t ies , we might d e ~ i n e the

    power

    spectra by

     OO

  • 8/20/2019 point processes brillinger

    14/45

    DAVID   BRILLtNGER

    mixing condition,

    .Assumption

     

    ~ t ,

    t E R,

    i s

    an

    r

    vector-valued

    stat ionary

    point

    process sat isfying

      1), whose

    c tunulant

    densi t ies

    of  3 sat isfy

    The second-order

    spectra

    of the

    process,

    fab A , possess

    many of the same propert ies as the

    spectra

    of

    ordinary

    time

    ser ies .

    There

    are

    however

    some

    differences,

    we mention

    that

    for mixing point

    processes instead of

    the

      l imi t

    for ffilxlng ordinary time seriea.

    The spectral

    representation ~

    be used to

    relate the point process

    to the

    associated ordinary

    time series

      h  

    f. t) =

    h  

    t - ~ , t + ~ = exp[iAt}[ sin h

    A

    2

    hA/2 J d ~ A

    t   This shows, for example,

    tha t the

    cross-

    spectrum

    of

    the a-th

    and b-th cOlnponents of

    . ~ t

    i s

    8. A

    key indicator of

    the appearance of the process

    of

    points

    of

    type

     

    s a y ~

    is

    provided

    by

     

  • 8/20/2019 point processes brillinger

    15/45

    ST TISTI L INTERFEREN E

    h small

    the

    empirical

    intensi ty with

    which

    points of type

    1

    are

    seen

    to occur

    near

    to Models

    for

    the

    process

    may

    usefully involve models for th is ·variate.

    A

    simple

    statement says

    Prob[point of type 1

    in (t , t+h]}

    ~ Plh

    for

    h

    small.

    A

    more

    complicated statement i s

    Prob[point

    of

    type 1

    in

    ( t , t+h]

    \

    point

    of

    type

    a at

    1 }

     ..

    PI

    (t-1 )h/p

    a a

    In the

    case

    that the process 1,

    near

    t is

    independent of the

    process a,

    near 1 th is las t

    is

    ~ l h the marginal intensi ty . This

    happens

    often

    as It-1 l  

    00 .

    An even more

    complicated

    statement

    involves

    Prob[point of

    type

    1 in

    ( t , t+h]

     

    vI

    points of type

     

    v

    2

    points of

    type 2

    • • • a t

    1 1

    -2 • • • ,

    1 k

    respectively}

    (v

     

    +l)(V

    2

    )···(v

    r

    )

      p   t - 1 k

    1-

    1 k ··· , 1 k_l- 1 k)h/

     

    · · · v

    r

     

    p (rr

    l

    -1 k,···,1 k_l-1 k)

    Suppose r ;

    2.

    A useful simple model here is ;

    69

  • 8/20/2019 point processes brillinger

    16/45

    DAVID R BRILLINGER

    Prob{point

    of

    type

    1 in ( t , t+h]

    N

    2

    (U),

      C X < U ~ J

     

    {fJ.

     

    a(t-u)

    d

    2

    (U)}h

     4 

    l:

    a(t- T .)}h

    j

    J

    where

    the

     T .

    are

    the times

    of the

    events of

    the

    J

    second process.

    This

    model

    allows

    the intensi ty ,

    near t of

    points

    of

    type

    1

    to

    be affected in a

    direct

    manner

    by

    points

    of

    type

    2.

      f

    the

    system

    is c ~ l s l then a(u) = 0, u < O The second

    process

    may excite or

    inhibi t

    the f i r s t process depending

    on the sign of a(u) .

    The model

    implies,

    for

    example,

     5

    showing that ~

    may be

    i n t e r p r ~ t e d as

    the intensi ty

     with

    which type

    1 points woul·d occ ur

    where

    P2

    =

    o.

    Also

      f

    A A) = J a(u) exp{-iAu}du

    then  5

    and

     6 lead to

    70

  • 8/20/2019 point processes brillinger

    17/45

    STATISTICAL INTERFERENCE

    suggesting

    how the

    para.meters ~ A A might be

    ident if ied

    o

    I f P22 u

    is constant,

    as in the

    Poisson

    case,

    then  6

    leads

    to

    and

    a t may

    be

    measured direct ly .

    As an example of

    the model

     4 we mention

    the

    G/G/oo

    queue

    with

    N

    l

    referrin g to the

    process

    of

    exi t

    t imes,

    N

    2

    to the

    process

    of entry times, a -u

    referring to the density of service times and

    ~ =

    O.

    Clearly, here

      r o ~ { c u s t o m e r leaves in

    the interval

     t, t h] t

    N

     

    U ,

    _ X · < t }

    ,.. [ t a t-rr . }h

    j  

    An

    interest ing

    problem

    is

    that of measuring the

    degree

    of

    association of two point

    processes.

    A

    measure

    suggested

    by

    the

    preceding

    model

    is

    the

      o ~ r n

    see Bri l l inger  1974a . This

    parameter

    also

    appears

    as a measure

    of the

    degree of l inear

    predictabi l i ty

    of

    the

    proeess

    N

    l

    by

    the

    process

    N

    2

    • I t

    sa t i s f ies

    a   R

    I2

     A) 1

    2

    s 1.

    Other

    measures

    of

    association

    could

    be

    based on the

    nearness of

    the

    function

    P12 u PIP2 to O.

    We

    mention next the self-exci t ing processes

    introduced by

    Hawkes see Hawkes

     1972 .

    For

    71

  • 8/20/2019 point processes brillinger

    18/45

    DAVID R BRILLINGER

    r

    = 1, these sat isfy

    Prob{point

    in

     t , t+h] ,

    N u ,

    u

    ~

    t}

     t

    +   a t-u dN u }h

    _ 0 0

      ~ + l a t-rr. }h

     

    .

    ~ t

    J

    J

    I f we have more

    than

    one

    p rocess, then  w

    could also

    set

    up multivariate l inear models and

    define

    par t ia l

    parameters.

    As

    another

    extension,

    we

    could consider non-linear models such

    as

    Prob{point

    of type

    I

    in  t , t+h]

    I N

    2

     U , _ o o ~ u o o }

    -faa

    +

    J a1 t-u dN

    2

     U +uU

    a

    2

     t-u,t-v dN

    2

     U

    dN

    2

     V }h

    More

    detai ls concerning such extensions may be

    found

    in B rillin ge r

     197

    4b

     

    9

    We

    end by mentioning

    that

    some, possibly

    unexpected, relationships exist between certain of

    the

    parameters

    that

    have been defined. These are

    the

    Palm-Khinchin

    relat ions,

    00

    Prob{N t

    S

    j}

    = p   Prob{N u = j I

    N{ol

    =

    l ldu

    t t

    = l p

    o

    Prob N u = j t N{O} =l}du

    Prob{N t >

    j

    N{O}

    = I} =

    1 + D+{p-l

     

    j+l-k •

    j=O

    Prob [N t .k:}}

    EtN t N t -l •••

     N t - k } =

    72

  • 8/20/2019 point processes brillinger

    19/45

    ST TISTI L INTERFEREN E

      k+l P J t E{N u) N u) - 1

    •••

      N u) - k +

    1

    I

    o

     { }

    = I}

    du

    Such relat ionships are discussed in Cramer,

    Leadbetter and

    Serfl ing

      1971).

    In

    th is

    f i r s t

    section

    of

    the paper we

    have

    sought to

    provide

    a framework

    within

    which

    stat ionary

    point processes may be handled when the

    only

    element of s ta t i s t ica l independence is

    asymptotic.

    I I . Estimation of

    Time Domain

    Parameters

    for

    Stationary

    Processes

    We consider

    th e estimation of certain time

    domain parameters g iven a realizat ion of a

    process

      t ) over the interval  O,T], i . e . given

    the

    observed

    times of events

    in

     O,TJ. We

    begin

    with the

    f i r s t

    order mean in tens i t ies p ,

    ·a

    a

    z l , ••• , r .

    1.

    Obvious estimates of the P

    a

    , a = 1 , • •• , r , are

    the

    a   l , •••  r In connection with these we have,

    Theorem 1.

    Suppose

    the

    process sa t i s f ies

    Assumption I . Then [Pl,

    •••

    ,PrJ is asymptotically

    as T .. CX .

    73

  • 8/20/2019 point processes brillinger

    20/45

    DAVID   BRILLINGER

    T his theorem , as

    are

    those given la te r , is

    proved in th e f ina l sect i on

    of

    th e

    paper.

    The

    e stim ate s a re a sy mp to tic ally

    normal.

    The

      s ~ n p t o t i

    variance o f

    p i s 2n

    T - l f

      0). Were increments of

    a aa

    - 1

    th e

    process uncorrel at ed, th is wO uld be T Pa. We

    w i l l

    see

    how to estimate f   A)

    next sect i on.

    Were

    aa

    T

    l a r g e , we might

    s e t T = J U

    an d

    take

    The  r a t i o

    2nf

      O)/p is

    u s e f u l

    in describing

    aa a

    c e r t a i n asp ec ts o f th e process N

    a

    • I f i t is

    g r e a t e r than 1 , th e process is

    said

    to be cl ust ered

    o r u n d e r d i s p e r s e d .

    I f i t is l e s s than 1 , th e

    process is c a lle d

    overdispersed.

    2 .

    In th e

    second

    order

    case

    we are

    in te re ste d in

    estimating

    Pab   u) ~ r o b {type a in   t+u,t+u+h

    l

    J and type b i n

      t , t + h

    2

    ]}/ h

    l

    h

    2

      fo r u fO and

    Pab U)/Pb  

    Prob[type

    a in   t+u,t+u+h] 1 type b

    a t

    t }/h

    fo r

    u f

    I t seems n a t u r a l

    to

    base

    e stim ates o f the s e

    on

    J;b U)

    =

      [ j ,k) such tha t u -

    S <

    -

    <

    U

     

    and

        7)

    fo r

    some small

    b in width 26

    > o. On th e  

    6400,

    th is

    s ta t i s t ic

    can

    be

    computed abo-u.t twice

    as f a s t

    74

  • 8/20/2019 point processes brillinger

    21/45

    STATISTICAL INTERFERENCE

    as

    a

    direct convolution

    based

    on N T

    values.

    In

    connection  with

    th is

    variate

    we have,

    Theorem

    2.

    Suppose the

    process

    ~ sa t isf ies

    AssuJnption

    I

    and

    that p b

      . is

    a

    continuous

    a

     

    function

    for

    a,b

    = l , ••• , r . Suppose Jab(u) is

    given

    by  7 with

    a = depending on

    T. Suppose

    u ~   uk

    with

    l u ~ -

    u ~ / I T ~ 2S

    T

    for

    1

    S

    k <

    k ~

    K.

    Then

    as

    T

    ~ 00 (i)

    i f ST

    = LIT,

     

    fixed,

    the

    variates J ; l b 1 u i , · · . , J ~ b K U ~ are a s ~ n p t o t i c a l 1 y

    independent

    Poissons

    with

    means

    2S

    T

    T

    Pakbk(u

    k

    ) ,

    k

    = 1 ,

    ••• ,K and

      i i)

    i f

    aT ~ 0,

    but

    STT

    ~

    00 the

    variates are

      s ~ n p t o t i l l y

    independent normals with

    variances

    2 ~ T T P b

    (uk)

    k =

    1 ,

    ••

    o,K.

    a

    k

    k

    The

    two

    asymptotic

    dis tr ibut ions

    are

    consistent

    for

    large ~ T T ,

    becrolse

    a Poisson

    variate with

    large

    mean

    is approximately normal.

    The

    resul t

    in

    ( i)

    is

    not unexpected beCa1 1Se we a re counting

      rare

    events

    o

    I t is surprising that such

    a

    general

    resul t

    is so simple however.

    The

    theorem leads us to estimate

    Pab(u)

    by

    and to approximate the

    distr ibution of

    th is variate

    by

     2S

    T

    T -1

    P 2S

    T

    TP

    ab

    (u))

    or N P

    ab

    (u), (2s

    T

     r)-1

    Pab (u) ) ,

    where P ~ here

    denotes a Poisson distr ibution with

    75

  • 8/20/2019 point processes brillinger

    22/45

    DAVID

    R

    BRILLINGER

    mean

      This estimate

    should

    prove

    reasonable so

    long

    as 1u   In th e case tha t u

    has

    not i ceabl e

    magnitude

    compared

    to T

    i t

    might

    be

    bet te r

    to

    replace

    J;b u) by

    T J ~ b u

    T -

    lui) or by

    J ~ b u

    P a P b l u l ~ S T  8

    The use

    of th e v a r i a t e

    o f  B

    i s

    suggested by

    th e

    u su al estim ate o f the autocovariance function o f an

    ordinary time s e r i e s . I ts

    const ruct i on is based

    on

    th e

    observation

    t h a t

    qab u)

     

    0

    as lu

    00

    fo r

    many

    processes.

    I t should have

    bet te r

    o v e r a l l mean

    squared

    e r r o r p ro pe rtie s fo r such

    processes.

     e remark t h a t

    we

    a re here e s s e n t i a l l y

    c a r r ying

    o ut histo gra m const ruct i on.

    Considerations

    o f t h a t

    t opi c

    are

    rel evant

    he r e .

    For e x ~ p l e we

    j i g h t

    choose to

    construct a

    rootogram based

    on

    J ~ b u

    to

    get

    stable

    variance.

     I f

    there m y

    be

    some cel l s with

    low

    c o u n t s, we

    might

    follow Tukey

    and

    use

    }2

      4

    JT

    b

      u)

      . The variate   P b   u) w i l l

     

    a a

    1

    have approximately s t a b l e vari,ance of  BaTT - •

    The theorem

    lik ew ise lead s

    us to estimate Pab u)/Pb

    by

    J;b u)/ 2S

    T

    N

    b

      T)) and to approximate the

    d i s t r i b u t i o n

    of th is

    estimate by

     2S

    T

    T P

    b

      -1 P 2S

    T

    T Pab   u)) or N Pab   u)/P

    b

    ,

     2S

    T

    T p ~ - l p a b u .

    The variance

    of

    J J ~ b u / 2 S T N b T

    w i l l

    be

    approximately s t a b l e and

    may be estimated by

     8S

    T

    N

    b

     T -1.

    The

    above

    resul ts

    may

    be

    used

    to

    s e t

    76

  • 8/20/2019 point processes brillinger

    23/45

    ST TISTI L INTERFEREN E

    approximate confidence in tervals and multiple

    confidence

    in tervals

    for

    the

    estimates. In the

    case

    tha t

    the

    increment

    of the

    process

    N

    i s

    a

    independent of

    the

    increment

    of

    the

    process N

    b

    , U

    time

    units

    away, Pab(U)/P

    b

    = Pa.

    We may

    examine

    th is

    hypothesis

    by plot t ing

    on the

    same

    graph

    for

      x ~ ~ p l

    This

    sor t

    of graph

    i

    is useful in

    checking for

    some degree of

    associat ion

    between

    the

    process N

    a

    and the process Nbo

    What

     we have been doing

    may

    be viewed as

    es timating the probabil i ty

    density

    function

    of the

    times between

    a events

    and

    b events from

    the

    observed

    differences

    a <

    a

      f

    J

    Cox (1965) suggested th t one could also

    consider

     window estimates. If Let W(u) be bounded

    and

    absolutely integrable.

    Let

    WT u) = W(u/S

    T

    )

    for

    the

    sequence

    of

    scale

    factors

    ST

    T

    =

    1,2,

    • • • •

      t i s now natural

    to

    base

    estimates

    on

    T   b

    Jab(u)

    = at:. b W

    (u

    -  f

    j

    +  f

    k

    )

    o < fj;a fkST

    II

    WT u-{Y+ f) dNa

     a

    dN

    b

    (

     f)

    O < T ~ O ~

    (The previous J ~ b ( u ) corresponds

    to

    W(u)

     

    1 for

  • 8/20/2019 point processes brillinger

    24/45

    DAVID

    R

    BRILLINGER

    lut

    < 1 .) The

    variances

    of

    the

    asymptotic

    dist r ibut ions of

      i i

    of

    Theorem 2 are now replaced

    by STT JW U)2

    du

    Pab (Uk) k

    =

    1 ,  

    0

    ,K. By di rec t

    computation

    we see

    tha t

    T

    E J ~ b U = J (T_lp )wT(u_p) Pab(p)dP

    -T

      J ST T - lul) [Pab(u) J w P)dp - e T P ~ b u )

    SPW

    p dp

     

    S i p ~ b

    (u)

    J

    p

    2

    I

    dp/2

      }

    suggesting tha t

    bias

    may become a problem when

    Pab(p)

    varies

    substantial ly

    i ~

    the neighborhood

    of

    u

    or

    when u is

    of appreciable

    magnitude

    compared

    to

    To We have

    already discussed

    one modification

    to handle th is las t case.

    The

    asymptotic

    dis tr ibut ion

    determined

    in

    Theorem 2

    is

    an

    unconditional one.

    In pract ise the

    worker may feel

    tha t the

    conditional d i s t r i u t i o ~

    condit ional on the

    o s e ~ v e

    Na(T), Nb T) is

    the

    appropriate one.

    In

    I .4 we set d o w ~ the form of

    product densities in the conditiona l case. I t

    should be

    possible

    to make use of these to determine

    the form

    of

    the large sample conditional dist r ibu

    t ion .

    Cox

    and

    Lewis   1972)

    discuss

    some aspects of

    the problem of estimating second-order product

    densit ies

    for

    a vector-valued process.

     30 In the k-th order

    case

    we

    might consider

    the

    s ta t i s t ic

    78

  • 8/20/2019 point processes brillinger

    25/45

    STATISTICAL

    INTERFERENCE

    T T ~

    J a l o o O a k U l ~ o . O ~ U k - l =

    J

    o; . J W   u l - a l + a k ~ · · · ~

    uk_l-ak_l+ak) dNal(al) •••

    dNak(ak)

      9)

    where

    W T U l ~ . o . ~ U k _ l

    = W U l / ~ T ~ •• o ~ u k _ l / a T

    and

    the ; l

    in

      9)

    indicates

    that

    the

    ra.nge of

    in tegrat ion

    i s over

    dis t inct cr_.

    J

    Theorem 3. Suppose the process sa t i s f ies

    .Ass·ump

    ..

    t ion

    I and that P a (e)

    is

    continuous a t

    a

    l

    •••

    k

     

    )

    Th T

     1

    -) l-f STk-1T =

    L,

    1 ••• ,u

    k

    _

    1

    • en as

    ~

    00

    L f i x e d ~ i f W u l ~ ••• ~ u k _ l = 1 for

    lUjl

    < l ~ the

    variate of   9) is asymptotically Poisson with mean

      2 ~ T k - I T

    P (u1,

    ••• ,u

    k

    _

    l

    ) and

      i i )

    i f

    a l · · · a

    k

     

    ST   O ~ but S ~ - l T   the

    variate

    i s asymptotically

    normal

    with mean

    T T T

    TIT· · ·

    ITw   u l - P l ~ ·

    ••

    ~ u k - l - P k - l P a l ••• a

    k

    (Pl , •••

    ,Pk_l)dPl

    •••

    dPk_l

     10

    k-l  w )

    nd

    variance

      T P

    a

    a u l ~ · · u k _ l ·

      •

    ••  k

    The in tegra l

    of

     10

    may

    be

    expected

    to

    be

    near

    k-l k-l

      )

      T W

    Pa a

    u l , · · · , u

    k

    _

    l

      •• •  k  

    suggesting the

    consideration

    of the estimate

    A T

    P

    a

    a (u

    l

      Uk_I)

    = J

    a

    a (u

    l

     

    ,u

    k

    _

    l

    ) /

      •

    ••

     k

     

    ••

     k

     

    S ~ - l

    T

    k - l

     

    W )

    79

  • 8/20/2019 point processes brillinger

    26/45

    DAVID R. BRILLINGER

    4.

    Let

    A denote the

    in terval

     O,TJ and

    suppose tha t

    the

    points observed in A are: Y

    I

    of type I a t

    t

    l

    ,

    •••

    , t

    y

     

    Y

    r

    of

    type

    r

    a t

     

    t

    k

    Then,

    using the

    ~ x p r s s o n s

    of Section

    I

    the l ikelihood

    function

    here

    is B/C where

    and

    Let us consider the approximate

    value

    of

    the

    l ikelihood function, B/C, for large T. In the

    case

    of

    large T

    J

     vI ··· v  

    P

    r

      t

    t

      J

    1 - y1

    +. • • V r

    Y

    r

    1 •

    ••

    Y

    l

    • • •

     YI · · · Y

    r

     

    p   tl,···,t

    + +

    YI •••

    Y

    r

    vI-YI+··.+v

     Y vI-Y

    I

    v -Y

    T

    r r

    p p

    r r

     

    r

    suggesting tha t for

    large T,

    the

    l ikelihood function

    i s

    approximately

  • 8/20/2019 point processes brillinger

    27/45

    STATISTICAL

    INTERFERENCE

    4. In th is sect ion we wil l

    propose

    estimates of

    the

    parameters described in

    Section

    I .5

    in

    the

    case

    tha t a

    real izat ion

    of a stat ionary process

    i s

    available for the time

    in te rva l (O,TJ.

      i We begin

    with

    the

    renewal

    function,

    t

    Uab t = E{Na t

    Nb O}

    =   = JPab U dU/P

    b

    A

    natural estimate to consider is

    Uab t =   t ~   j   T ~

    O}/Nb T

    T-t

    t

    =

    J

    J

    dNa U+W) dNb(U)/Nb(T)

    o

    0

    To

    determine

    the asymptotic dist r ibut ion of

    U

    b t

    a

     we wil l need tffi

    jo int

    asymptotic dist r ibut ion of

     {.} and Nb(T). I t i s fa i r ly c lear tha t

    under

    Assumption

    I ,

    the

    var ia te i s   s y m p ~ o t i l l y norma.l

     with

    asymptotic

    variance

    tha t is

    O(T-

    l

      .

    However

    the

    form of

    the asymptotic variance

    seems very

    messy.

    In pract ise one

     would

    probably have

    to

    estimate

      by segmenting

    the data.

      i i

    Let

    us next estimate the survivor function

    1

    F(t)

    Prob{N(t)

    = 0 t

    N{O}

    =

    I}

    Prob

    { r

    i

     

    l

     

    r

    i

    >

    t}

    1

    Prob{ r

    i

     

    l

     r

    i

    s t}

    81

  • 8/20/2019 point processes brillinger

    28/45

    D VID  

    RILLINGER

    This

    l as t

    suggests the estim ate

    ;'It,

    F(t)

    =

     {

    1 i+l -

    1

    l

    ~

    t

      i

     

    N(T) -l}/N(T)

    This

    estimate is

    based

    on the in te rar r iva l

    times

    x

    = 1 .+1- 1 .. The

    process X.,

    i =

    O,± 1 , . . . is

    l l l l

    sta t ionary.

    I f

    i t

    is

    mixing in some

    sense then

    ;'It,

    1 -

    F(t)

    wil l be   s y ~ p t o t i l l y normal, see Deo

    (1973), for example. This l as t suggests the

    in teres t ing

    problem of

    re la t ing

    a mixing

    condit ion

    for

    a sta t ionary point

    process

    to some mixing

    condition

    for the corresponding process

    of

    in te r

    a r r iva l times.

      i i i

    The

    following i s

    a

    plausible

    estimate for the

    hazard

    function,

    with

    ST a

    small posi t ive number,

    ~ ( t ) = { t - a T < f i + l -  f

    i

    < t+6

    T

    ; i l •••

    ,N(T)

    - I}

    2

    S

    T {

     

    i +I -

     

    i

    >

    t ; i

    =

    1,

    • • • , N(T) - 1 }

    (iv)

    Next

    consid er th e estimation

    of

    the forward

    recurrence

    time dis t r ibu t ion

    G(t)

    1 - Prob{N(t) = O}

    P   (1 - F (

    u))

    du t

    P[

    (1

    - F (

    t ) ) t

    J

     

    P

    J

    U

    dF

    (

    U )

    where we use

    a

    Palm-Khinchin relat ion from

    Section

    1.9

    and in tegra te

    by

    par ts . The l as t re la t ion

    suggests the

    estimate

    82

  • 8/20/2019 point processes brillinger

    29/45

    ST TISTI L INTERFEREN E

    G t) = ~ [ l - F t t J + p }: ( 1 i+1-  1 i) / N T )- l )

     -i+l- -i ~ t

    ,..

    t

      [

      i +1 -   i > t }IT + L i +1- rr i IT

      i+l- -i ~ t

    j = 0 , • . •

    ,

    J - l

    xp[-iAt} dN   t

    a

    I I I .

    Estimation

    of Frequency

    Domain Parameters

    1. We begin with a discussion of

    f i r s t

    order

    s ta t i s t i c s . Suppose T = JU, J an

    in teger .

    Set

     j+l)U

    d ~ O j jJ

    ~

    jU<

      a

    ~ j + l U

    Sexp

    [ - i

    (A-O:)

      j

    +

    ~

    }  s in

    (A-Cl

     u 2

    A

      1 )   )

    dZ

    a )

    a

    using

    the

    spect ra l

    representat ion

    a t

    the l a s t

    s tep.

    In

    the

    case tha t J = 1, U = T, we sha l l

    write

    d ~ A .

    We

    ha.ve,

    Theorem

    4.

    Let the

    process

    ~ t

    sa t is fy Assumption

    I . Suppose A

    ~

    o.

    Then

    ~ U A , j ,

    j

    =

    O, •••

    , J - l

    are asymptotically

    independent

    r var iate complex

    normal with mean 0 and covariance matrix

    2TTU[f

    ab

     A)] as T

    ...

    co. Also

    var ia tes a t frequencies

    of

    the form

    2TTu/u, are

    asymptotically

    independent

    for u

    dis t inct

    posit ive in tegers .

    2. Suppose

    we are

    in teres ted in estimating the

    second order spectrum f b  A).

    Various

    procedures

    a

    83

  • 8/20/2019 point processes brillinger

    30/45

    DAVID R. BRILLINGER

    suggest themse lves , based ei ther on the expression

    or

    the expression

    co

     P

    a

     

    J

     Paa U)

    -

    p;} exp -iAu} dU}/ 2TT

    -co

    co

      {Pab u) - PaPb} exp{-iAu} dU} 1 2rr

    =

    fab A)

      ~

    -co

    Procedure I . Set

    IU A,j)

    =

      2 n U - l d U A , j d U A , j ~

    -

     

    for A ~ 0 and

    consider

    the

    estimate

    J l

     U A)

    = J

    l

     

    IU A,j)

    j=O

    From Theorem 4,

    as

    T ~ co , but   remains fixed

    £U A tends to J - I W ; J ~ f A)) where W; denotes the

    complex

    Wishart. ~

    Procedure

    I I . Set rT A) =   2 ~ T - 1 £ T A £ T A •

    For

    2TTS./T

    dis t inc t ~

    0, non-negative and a l l

    ~

    A

    set

    J

    T -1 J l T

    f  A =

      ~ I

     2ffS

    j

    /T).

    j=O

    T

    From Theorem 4, as T ~ co ,   A

    tends

    to

    J - l w ; J ~ f A

    Both of the above e stimates are a symp to tic ally

    normal i f the l imit ing conditions are

    as

    T  

    co ,

     

    ~ co, but

    J/T

    ~

    O.

    In

    the

    above procedures we sometimes choose

    to

    weight the periodogram ordinates unequally.

    For example in Procedure

    I I

    we might

    take

    84

  • 8/20/2019 point processes brillinger

    31/45

    ST TISTI L

    INTERFEREN E

    fT

    A)

    =

     TT ~

    W

    T

     A

    _

     TT

    T

    S

    IT   TT

    T

    S

    - T s ~ 0

    with WT a =

    B ~ l w a / B T

    where

     

    =

    1.

    I f

    B

    T

    ~

    0,

    BTT ..

    00

    ~ s T ..

    0 0 ,

    th is estimate is

    asy-mptotically

    normal, s ~ e Bri l l inger  197

    2

      .

    Procedure I I I .

    Let

    P

    a

    , Pab u be

    given

    by the

    expressions

    of

    I I . l ,

    I I .2 respect ively. Let

    wT u

    =W BTU

    be

    a

    convergence fac tor . Set

    f ~ b A .

    =

    f 2 ~ T

    ~ f P a b 2 ~ T j - P a ~ b } e x p f - i A . 2 S T j }

    J

    W

    T

     2S

    T

    j }/ 2ff a   b

    fp

    a

    +

    2S

    T

    ~ f P a a 2 S T j

    -

    p; , lexpf-H2STjl

    J

    W

    T

     2S

    T

    j }/ 2ff

    a

    =

    b

    Because

    of the

    per iodic i t ies

    involved,

    i t

    only

    makes

    sense to compute

    th i s estimate

    for

     A1 s

    T T / ~ T .

    The

    choice of bin width

    .2S

    T

    i s

    seen

    to show i t s e l f

    in

    the

    Nyquist

    frequency

    ~ 8 T

    This estimate

    i s

    asymptotically normal

    under

    conditions including

    B

    T

    ,

    ~ T

    ..

    0,

    BTT .. 00 as T ..

    0 0 .

    This estimate

    is

    the

    one computed

    most rapidly.

    I t has the disadvantage

    of

    possibly

    leading

    to

    negative

    power

    spectrum

    estimates and coherences b ig ger than 1, even i f

    W a ~ o.

    Procedure IV. Compute the spectrum of the ordinary

    process

     

    -1

    h

    h

    X t = h N t-

    2

    ,t  

    but

    remember

    tha t

    85

    t=0,±h,±2h,

    •••

  • 8/20/2019 point processes brillinger

    32/45

    DAVID   BRILLINGER

    Problems

    of

    al iasing clear ly

    ar ise

    here.

    Tapering

    and

    pref i l te r ing play

    essen t ia l roles

    in the

    estimation

    of the spectra

    of ordinary

    time

    ser ies .

    I t is

    not

    ent i re ly obvious

    how to apply

    these

    techniques in the poin t process

    case

     with

    the

    excep tio n of tapering fo r Procedures I

    and

    I I .

    I f

    the

    complete intensi ty

    A t h

     

    Prob[point in   t , t+h l 1

    N u ,

    u   t}

    ex is ts

    and

    can

    be

    evaluated, then with

    t

    A t A t

    dt

    the

    t ransformation N t N A t carr ies

    N

    over

    in to a Poisson process with unit in tens i ty ,

    and

    constant power

    spectrum.

     This t ransformation is

    analagous to

    the

    condi t ional probabil i ty in tegra l

    t ransformation to

    uniform varia tes

    in the case of

    ordinary

    time

    ser ies .

    For the

    doubly stochast ic

    Poisson process A t =

    x t .

    Pref i l t e r ing

    procedures

    carr ied

    out

    ent i re ly

    in

    the

    frequency

    domain,

    for

    ordinary

    time ser ies ,

    clear ly have point process

    analogs.

    For example,

    i f

    we can think of a g A near f A ,

    then

    we

    might

    form

    the

    estimate

  • 8/20/2019 point processes brillinger

    33/45

    ST TISTI L

    INTERFEREN E

    Detrending

    can

    be very

    important.

    Lewis

     1972)

    contains

    important adv ice

    on

    these matters.

    3.

      ~

    next

    turn

    to

    a

    br ie f

    discussion

      ~

    the estim a

    t ion of the

    parameters

    of the model

    Prob[type

    1

    event

    in t , t+h ]   N

    2

     u),

    u

    ~

    t}

    ~   ~ + J

    a t-u) dN

    2

     U))h

    as

    h O

    I f

    P22 u)

    i s

    not constant , then

    we

    estimate

    a u),

    a

    time

    domain

    parameter

    by going

    through

    the frequency

    domain. We have the relat ions

    A ~

    J a u) e x p [ - i ~ u } d u

    PI ~ + A O P2

    f 1 2 ~ A ~ f 2 2 ~

    a u)

     

    2 )-1

     

    A a)

    exp{iua}da

    suggesting

    the estimates

    A T T

    A ~ f 1 2 ~ / f 2 2 ~

    o P

    - A O

    P

    a u)

    =

     2 )-1 B

    T

      A kB

    T

      exp{iukB

    T

    } vT kB

    T

     

    k

    where vT a)

     

    v CTa

    is   convergence

    factor. More

    detai ls on th is procedure may

    be found in

    Bri l l inger

     1974

    a .

    4. On

    occasion

    we may be

    led

    to model the

    process in

    some manner involving a f in i te

    dimensional parameter

    e We would then

    li.ke

    to be a.ble to estimate e

    Sometimes

    such

    a

    model

    wil l

    lead

    to

    a

    t rac t ib le form

    87

  • 8/20/2019 point processes brillinger

    34/45

    DAVID   BRILLINGER

    fo r

    the

    second-order spectra . For example, suppose

    we have a clus ter process with p r ~ ~ y process

    Poisson

    and

    the

    secondary

    process

    independent

    exponentials from the clus ter centers , then the

    power spectrum of the process has

    the

    form

    involving the

    three dimensional parameter

    e

     a ,b ,c .

    We

    now describe

    one method

    o f estimating

     

    Related methods

    are

    given in Whittle (1953),

    Walker

    (1964),

    Hawkes

    and

    Adamopoulos

    (1973).

    Let the t rue value of e be St. Suppose

    lim f(A;S) = ~ S

    co

    and ~ e t =

    p/(2n)

    where p

    i s

    the

    mean intensi ty of

    the process. ~ e t

    may

    be

    estimated

    by 0 = p / 2 ~ .

    The periodograms I T 2 ~ S / T , s

     

    1 2 • • are

    asymptotically

    independent

    exponentials

    with means

    f(2TTS/T; a t , s

     

    1 2 The

    scaled

    varia tes

    T

    I (2TTS/T)/ ~

    s   1 2

    •••

    88

    This

    resul t

    suggests our

    set t ing down the following

    approximate   log l ikel ihood function

    are

    therefore

    asymptotically

    independent exponentiaJs

    with mea.ns

    s

     

    1 2 • ••

    (2TTS/T; 8 )

     IJ

    (et

  • 8/20/2019 point processes brillinger

    35/45

    STATISTICAL

    INTERFERENCE

    A

    and taking

    as

    an

    estimate of 8,

    the value

    8 tha t

    maximizes  11).

    In

    the

    theorem below we set g A; 8) =

    f A; 8 /  -l  e)

    an

    d

    S T A

    I\T  e)

    = _  TT r:

    T

    {log

    g 2TTS/T;

    e) +

    I

    b

    TTs

    /

    T

      / J

    T

    s=l

    g TTs/T;

     

    12)

    The

    e maximizing  11) also

    maximizes  12).

    T·heorem

    5.

    I f

     a) the process N t) ,   co <

    t

    < co has

    mean

    intensi ty ~ 8 t

    and power spectrum f A; e t

    b) f A;8),

    8 E @

    C

    RL,is

    non-negative

    and

      l

     

    8) =

    lim

    f

    A;

    A

    I

    A

    1

    ....

     

    exis t s ,  c ) with g A;

    e) =

    f X;

    A /lJ e) ,

    A e

    = -

    J{ log g A; e) + ~ t ~ ~ - 1 } d A

    exis ts as a Lebesgue in tegra l has a unique maximum

    a t at and

    i s

    such tha t

    max   B

     ) ...   e

    ft EU

    as

    the

    neighborhood U

    of

    a shrinks

    to

    [a},  d)

    AT e)   A 8)

    a t

    e and uniformly

    near

    other 8  e)

    8E@

    maximizing

     11) is bounded in probabi l i ty , then

    A

    e

     

    e

    t in probabil i ty

    as

    T

    ...

    co

    89

  • 8/20/2019 point processes brillinger

    36/45

    D VID

      BRILLINGER

    Condition

    (d) i s

    s a t i s f i e d

    for

    processes

    satisfying, Assumption

    I , provided

    g(A;8)

    i s

    a

    sUfficiently

    regular

    function of A.

    We next turn

    to the

    large

    sample distr ibution

     

    of 8.

    To

    t h i s

    end

    s e t ,

     13

    Because

    of

    (c) above,

    generally A

    j

    (6 )

    =

    oA(6 )/o6

    j

    =

    o.

    90

    The above

    procedure provides us

    with a

    fur ther

    estimate, ~ A = f(A;8)

    of the

    power spectrum.

    Under the

    conditions

    of

    the

    theorem, t h i s estimate

    w i l l

    be asymptotically normal

    with

    mean f(A;S ) and

    variance

    d log g(a;S ) a log

    g(a;sf)

    da

    oS} o e ~

    a log g(a;Sf) a

    log g(S;Sl)

    oSj

    o e ~

    f

    4

    ) C -a. - · 6 )

    f a ; G f ~ f{S;8f)

    da

    dS

    00 00

     TTJ J

    Theorem 6.

    Suppose

    the conditions of Theorem 5 are

    s a t i s f i e d . Suppose also

    (f) the

    derivat ives

    of

     13

    e x i s t ,

    (g)   ~ k

    C

    T

    )   A

    jk

    for any

    sequence ,T of

    varia tes tending to

    Sf

    in probabil i ty, (h) with

    ~

    =

    [A

    jk

    J,JT{

    ft

    i 6 ) , . •• ,Ai:(6 )1-4 NL Q, ~ + ~ , then

    S i s a,s ymptotically normal

    with

    mean S and co-

    variance ma tr ix T-

    l

      - 1   ~ + ~ A - l •

    For

    processes sat isfying Assumption I

    and

    g(A;8)

    a

    s u f f i c i e n t l y regular

    function of A

    we

    have

  • 8/20/2019 point processes brillinger

    37/45

    STATISTICAL

    INTERFERENCE

    L

    j ,k

    of A;

    8  

    of A;

    8 )

    08  .

    08

     

    J

    k

    In the

    case

    of

    a

    vector-valued process, instead of

    maximizing

     11

    we

     would maximize

    S T

    -

    L [log Det ~ 2 T I S / T ; 8 t r ~   2TIS/T) ~ 2 T I S / T ; 8 }

    s=l

     where

    g

    A;

    8) j k = f

    A;

    8) j k / ~ j ll k 8)

    T T IA A

    H A) jk

    =

    I A) jk / \

    U j ~ k

    5.

    We mention br ie f ly tha t the p r ~ m t r s of

    a

    se l f -

    excit ing process may be estimated via a frequency

    domain analysis . Such

    a

    process i s defined by

    a

    re la t ionship

    t

    E[dN t

    \

    N u ,

    u

    ~ t} =

      tJ

     

    Sa t-u dN u

    dt

    -co

    where ~ a u

    ~

    0;

     

    a u

    du <

    1 ; a u = 0 for

    u

    ~

    O. Let

    ex

    A ~

    =

    J a u e x p [ - i ~ u } ~

    For th is

    process

    ~

    p

    [1

    -

    A

    0

    J

    and

    2

    f

     A

    =

    p/  2TT \ 1 - A A \ )

    Because A A)

    is the Fourier

    transform

    of

    a one

    sided

    function,

    the problem of

    est imating

    A A)

    from

    fT A ,

    is

    seen to

    involve

    the

    fac tor iza t ion

    of

    f T ~ .

    Rice

      1973)

    carr ied

    out

    th is

    empir ical ly

    and

    91

  • 8/20/2019 point processes brillinger

    38/45

    DAVID R BRILLINGER

    found the asymptotic dis t r ibut ion of the

    est imate.

    This

    procedure also provides a fur ther

    spect ra l

    A A A

    2

    est imate, namely f(A) = p/ 2TI11 -A A)

    I ).

    6.

    We next turn

    to

    the

    problem

    of e stima ting th e

    variance time curve given by

    var

    N(t) as a function

    of t . Using the spect ra l representat ion, we see

    tha t

    V(t)

    va.r N(t)

    J O O S i ~ 7 2 t / 2 2 f a

    da

     co

    t

    + Sco(sin

    crt/2)2(f(

    )_

    p

    )da

    p o 2  

    2Tr

     co

    The fo llowing type o f estim ate is considered by

    Torres-Melo

    (1974),

    V(t)

    =

    tp

    + Bi

    l

    t

    2

      f

    T

     O _-i 2   (Sin Bst/2)2

     

    2TI

    + Bs 2

    s=l

     

    T

    P

    )'

    f (Bs) - 2TI

    J

    He f inds the asymptotic dis t r ibut ion of th is

    est imate.

    7.

    Product dens i t ies may be estimated

    in

     

    s imi la r

    manner

    to th e v ariance

    time

    curve. We

    have

    p(u)

    =:

    JOO f a -

    - )exp[iua}

    da

    +

    p2

     co

    suggesting the estimate

    A S

    p(u) =: B [ f T O - 2 ~

    +

    2  

    (fT(BS)

    -tTT COS Bs]

    s=l

    This estimate

    would undoubtedly

    be improved by the

    inser t ion of

    convergence

    factors .

    92

  • 8/20/2019 point processes brillinger

    39/45

    STATISTICAL INTERFERENCE

    Fina.lly

    we remark tha t we may

    sometimes wish

    to estimate the spectral measure

    F A = J A f ~

    o

    The

    obvious

    estimate

    is

     

    F( A

    IV. Proofs

    B

    1. Proof

    of

    Theorem

    1.

    The jo in t fac tor ia l cumulant

    of N

    a

     

    T ,   , N

    a

      T) i s

     1

     k

    T T

      q   t l , · · · , t k d t l · · · d t

    k

    =

    O T)

    a a a 1 • • • a

    k

    .

    in

    view

    of

    Assumption

    I .

    The

    ordinary

    joint

    cumulant of these same var ia tes

    i s

    a sum

    of

    multiples

    of lower order

    fac tor ia l cumulants.

    It.

    follows

    tha t i t too

    i s

    O T)

    as

    T   00 . This means

    that the standardized jo in t cumulants of order k

    of these variates are

    O T

    1

    -

    k

    /

    2

    )   0

    as

    T   00

    for

    k

    >

    2,

    and

    so the

    variates are

    asymptotically

    jo in t ly

    normal.

    2.

    Proof of

    Theorem

    2. The variate J ~ b U may be

    represented as

    J dNa

    J dN

    b

     

    rr

    G

    where

    G

    i s

    the

    se t

    [u - ~ t

    <

    (J

    -   < u +  T J ~ rr}.

    I t

    follows

    from

    th i s

    representat ion,

    Assumption

    I

    93

  • 8/20/2019 point processes brillinger

    40/45

    S

    k.

    J

    c j )

    D VID

     

    RILLINGER

    and the

    rules of

    Leonov and

    Shiryaev

     1959

    t h a t

    the j o i n t f a c t o r i a l

    moment

    of order

    k

    of

    JTb u

    i s

    k

    a

    of order

    O STT .

    An

    ordinary

    cumulant

    of order

    k,

    c

    k

      i s

    connected

    to

    corresponding

    f a c t o r i a l

    cumulants, c k )

    through

    k

    c

    k

    = L

    j==l

    where

    s ~ i s

    a S t i r l i n g

    number.

    I f

      L/T, then

    T T T

    E Jab u  

    -

    2L

    Pab u as

    T

    -

    00 when u

    -

    u. I t

    follows,

    t h a t

    in t h i s case

    the

    cumulant

    of order

    k

    T T

    of

    Jab u

     

    -

    2L

    Pab u and

    so the var ia te i s

    asymptotically Poisson.

    In the case STT

    -

    00 the

    standardized j o i n t cumulant of

    order

    k i s

    O STT 1-k/2

     

    0 fo r k

    >

    2. I t   o ~ s t h a t the

    var ia te i s

    asymptotically

    normal. The indicated

    asymptotic

    independence

    follows

    on

    evaluating

    j o i n t

    second-order cumulants.

    3.

    Theorem 3 i s

    proved in

    the

    same

    manner t h a t

    Theorem

    2 i s

    proved.

    4. Theorem 4 i s proved by

    evaluating

    the . joint

    cumulants of

    the

    dUe A related

    r e s u l t ,

    Theorem

    4.2,

    a

    i s proved in B r i l l i n g e r

     1972 .

    5.

    Before proving

    Theorem

    5,

     we prove

    a lemma

    of

    some

    independent i n t e r e s t .

    Lemma

    1. I f   i )

    B

    i s local ly compact, complete,

    s eparable , me tr ic ,   i i )   O , G ~ p i s a probabil i ty

    space

    with [ complete,

    separable,

    metric ,   i i i )

    QTCS,w

    i s

    real-valued, Borel

    measurable

    for

     S,w

    E B x

     2 and a l l T,  iv

    Q S i s real-valued, lower

    semi-continuous,

    Q S

    Q St

    fo r S   Sf,

     v

    94

  • 8/20/2019 point processes brillinger

    41/45

    ST TISTIC L INTERFERENCE

    QT 6 ,w) = Q 6 )

      0 p l ) ,

    QT 6,w) ;:: Q 6)

     

    0 p l ) ,

    S   S as T

      0 0

    Vi)

    given

    e ,h

    > 0 ,

    8

    1

      Sf, t h e r e

    exis ts

    U

    l

    a

    neighborhood

    o f

    Sl and

    t h e r e

    exis ts

    TO

    such tha t

    A

      Vii) f o r

    each w a n d T t h e r e exis ts S such

    tha t

     

    Q

      S,w)

    =

    in f

    Q

      S,w)

    e E ®

      V i i i ) g iv en h >

    0 , t h e r e exis ts

    a compact se t C   8

    and T such tha t   r o { ~ ~

      }

    < h, fo r T > T ,

    the n

    A

    0 0

    S

    = Sf

     

    0   1 ).

    P

    A

    Proof. The

    m e a s u r a b i l i t y

    of A

    resu l t s from Theorem

    2 o f Brown and Purves   1973). Let U   C be an open

    neighborhood

    o f

    Sf.

    From

      iv )

    t h e r e

    exis t s

    y

    >

    0

    such tha t Q 8

    1

    ) - Q 8

    f

    ) ~

     y

    fo r e E C\U. Suppose

    Sl E C\U. Then from

      v)

    T T

    lim Prob{Q

      S l w ) - Q   8 , w ) S

    2y} =

    0

    T   00

    From th i s

    and

      v) t h e r e exis ts a neighborhood U

    l

    o f

    Sl

    such

    tha t

    lim Prob{ in f

    T   ro

    8

    E U

    l

    QT e,w) _ QT

    S

    ,w ) y}

    =

    0

      14)

    Using th e f a c t

    tha t

    C

    is

    compact, se lec t a f in i t e

    number o f p o i n t s S , s

    =

    1 , •• ,N w i t h

    neighborhoods

    s

    U s s =

    1,

      ,N c o v e r i n g

    C\U.

    From

      14)

    9

  • 8/20/2019 point processes brillinger

    42/45

    DAVID

    R.

    BRILLINGER •

    li m

    Prob{ in f QT S,w) - QT B ,W) Sy}=O  15

    T-+oo 8EC \U

    Now

    from

      v i i )

    prob{6   U or B\C}   Prob{ in f Q T S , w ) _

    8 E C\ U

    QT 8

    t

    ,W

    y}

    From

     15

    th is

    l as t

    tends t o O. From  v i i i ,

    prob[8

    E

    8\C}

    tends to O. This gives the resu l t .

    Theorem

    5

    now follows

    from

    th is Lemma.

    6.

    Theorem 6

    follows

    from th e

    r e l a t i o n

     with a between  

    n t •

    96

  • 8/20/2019 point processes brillinger

    43/45

    ST TISTI L

    INTERFEREN E

    REFERENCES

    BRILLINGER, D R.  1972 . The spectra l analysis of

    s ta t ionary

    in terval

    functions. pp. 483-513

    in

    Proc.

    Sixth

    Berkeley

    Syrup. Math. Stat Prob.,

    Vol.   eds. L. M LeCam, J . Neyman, E. L.

    Scott .

    Berkeley University of California

    Press.

    BRILLINGER, D R.  1974a .

    Cross-spectral

    analysis

    of processes with

    stationary

    increments

    including G/G/oo

    queue.

    Ann. Prob. ,

    2,

    815-827.

    BRILLINGER, D R.

      1974b).

    The ident i f icat ion of

    point process systems.

    Special

    Invited Lecture

    presented to the   ns t i tu te of Mathematical

    Sta t i s t ics

    at

    Edmonton.

    COX

    D R.

     1965 . On

    the

    estimation

    of the

    in tensi ty

    function of

    a

    stationary

    point

    process.

    J R. Sta t i s t

    Soc. , B, 27.

    332-337.

    COX D R. and LEWIS, P. A.

    W

    1966 . The

    Sta t i s t i ca l

    Analysis of Series of

    Events.

    London,

    Methuen.

    COX

    D R. and

    LEWIS

    P. A. W

    1972 .

    :Multivariate

    point

    processes. pp.

    401-448 in Proc. Sixth

    Berkeley Symp. Math.

    Stat Prob. , Vol.

     

    eds. L. M LeCam, J. Neyman, E. L. Scott .

    Berkeley, University

    of

    California Press.

     

    CRAMER H.,

    LEADBETTER

    M R.

    and

    SERFLING, R. J .

     1971 . On distr ibution

    function

    - moment

    relat ionships

    in

    stat ionary poin t p roce sse s.

    Zeit .

    Wahrschein.,

    18. 1-8.

    DALEY

    D J .

    and

    VERE-JONES, D

    1972 .

    A summary of

    the theory of poin t p roce sse s. pp.

    299-383 in

    STOCHASTIC

    POINT

    PROCESSES  ed.

    P.

    A.

    W

    Lewis)

    97

  • 8/20/2019 point processes brillinger

    44/45

    DAVID R. BRILLINGER

    New Ycrrk, Wiley.

    DEO C.

    M.

     1973 . A

    note

    on

    empir ical processes of

    strong-mixing sequences.

    Ann.

    Prob., 1 .

    870

    875.

    HAWKES

    A.

    G.

     1972 .

    Spectra of

    some

    mutually

    excit ing point

    p roce sses with

    associated

    variables . pp.

    261-271 in   t o ~ h s t i c

    Point

    Processes ed. P.

    A. W. Lewis .

    New

    York,   i l ~

    HAWKES

    A. G. and

    ADAMOPOULOS

    L.  1973 . Cluster

    models

    for

    earthquakes

    -

    regional

    comparisons.

    Bul. In te r

    Sta t i s t Ins t 39.

    LEONOV

    V.

    P.

    and SHIRYAEV A.

    N.

     1959 .

    On

    a

    method

    of calculat ion of

    semi- invar iants .

    Theory

    Probe

    Appl. ,

    4. 319-329.

    LEWIS,

    P.

    A.

    W.  1972 . Recent resul ts

    in

    the

    s t a t i s t i c a l

    analysis

    of

    univariate poin·t

    processes. pp. 1-54

    in

    Stochastic Point

    Processes ed.

    P. A. W. Lewis .

    New

    York,

    Wiley.

    RICE, J A.  1973 .

    Sta t i s t i ca l analysis of

    se l f -

    excit ing point processes and

    related

    l inear

    models. Ph.D. Thesis, U niversity of Cali fornia ,

    Berkeley.

    SRINIVASAN, S. K.  1974 . Stochastic

    Point

    Processes.

    Ne w

    York,

    Hafner.

    TORRES-MELO L.  1974 . Stat ionary poin t p roce sse s.

    Ph.D.

    Thesis, University

    of

    Cali fornia ,

    Berkeley.

    WALKER

    A. M.  1964 .

    Asymptotic

    propert ies of leas t

    squares

    estim ates of parameters of

    the

    spectrum

    of

    a

    s ta t ionary nondeterministic time ser ies

    J

    Austral .

    Math.

    Soc. ,

    4.

    363-384.

    98

  • 8/20/2019 point processes brillinger

    45/45

    ST TISTI L

    INTERFEREN E

    WHITTLE P

    1953 .

    Estimation and

    information

    in

    stat ionary

    time s r i s

    rk

    Math

    stron

    y ~

    2. 423-434.