pm breakdown future for differential effects of...

27
PM Breakdown Alternative future science/policy scenarios for differential effects of particle components Particulate Matter and Health: Evaluating Alternatives to a MassBased PM Standard EPRI Air Quality Research Seminar May 2627, 2010 Washington, DC John Bachmann Vision Air Consulting, LLC Sulfate Carbonaceous Nitrate Ammonium Crustal, metals

Upload: others

Post on 25-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

PM Breakdown Alternative future science/policy scenarios for 

differential effects of particle components

Particulate Matter and Health: Evaluating Alternatives 

to a Mass‐Based PM StandardEPRI Air Quality Research Seminar

May 26‐27, 2010Washington, DC

John BachmannVision Air Consulting, LLC

SulfateCarbonaceous

Nitrate

Ammonium

Crustal, metals

Page 2: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Overview

• Today:  – Current consensus reflected in EPA Integrated Science 

Assessment for indicators for particle pollution, NAAQS

• The future:– Consider alternative futures with improved information on 

differential effects of components and the mixture

– Potential regulatory responses to alternative scenarios

Page 3: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Why?

• Recognize tension between NRC, other scientific  panel recommendations for multipollutant 

approaches and deconstruction of PM

• The Holy Grail:  optimized control strategies to  maximize risk reductions at minimum costs

• How best to incorporate evolving scientific  understandings into policy

Page 4: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

PM/Ozone – Multiple pollutants, sources

Pollutants contributing to PM2.5

and OzoneSO2

Sulfate particlesNOx

Nitrate PM, acid gases, formation of ozone and organic PMVOC

formation of ozone and organic PMVOC(C6unsat)

secondary organic PMNH3

AmmoniumDirect emissions

of carbonaceous PM, crustal materials, metalsCO

background ozone formation

Sulfate

Esti Ammonium

Nitrate

Carbonaceous

Crustal

The policy dilemma – split PM, increased focus on integrating multipollutant sources

Multiple sources of multiple pollutants

HNO3

SO2

NO2

CO

Organics

NH3

Page 5: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

A brief history of particle pollution • How did we get to standards for a complex mixture?

– From Seneca (61AD) to the New York Times (1940s), Fumus, smoake,

smoke, 

soot defined

air pollution 

– Source oriented mixture; incomplete combustion

– 1940s‐50s introduced photochemical smog and a focus on gases, specifics

– Ways to measure –

Filter‐based optical (British smoke, Cohs), gravimetric 

(TSP) implemented on a routine basis in Europe and the US 

– Some interest in measuring chemical components in PM for source 

identification and effects assessment (e.g. US NASN)

Gravioris caeli (heavy heaven) in Rome

NY Times 3 Feb 1927

Donora PA 1948

Los Angeles 1943-55

Page 6: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

• Community health studies used available monitoring– Focus on differentiating coal smoke particles from related gases

– Toxicology focused high concentrations of a limited number of 

laboratory particle types, compounds

– Early criteria used ‘particulates’

for both BS and TSP studies; 

presumption all measured generally small combustion aerosols

– PM Criteria led to the first US standards for TSP

A brief history of particle pollution 

Page 7: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Legislative Basis for NAAQS• Key issues in criteria (S.108) and NAAQS (S.109)

NAAQS for all pollutants with criteria prior to enactment (includes particulate matter)

List new pollutants and develop criteria Endanger public health or welfareNumerous or diverse mobile or stationary sourceNo existing criteria

Based on the latest scientific criteria….• Primary standards must be requisite

to protect public health

with an 

adequate margin of safety*• Secondary standards should protect public welfare (the environment, 

materials, visibility, ecosystems….) from known or anticipated adverse 

effects• Costs of controlling pollution are not considered

*Legislative history shows Congressional intent to protect a representative sample of the most sensitive groups, not the most sensitive individuals

Page 8: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Anatomy of Air Quality Standards

The four major components of air quality standards– Indicator 

i.e. what

is measured (Oxidants, O3

, TSP, PM2.5

) and 

how Federal Reference Method (FRM)– Averaging time ‐

1‐hr, 8‐hr, 24‐hr, annual

– Form

statistic – e.g. exceedance, concentration based

– Level

– e.g. 15 ug/m3  (PM), 0.08 ppm O3 

(gases)

TSP PM10PM2.5

Page 9: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Evolution of PM NAAQS 

• 1971 – EPA promulgates NAAQS for “total suspended 

particulate”

(particles smaller than ~25‐45 µm in diameter)

• 1987 – EPA revises PM NAAQS, changing the indicator from TSP 

to PM10

to focus on "inhalable" particles (< 10 µm)

• 1997 – EPA revises PM NAAQS to focus separately on the “fine”

and “coarse”

fractions of PM10

– New standards established for “fine”

particles < 2.5 µm in diameter 

(PM2.5

)

– PM10

standards retained to focus on “coarse fraction”

(particles 

between 2.5 and 10 µm in diameter)

• 2006‐09 – Complete PM NAAQS review/revision– Tighten daily standard, re‐rationalize PM10

– DC Court review:  PM10

upheld, remand PM2.5  

annual

Page 10: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

TSP/PM10 Trends 1960-2005

By 1990;  70 PM10

nonattainment areas 

Filter medium change

TSP SIPS on hold during PM NAAQS review

Little progress 1961- 66

Continuous progress 1966-77

Page 11: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Current CAA regulatory authorities  in use for PM/components

Section 108, 109 Criteria and NAAQS – Lead, TSP, PM10

, PM2.5 

– risk based– Indirect – SO2

, NOx

, O3

(VOC) NAAQS– Implementation policy and guidance (multiple authorities) for 

State Implementation Plans•

Inventories; monitoring; reasonably achievable control measures 

(RACM) ‐

technology (RACT); ‘progress’

requirements; plans to attain 

and maintain NAAQS•

Federal measures (e.g.) – Tailpipe standards and regulation of fuels (S, Pb, aromatics, renewables)– Regional transport programs for SOx and NOx (Acid Rain, CAIR)– NSPS, Hazardous air pollutant standards

http://www.epa.gov/air/oaqps/greenbk/7220585.pdf

Page 12: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Direct stationary source authorities

Section 111 New Source Performance Standards– NSPS for all “major”

new sources of PM, SOx, NOx, VOC, Pb

i.e. ‘criteria’

pollutants

– 111(d) NSPS for new (federal) and existing (SIP) sources of non‐ criteria pollutants

• Reduced sulfur compounds, fluorides• Sulfuric acid mist; Mercury (remanded)

Section 112 Hazardous Air Pollutant Standards– 187 listed HAPs – e.g. Coke oven emissions, POM, As, Cr(IV), Cd, 

Mn, Hg, Ni, Pb– PM used to index metals and POM in some rules– Mandated MACT for new and existing major HAP sources; 

evaluate residual risk for further controls; e.g. stationary diesels– GACT for smaller sources, urban air toxics program

Page 13: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Other source specific authorities•

Acid rain program – 9.1 mt SOx cap, NOx power plants

Title V stationary source permit program•

New source review, PSD increments for PM, gases– Attainment: BACT          Nonattainment: LAER + offsets 

Visibility in 156 class I areas – PM ‘extinction’

weighted•

Mobile sources– Tailpipe standards for new vehicles – Diesel PM, air toxics– Fuels – low S content, reduced aromatics, renewables

Heavy-Duty PM Emissions

Page 14: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

What happens in 5‐10 years with  significant new scientific 

information?Crustal, metals

SulfateCarbonaceous

Nitrate

Ammonium

Page 15: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Science/Policy scenarios• Posit several alternative outcomes based on current 

and potential future research programs– Assume ‘reasonably strong’

scientific consensus for each 

hypothetical projected outcome regarding components– Variants based on mass, components, sources, interactions– Emphasis on PM2.5

and components

• Consider alternative regulatory responses to scenarios– Examples of how EPA reacted to similar scenarios for TSP, 

PM10

, and Pb NAAQS– Indicator(s) and levels for PM NAAQS– Use of NAAQS implementation, source specific authorities

Page 16: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Scientific consensus scenarios•

Current  ‐

suggestions of differential toxicity, source 

and regional differences, but a multiplicity of signals  from multiple sources/components

Scenario A*

clear evidence for significantly greater  toxicity for a single substance/class – e.g. Ni, UFP in 

the mix.   1) Small mass fraction (e.g. Ni)2) Large mass fraction (e.g. primary organics)

Scenario B* ‐

clear evidence for significantly greater  toxicity for mix of particles from single source class – e.g. diesels, coke ovens

*Assume remainder of mix is lower toxicity, but no additional differentiation possible

Page 17: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Scientific consensus scenarios 

Scenario C ‐

clear consensus a significant component  of PM mass contributes only by influencing the 

character of more toxic components

e.g. acids mobilizing metals, polymerizing organics

‘Inert’

particles as delivery agents for co‐occurring gases

Scenario D ‐

clear consensus that a significant mass  component is unlikely to play any role in PM effects

e.g. sea salt, rural fine dusts

Page 18: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Scientific consensus scenarios

• Scenario E – clear consensus of ability to parse relative  harm for multiple components, classes, or sources

1)  mix of components makes a significant difference  (synergy)

2) whole = sum of the parts

– Information might be limited to major classes of PM – sulfates, 

nitrates, primary and secondary carbon, metals, some specifics

– Presumably a worthy research goal, but difficult to achieve

• Insert your own scenario here

Page 19: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Potential Regulatory Responses  to Scenarios 

Lessons from lead and PM10‐2.5

and PM10

experience

Alternative policy approaches to scenarios A‐E

Page 20: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

The past as prologue –

lead  (73‐78)

• By 1973, EPA decided against a lead NAAQS in favor of  regulation of fuels provision (Scenario A‐1)  

• Contested by NRDC in 1976; DC Circuit ruled EPA must list  lead under section 108 and develop criteria, NAAQS 

(1976)

• First lead NAAQS in 1978; lead continued to be included  in TSP/PM10

/PM2.5 

mass standards Blood lead in Children

Page 21: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

The past as prologue – PM •

PM review 1978‐87– ‘Non‐inhalable’

particles in TSP excluded from PM10 

NAAQS

PM review (2000‐2006).  – Fine particles appeared to dominate effects in many studies, 

much less evidence for coarse particles (scenario A‐2)– Still less evidence for rural coarse particles than urban– Regulatory Response:

• Keep PM10

and PM2.5  

(final decision, upheld by DC Circuit)• In effect, coarse standard is tighter when fine particles are higher

– Road not taken –

separate coarse NAAQS

Recognize constraints and strong inertia in the system –•

regulatory and legal precedents, relative strength of evidence, 

consensus ‐

critical in determining nature of regulatory 

response. 

Page 22: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Scenario A ‐

more toxic componentA‐1 – Minor component of mass 

• Retain PM2.5

mass indicator for all components

• Consider nature of source(s) and effects.   Evaluate, issue 

appropriate standards under source specific provisions of 

pollutant/class under 111(d), 112, mobile authorities.

• New NAAQS for minor PM mass component undesirable/unlikely, 

but decision to use source specific standards;  subject to challenge

A‐2 – Major component of mass• Retain PM2.5

mass indicator for all components

• Adopt additional PM NAAQS for new indicator class. 

• Alternatives:– Subtract new indicator mass from PM2.5; adjust levels.

– No new indicator; issue implementation policy and guidance to place 

additional priority on sources of A‐2 component

• Implications for levels of remaining undifferentiated PM NAAQS

e.g. Ni

e.g. primary carbonaceous

Page 23: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

– Retain PM2.5

mass indicator for all components

– Consider nature of source(s) and effects.   • Evaluate, issue appropriate standards under source specific 

provisions of pollutant/class under 111(d), 112, mobile authorities

– No new indicator or source specific standards• issue implementation policy and guidance to place additional 

priority on named category of PM

– NAAQS for narrow source category appears unlikely

Scenario B – mix of PM from single  source category

Page 24: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

– Retain PM2.5

mass indicator

– Consider implementation policy and guidance to  reduce emphasis on agent or focus on components 

enhanced by the component   

– Indirect participation in toxicity a rationale for  retaining in NAAQS

– Response may depend on the nature and  distribution of sources of ‘enhanced’

co‐pollutants

Scenario C –

‘enabling’

component

Page 25: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

– Retain PM2.5

mass indicator• Issue implementation policy and guidance to place low 

priority on sources of agent (iffy)

• e.g. fugitive dust policy

– Change the indicator exclude non‐contributing  material, e.g. PM10 excluded non‐inhalable coarse 

particles in TSP• Consider implications for secondary standards (currently 

based on visibility), retain original indicator 

Scenario D – low toxicity  component

Page 26: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Scenario E –

relative toxicity ‘known’ for all major fractions

– Possibly retain a mass standard, strong  implementation guidance (more likely if synergy)

– Break PM into a combination of separate NAAQS,  and/or technology‐based source specific standards, 

implementation guidance 

– Level is a function of weighted combination of  individual components 

• Also an option for multi‐pollutant gas‐particle standards

• Note EPA staff option for secondary PM standard 

weights ‘visibility toxicity’

(extinction) by component

Page 27: PM Breakdown future for differential effects of …mydocs.epri.com/docs/PublicMeetingMaterials/1005/6CNUSW9...PM Breakdown Alternative future science/policy scenarios for differential

Discussion