plasticity in fenics - katedra...

21
Plasticity in FEniCS Piotr Minakowski Institute of Applied Mathematics and Mechanics, University of Warsaw E-mail: [email protected] Mathematical Institute, Charles University E-mail: [email protected] SEMIN ´ A ˇ R O SOFTWARU PRO GEOFYZIKY aneb Jednooc´ ı slep´ ym

Upload: others

Post on 15-Jul-2020

21 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Plasticity in FEniCS

Piotr Minakowski

Institute of Applied Mathematics and Mechanics, University of WarsawE-mail: [email protected]

Mathematical Institute, Charles UniversityE-mail: [email protected]

SEMINAR O SOFTWARU PRO GEOFYZIKY aneb Jednoocı slepym

Page 2: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Outline

PlasticityIntroductionComputational Methods

Fluid Model of Crystal PlasticityMotivationsModel

Kirchhoff stressNumerical treatment

Implementation in FEniCS

Page 3: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations
Page 4: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations
Page 5: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations
Page 6: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations
Page 7: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Motivations

Severe plastic deformation:

I large proportion of shear during deformation

I large strains (torsion experiment with multiple rotations)

I no major changes of shape and cross section

I changes of internal properties by grain refinement (UFG)

HPT / ECAE

Page 8: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Aims:

I formulate flow model of crystal plasticity (Eulerian coordinates)

I provide consistent thermodynamic description

I observe formation of shear bands, reach steady state micro-structure

I validate by comparison with experimental data

ECAE HPT

Page 9: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Large-deformation plasticity

Kroner decomposition

F = FeFp

I Fe, the elastic distortion, stretch and rotation of the lattice

I Fp, the plastic distortion distortion of the lattice due to formation ofdislocations

F

FpFe

referenceconfiguration

naturalconfiguration

currentconfiguration

. X. x = χ(X,t)

Page 10: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

The velocity gradient

In the virtue of Kroner decomposition

∇v = FF−1 = Fe(Fe)−1 + Fe(Fp

(Fp)−1

)(Fe)−1.

Let us denote by Le and Lp elastic and plastic parts of velocity gradient(also called distortion-rate tensors)

Le = FeFe−1, Lp = Fp(Fp)−1.

We have the decomposition

∇v = Le + FeLp(Fe)−1.

Moreover all the volumetric changes are assumed to result from elasticstretches in the lattice,

det Fp = 1, det F = det Fe > 0.

Page 11: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Cauchy stress

Balance equation

Cauchy stress tensor T is divergence free

divT = 0

Jaumann rate of the Cauchy stress T

T + div vT−WT + TW = C : De

where D = sym(L), W = skew(L) and C is fourth order spatial elastictensor

C : D = λ(trD)I + 2µD.

where λ and µ are Lame coefficients.

D. Peirce, R.J. Asaro, and A. Needleman. Material rate dependenceand localized deformation in crystalline solids. Acta Metallurgica,31(12):1951–1976, 1983

Page 12: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Resolved shear stress and slip systems

We define, resolved shear stress, the shear component of anapplied stress resolved along a slip plane

τ (i) = s(i) · Tm(i) = T : s(i) ⊗m(i).

Page 13: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Crystal plasticity assumption

Lp =N∑i=1

ν(i)s(i)0 ⊗m

(i)0 ,

Dp =N∑i=1

ν(i)sym(

s(i)0 ⊗m

(i)0

)s(1)m(1)

m(2)

s(2)

m(3)

s(3)

To complete the system, slip rates ν(i) and hardening have to bespecified,

ν(i) = ν0sgn (τ (i))

(|τ (i)|τ

(i)c

)1/m

,

τc(i) =

∑j

Hij |ν(j)|.

The second law of thermodynamics is satisfied

ξ = T : Dp =∑i

ν(i)T :(

s(i) ⊗m(i))

=N∑i=1

ν(i)τ (i) =∑i

ν0|τ (i)|(|τ (i)|τ

(i)c

) 1m

Page 14: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Evolution of slip systemsI Slip systems are changing with elastic stretches and rotations

s(i) = Fes(i)0 and Fe =

(∇v −

∑i

ν(i)s(i) ⊗m(i)

)Fe.

I Evolution of slip directions

˙s(i) =

(∇v −

∑i

ν(i)s(i) ⊗m(i)

)s(i).

I We reformulate vectorial equations in therms of scalar unknowns (φ,s1, m1, s2, m2, s3, m3),

s(i) = si (cosϕi , sinϕi ), m(i) = mi (− sinϕi , cosϕi ).

ϕ = (− sinϕ, cosϕ)T(∇v −

3∑i=1

ν(i)s(i) ⊗m(i)

)s2(cosϕ, sinϕ),

si = (cosϕi , sinϕi )T

(∇v −

3∑i=1

ν(i)s(i) ⊗m(i)

)si (cosϕi , sinϕi ),

mi = (− sinϕi , cosϕi )T

(∇v −

3∑i=1

ν(i)s(i) ⊗m(i)

)mi (− sinϕi , cosϕi ).

Page 15: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Scaled modelI The unknowns are: velocity v, Cauchy stress T, density % and slip

directions s(i),

%,t +div (%v) = 0,

R1%v + divT = 0,

T + Tdiv v + WT− TW = %C(D−Dp),

ϕ = (− sinϕ, cosϕ)T

(∇v − R2

3∑i=1

ν(i)s(i) ⊗m(i)

)s2(cosϕ, sinϕ)

I Characteristic values %0 = 3000 kgm3 , V = 10−5 m

s , L = 10−2m,ν0 = 10−3 1

s , Σ = 70MPa

R1 =%0V

2

LΣ≈ 10−12,R2 =

Lν0

V= 1

I Update of remaining variables

mi , si , τ (i)c

Page 16: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

The elastic predictor/plastic corrector

EA. de Souza Neto, D Peri, DRJ Owen, Computational Methods forPlasticity, Wiley 2008

Page 17: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Numerical treatment

I In time: One step finite difference

I In space: FEI P1 − dis.: T, ν(i)

I P2: vI P1: %, ϕ, si , mi

I Newton-Ralphson method, analytic jacobian by automaticdifferentiation (FEniCS)

I For now direct linear solver of the fully coupled discrete system

I Boundary conditions by Nitsche’s method(ZTn · n, v · n)Γ2 + (Tn · n, zv · n)Γ2 + β

h (v · n, zv · n)Γ2 with β = 10

Main obstaclesproper finite elements, power law with large exponent, boundaryconditions

Page 18: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Discrete formulation

Vh = vh ∈W 1,2(Ω;R2); v|Γ1 = (0,−1), v · n|Γ2 = 0, v|K ∈ P2(K)2 ∀K ∈ Th,Rh = %h ∈W 1,2(Ω;R); %h|Γ1 = 1, %h|K ∈ P1(K) ∀K ∈ Th,Th = Th ∈W 1,2(Ω;R2×2

sym ); Th|K ∈ P1(K)2×2 ∀K ∈ Th,Nh = νh ∈ L2(R); νh|1 ∈ P1(K) ∀K ∈ Th,Ah = ϕh ∈W 1,2(Ω;R); ϕh|Γ1 = 0, ϕh|K ∈ P1(K) ∀K ∈ Th.

Find (vh, %h,Th, ν1h, ν2h, ν3h, ϕh) ∈ Vh × Rh × Th × Nh × Nh × Nh × Ah, s.t.

(%h,t , z%) + (vh∇%h, z%) + (%hdiv (vh), z%) = 0 ∀z% ∈ Rh0,

R1 (%hvh, zv) + (Th,∇(zv)) + (Thn · n, zv · n)Γ2+β

h(vh · n, zv · n)Γ2

= 0 ∀zv ∈ Vh0,(Th + Thdiv vh + WhTh − ThWh,ZT

)− (%C(Dh −Dph),ZT) + (ZTn · n, vh · n)Γ2

= 0 ∀ZT ∈ Th,(ν

(i)h − sgn (Th : s(i)

h ⊗m(i)h )

(|Th : s(i)

h ⊗m(i)h |

τ(i)c

)20

, zνi

)= 0 ∀zνi ∈ Nh and i ∈ 1, 2, 3,(

ϕh − (− sinϕh, cosϕh)T(∇vh − R2

3∑i=1

ν(i)h s(i)

h ⊗m(i)h

)s2h(cosϕh, sinϕh), zϕ

)= 0 zϕ ∈ Ah,

(1)

Page 19: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Let’s dive into code

Page 20: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Summary

Conclusions

I Eulerian formulation of crystal plasticity for large strain problems

I Consistent thermodynamic derivation of the model

I Finite element discretization method for fully coupled problem

I Numerical tools available to solve such systems

Further investigation

I adaptivity (time, space)

I stability conditions

I pass to rate independent (perfect plastic) limit

I mathematical properties (sequential stability result)

I ...

Page 21: Plasticity in FEniCS - Katedra Geofyzikygeo.mff.cuni.cz/jednooci_slepym/minakowski-Plasticity-in...Plasticity Introduction Computational Methods Fluid Model of Crystal Plasticity Motivations

Thank you for your attention.