plasma unbound: new insights into heating the solar atmosphere and accelerating the solar wind

58
Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics

Upload: ingo

Post on 16-Mar-2016

40 views

Category:

Documents


0 download

DESCRIPTION

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind. Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics. Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind. Outline: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the

Solar Atmosphere and Accelerating the Solar Wind

Steven R. CranmerHarvard-Smithsonian Center for Astrophysics

Page 2: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the

Solar Atmosphere and Accelerating the Solar Wind

Steven R. CranmerHarvard-Smithsonian Center for Astrophysics

Outline:

1. Overview and brief historical background

2. Heating the chromosphere (sound waves & shocks)

3. Heating the coronal base (reconnection & turbulence)

4. Heating and accelerating the extended corona (waves & turbulence)

Page 3: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Motivations

• plasma physics• nuclear physics• non-equilibrium thermodynamics• electromagnetic theory

• Space weather can affect satellites, power grids, astronaut safety, etc.

• The Sun’s mass-loss & X-ray history impacted planetary formation and atmospheric erosion.

Solar corona & solar wind:

• The Sun is a “laboratory without walls” for many basic processes in physics, at regimes (T, P) inaccessible on Earth!

Page 4: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The extended solar atmosphere

Heating is everywhere . . .. . . and everything is in motion

Page 5: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The extended solar atmosphere

Heating is everywhere . . .. . . and everything is in motion

Page 6: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Too-brief history• Total eclipses let us see the vibrant outer

solar corona: but what is it?

• 1870s: spectrographs pointed at corona:

• 1930s: Lines identified as highly ionized ions: Ca+12 , Fe+9 to Fe+13 it’s hot!

• Fraunhofer lines (not moon-related)• unknown bright lines

• 1860–1950: Evidence slowly builds for outflowing magnetized plasma in the solar system: • solar flares aurora, telegraph snafus, geomagnetic “storms”

• comet ion tails point anti-sunward (no matter comet’s motion)

• 1958: Eugene Parker proposed that the hot corona provides enough gas pressure to counteract gravity and accelerate a “solar wind.”

Page 7: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

In situ solar wind: properties• 1962: Mariner 2 detected two phases of solar wind: slow (mostly) + fast streams

• Uncertainties about which type is “ambient” persisted because measurements were limited to the ecliptic plane . . .

• Ulysses left the ecliptic; provided 3D view of the wind’s source regions.

By ~1990, it was clear the fast wind needs something besides gas pressure to accelerate so fast!

speed (km/s)

Tp (105 K)

Te (105 K)

Tion / Tp

O7+/O6+, Mg/O

600–800

2.4

1.0

> mion/mp

low

300–500

0.4

1.3

< mion/mp

high

fast slow

Page 8: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Ulysses’ view over the poles

McComas et al. (2008)

www.soho23.org (Sept. 21-25, 2009)“Understanding a Peculiar Solar Minimum”

Page 9: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Exploring the solar wind (1970s to present)Space probes have pushed out the boundaries of the “known” solar wind . . .

• Helios 1 & 2: inner solar wind (Earth to Mercury)• Ulysses: outer solar wind (Earth to Jupiter, also flew over N/S poles)• Voyager 1 & 2: far out past Pluto: recently passed the boundary between the

solar wind and the interstellar medium• CLUSTER: multiple spacecraft probe time and space variations simultaneously

Page 10: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The solar photosphere• The photosphere reveals interior convective motions & complex magnetic fields:

β << 1

β ~ 1

β > 1

Page 11: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The solar chromosphere

Page 12: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The need for chromospheric heating

Not huge in radial extent, but contains orders of magnitude more mass than the layers above . . .

Page 13: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

“Traditional” chromospheric heating • Vertically propagating acoustic waves

conserve flux (in a static atmosphere):

• Amplitude eventually reaches Vph and wave-train steepens into a shock-train.

• Shock entropy losses go into heat; only works for periods < 1–2 minutes…

• New idea: “Spherical” acoustic wave fronts from discrete “sources” in the photosphere (e.g., enhanced turbulence or bright points in inter-granular lanes) may do the job with longer periods.

Bird (1964)

~

Page 14: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Time-dependent chromospheres?• Carlsson & Stein (1992, 1994, 1997, 2002, etc.) produced 1D time-dependent

radiation-hydrodynamics simulations of vertical shock propagation and transient chromospheric heating. Wedemeyer et al. (2004) continued to 3D...

Page 15: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Runaway to the transition region (TR) • Whatever the mechanisms for heating, they must be balanced by radiative losses to

maintain chromospheric T.

• Why then isn’t the corona 109 K? Downward heat conduction smears out the “peaks,” and the solar wind also “carries” away some kinetic energy. Conduction also steepens the TR to be as thin as it is.

• When shock strengths “saturate,” heating depends on density only:

Page 16: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Overview of coronal observations

“Quiet” regions

Active regions

Coronal hole (open)

• Plasma at 106 K emits most of its spectrum in the UV and X-ray . . .

Page 17: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

1990s: SOHO’s new view of the corona

Page 18: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Solar wind: connectivity to the corona• High-speed wind: strong connections to the largest coronal holes

• Low-speed wind: still no agreement on the full range of coronal sources:

hole/streamer boundary (streamer “edge”)streamer plasma sheet (“cusp/stalk”)small coronal holesactive regions

Wang et al. (2000)

Page 19: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The coronal heating problem• We still don’t understand the physical processes responsible for heating up the

coronal plasma. A lot of the heating occurs in a narrow “shell.”

• Most suggested ideas involve 3 general steps:

1. Churning convective motions that tangle up magnetic fields on the surface.

2. Energy is stored in tiny twisted & braided magnetic flux tubes.

3. Collisions between ions and electrons (i.e., friction?) release energy as heat.

Heating Solar wind acceleration!

Page 20: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Coronal heating mechanisms• So many ideas, taxonomy is needed! (Mandrini et al. 2000; Aschwanden et al. 2001)

• Where does the mechanical energy come from? vs.

Page 21: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Coronal heating mechanisms• So many ideas, taxonomy is needed! (Mandrini et al. 2000; Aschwanden et al. 2001)

• Where does the mechanical energy come from?

• How rapidly is this energy coupled to the coronal plasma?

wavesshockseddies

(“AC”)

vs.

twistingbraiding

shear(“DC”)

vs.

Page 22: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Coronal heating mechanisms• So many ideas, taxonomy is needed! (Mandrini et al. 2000; Aschwanden et al. 2001)

• Where does the mechanical energy come from?

• How rapidly is this energy coupled to the coronal plasma?

• How is the energy dissipated and converted to heat?

wavesshockseddies

(“AC”)

vs.

twistingbraiding

shear(“DC”)

vs.

reconnectionturbulenceinteract withinhomog./nonlin.

collisions (visc, cond, resist, friction) or collisionless

Page 23: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Turbulence• It is highly likely that somewhere in the solar

atmosphere, the fluctuations become turbulent and cascade from large to small scales.

• The original Kolmogorov (1941) theory of incompressible fluid turbulence describes a constant energy flux from the largest “stirring” scales to the smallest “dissipation” scales.

• Largest eddies have kinetic energy ~ ρv2 and a turnover time-scale =l/v, so the rate of transfer of energy goes as ρv2/ ~ ρv3/l .

• Dimensional analysis can give the spectrum of energy vs. eddy-wavenumber k: Ek ~ k–5/3

Page 24: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Turbulence in coronal loops?• Many stochastic processes can be described roughly using a turbulent “language.”

• Coronal loops are always in motion, with waves & bulk flows propagating back and forth along the field lines.

• Counter-propagating Alfvén waves interact over shorter time intervals thus the cascade takes longer to develop.

• However, the weaker character of the cascade makes it able to gradually “send” more energy down to the ever-smaller eddies, and thus lead to more dissipation!

n = 0 (Kolmogorov), 3/2 (Gomez et al. 2000), 5/3 (Kraichnan), 2 (van Ballegooijen; Rappazzo et al.)

Page 25: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

• Ultimately, the actual dissipation and heating in loops appears to occur in regions of magnetic reconnection.

Reconnection & Turbulence

Onofri et al. (2006)

Dmitruk et al. (2004)Rappazzo et al. (2008)

» break up into thin reconnecting sheets.» accelerate electrons along the field to generate

currents.• Even pre-existing current

sheets are unstable in a variety of ways to growth of turbulent motions, which may dominate the energy loss & particle acceleration.

• This is still understandable from a turbulence paradigm, since on its smallest scales, MHD turbulence tends to:

Page 26: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The need for extended heating

• The basal coronal heating problem is not yet solved, but the field seems to be “homing in on” the interplay between emerging flux, reconnection, turbulence, and helicity (shear/twist).

• Above ~2 Rs , some other kind of energy deposition is needed in order to . . .

» accelerate the fast solar wind (without artificially boosting mass loss and peak Te ),

» produce the proton/electron temperatures seen in situ (also magnetic moment!),

» produce the strong preferential heating and temperature anisotropy of ions (in the wind’s acceleration region) seen with UV spectroscopy.

X

Page 27: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Extended heating requires “unified” models• In dark intergranular lanes, strong-field photospheric flux tubes are shaken by an

observed spectrum of horizontal motions.

• In mainly open-field regions, Alfvén waves propagate up along the field, and partly reflect back down (non-WKB).

• Nonlinear couplings allow a (mainly perpendicular) turbulent cascade, terminated by damping → gradual heating over several solar radii.

Page 28: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

MHD turbulence: two kinds of anisotropy• Outside closed loops, we can revert to

standard Kolmogorov (1941) scaling, but with two modifications:

• With a strong background field, it is easier to mix field lines (perp. to B) than it is to bend them (parallel to B).

• Also, the energy transport along the field is far from isotropic.

Z+

Z–Z–

(e.g., Hossain et al. 1995; Matthaeus et al. 1999; Dmitruk et al. 2001, 2002; Oughton et al. 2006)

Page 29: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

“The kitchen sink”• Cranmer, van Ballegooijen, & Edgar (2007) computed self-consistent solutions of

waves & background one-fluid plasma state along various flux tubes... going from the photosphere to the heliosphere.

• Ingredients:

• Alfvén waves: non-WKB reflection with full spectrum, turbulent damping, wave-pressure acceleration

• Acoustic waves: shock steepening, TdS & conductive damping, full spectrum, wave-pressure acceleration

• Radiative losses: transition from optically thick (LTE) to optically thin (CHIANTI + PANDORA)

• Heat conduction: transition from collisional (electron & neutral H) to collisionless “streaming”

Page 30: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Results: turbulent heating & acceleration

T (K)

reflection coefficient

Goldstein et al.(1996)

Ulysses SWOOPS

Page 31: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Synergy with other systems• Pulsating hot (O, B, Wolf-Rayet) stars: Pulsations “leak” outwards as non-WKB

waves and shocks. New insights from solar wave theory are being applied.

• T Tauri stars: Cranmer (2008) extended solar wave/turbulence models to include accretion-generated waves on stellar surface, from inhomogeneous impacts.

• AGN accretion flows: A similarly collisionless (but pressure-dominated) plasma undergoing anisotropic MHD cascade and kinetic wave-particle interactions...

Page 32: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Conclusions

For more information: http://www.cfa.harvard.edu/~scranmer/

• The Sun/heliosphere system is a nearby “laboratory without walls” for studying plasma physics in regimes of parameter space inaccessible in Earth-based laboratories.

• Theoretical advances in plasma physics and MHD turbulence continue to feed back into global models of atmospheric heating and solar wind acceleration.

• Observational advances (both space-based and ground-based) have guided us to discard some candidate theories, further investigate others, and have cross-fertilized other areas of plasma physics & astrophysics.

Page 33: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Extra slides about collisionless plasma effects . . .

Page 34: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Multi-fluid collisionless effects?

Page 35: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

protons

electrons

O+5O+6

Multi-fluid collisionless effects?

Page 36: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Particles are not in “thermal equilibrium”

Helios at 0.3 AU(e.g., Marsch et al. 1982)WIND at 1 AU

(Collier et al. 1996)

WIND at 1 AU(Steinberg et al. 1996)

…especially in the high-speed wind.

mag. field

Page 37: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Exploring the extended corona• “Off-limb” measurements (in the solar wind acceleration region ) allow dynamic

non-equilibrium plasma states to be followed as the asymptotic conditions at 1 AU are gradually established.

Occultation is required because extended corona is 5 to 10 orders of magnitude less bright than the disk!

Spectroscopy provides detailed plasma diagnostics that imaging

alone cannot.

• The Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO combines these features to measure plasma properties of coronal protons, ions, and electrons between 1.5 and 10 solar radii.

Page 38: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

UVCS results: over the poles (1996-1997 )• The fastest solar wind flow is expected to come from dim coronal holes.

• In June 1996, the first measurements of heavy ion (e.g., O+5) line emission in the extended corona revealed surprisingly wide line profiles . . .

On-disk profiles: T = 1–3 million K Off-limb profiles: T > 100 million K !

Page 39: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Preferential ion heating & acceleration• UVCS & SUMER observations have rekindled theoretical efforts to understand

heating and acceleration of the plasma in the acceleration region of the wind.

Page 40: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Preferential ion heating & acceleration• UVCS & SUMER observations have rekindled theoretical efforts to understand

heating and acceleration of the plasma in the acceleration region of the wind.

Alfven wave’s oscillating

E and B fields

ion’s Larmor motion around radial B-field

• Ion cyclotron waves (10–10,000 Hz) suggested as a “natural” energy source that can be tapped to preferentially heat & accelerate heavy ions.

MHD turbulence cyclotron resonance-like phenomena

something else?

Page 41: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

What produces “emission lines” in a spectrum?• There are 2 general ways of producing extra photons at a specific wavelength.

• A free electron from some other ionized atom (“collisional excitation”)

• A photon at the right wavelength from the bright solar disk (“resonant scattering”)

• Both mechanisms depend on the quantum nature of atoms: “bound” electrons have discrete energies . . .

• The incoming particle can be either:

Incoming particle

Electron absorbs

energy

Energyre-emitted

as light

• There is some spread in wavelength

Page 42: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Emission lines as plasma diagnostics• Many of the lines seen by UVCS are formed by resonantly scattered disk

photons.• If profiles are Doppler shifted up or down in wavelength (from the known rest wavelength), this indicates the bulk flow speed along the line-of-sight.

• The widths of the profiles tell us about random motions along the line-of-sight (i.e., temperature)

• The total intensity (i.e., number of photons) tells us mainly about the density of atoms, but for resonant scattering there’s also another “hidden” Doppler effect that tells us about the flow speeds perpendicular to the line-of-sight.

• If atoms are flow in the same direction as incoming disk photons, “Doppler dimming/pumping” occurs.

Page 43: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Doppler dimming & pumping• After H I Lyman alpha, the O VI 1032, 1037 doublet are the next brightest lines in

the extended corona.

• The isolated 1032 line Doppler dims like Lyman alpha.

• The 1037 line is “Doppler pumped” by neighboring C II line photons when O5+ outflow speed passes 175 and 370 km/s.

• The ratio R of 1032 to 1037 intensity depends on both the bulk outflow speed (of O5+ ions) and their parallel temperature. . .

• The line widths constrain perpendicular temperature to be > 100 million K.

• R < 1 implies anisotropy!

Page 44: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Extra slides . . .

Page 45: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

The solar activity cycle

Yohkoh/SXT

Page 46: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Waves: remote-sensing techniquesThe following techniques are direct… (UVCS ion heating was more indirect)

• Intensity modulations . . .

• Motion tracking in images . . .

• Doppler shifts . . .

• Doppler broadening . . .

• Radio sounding . . .

Tomczyk et al. (2007)

Page 47: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Strongest fields in supergranular “funnels?”

Peter (2001)

Tu et al. (2005)

Fisk (2005)

Page 48: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Alfvén waves: from Sun to Earth• Velocity amplitudes of fluctuations measured (mainly) perpendicular to the

background magnetic field.

Page 49: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Why is the fast (slow) wind fast (slow)?

vs.

• What determines how much energy and momentum goes into the solar wind?

Waves & turbulence input from below?Reconnection & mass input from loops?

• Cranmer et al. (2007) explored the wave/turbulence paradigm with self-consistent 1D models of individual open flux tubes.

• Boundary conditions imposed only at the photosphere (no arbitrary “heating functions”).

• Wind acceleration determined by a combination of magnetic flux-tube geometry, gradual Alfvén-wave reflection, and outward wave pressure.

Page 50: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Results: other fast/slow diagnostics• The wind speed is anticorrelated with flux-tube expansion . . .

Cascade efficiency:

n=1n=2

“active region” fields

Page 51: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Results: in situ turbulence

• To compare modeled wave amplitudes with in-situ fluctuations, knowledge about the spectrum is needed . . .

• “e+”: (in km2 s–2 Hz–1 ) defined

as the Z– energy density at 0.4

AU, between 10–4 and 2 x 10–4 Hz, using measured spectra to compute fraction in this band.

Cranmer et al. (2007)

Helios (0.3–0.5 AU)

Tu et al. (1992)

Page 52: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Results: heavy ion properties• Frozen-in charge states • FIP effect (using Laming’s 2004 theory)

Cranmer et al. (2007)

Ulysses SWICS

Page 53: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

New result: solar wind “entropy”• Pagel et al. (2004) found ln(T/nγ–1) (at 1 AU) to be strongly correlated with both

wind speed and the O7+/O6+ charge state ratio. (empirical γ = 1.5)

• The Cranmer et al. (2007) models do a good job of reproducing ACE/SWEPAM entropy data (blue region) & Ulysses charge state trends (brown regions).

Page 54: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Do blobs trace out the slow wind?• The blobs are very low-

contrast and thus may be passive “leaves in the wind.”

Sheeley et al. (1997)

Page 55: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Polar plumes and jets• Dense, thin flux tubes permeate polar coronal holes. They

live for about a day, but can recur from the same footpoint over several solar rotations.

• Short-lived “polar jets” are energetic events that appear to eject plasma into the solar wind. Hinode/XRT

(DeForest et al. 1997)

Page 56: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Streamers with UVCS• Streamers viewed “edge-

on” look different in H0 and O+5

• Ion abundance depletion in “core” due to grav. settling?

• Brightest “legs” show negligible outflow, but abundances consistent with in situ slow wind.

• Higher latitudes and upper “stalk” show definite flows (Strachan et al. 2002).

• Stalk also has preferential ion heating & anisotropy, like coronal holes! (Frazin et al. 2003)

Page 57: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

Coronal mass ejections• Forbes & Priest (1995) and Lin & Forbes (2000) developed a theory of CMEs as

a loss of magnetostatic equilibrium in a twisted “flux rope.”

• The current sheet energizes both the CME (above) and a “two-ribbon flare” (below)

Page 58: Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Plasma Unbound: New Insights into Heating the Solar Atmosphere and Accelerating the Solar Wind

Steven Cranmer, March 27, 2009U. Mass. Lowell, Center for Atmospheric Research

First observations of “stellar outflows”• Coronae & Aurorae seen since antiquity . . .

• “New stars”

1572: Tycho’s supernova

1600: P Cygni outburst (“Revenante of the Swan”)

1604: Kepler’s supernova in “Serepentarius”