pixel detector for the protein crystallography beamline at

17
Pixel Detector for the Protein Crystallography Beamline at the SLS Paul Scherrer Institut Ch. Brönnimann, SLS Ch. Brönnimann 1 , E. Eikenberry 1 , S. Kohout 1 , B. Schmitt 1 , C. Schulze 1 , R. Baur 2 and R.Horisberger 2 1 Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI 2 CMS-Project, Paul Scherrer Institut, CH-5232 Villigen-PSI PSI P. Fischer 3 , S. Florin 3 and M. Lindner 3 3 Physikalisches Institut der Universität Bonn, Nussallee 12 D-53115 Bonn University of Bonn

Upload: others

Post on 22-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Pixel Detector for the Protein CrystallographyBeamline at the SLS

Paul Scherrer Institut

Ch. Brönnimann, SLS

Ch. Brönnimann1, E. Eikenberry1, S. Kohout1, B. Schmitt1, C. Schulze1 , R. Baur2 and R.Horisberger2

1 Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen-PSI2 CMS-Project, Paul Scherrer Institut, CH-5232 Villigen-PSI

PSI

P. Fischer3, S. Florin3 and M. Lindner3

3Physikalisches Institut der Universität Bonn, Nussallee 12 D-53115 Bonn

University of Bonn

λθ =⋅ )sin(2d

BeamEnergy: 5-17.5 keVIntensity: ~10 /sFocal spot size: Adjustable to 25 x 15 mDivergency:150 µrad x 28 µrad (FWHM)

13

2

µ

Crystal rotation- 30-180 degree for complete data set- Currently: Discrete rotation, integration

over certain rotation angle- Future: Continuous rotation, integration determined by detector frame rate (

)Fine

phi slicing

Spot size:

- Beam divergence- Mosaicity of the crystal- Distance sample-detector- Point spread function of detector

Diffraction data- reflect crystal symmetry group- orientation of the crystal-> orientation matrix- High dynamic range: >10 between strong and weak reflections- Intensities need to be determined accurately (1%)- Determination of amplitudes and phases leads to electron density maps

4

Detector requirements: - Large area (40 x 40 cm ) and/or large number of pixels - Detect a high number of reflection orders (>500)- Accurate determination of integrated intensities- Wide dynamic range (>16 bit, i.e. single photon counting detector) - Fast readout (<0.1s)

2

θ

Resolution:)sin(2d

For d=1A and =1A, =60λ θo

Crystallized Protein

X-ray Detector

Diffraction pattern

Diffracted beam

Beam

Data collection in protein crystallography

Paul Scherrer Institut

Ch. Brönnimann, SLS

Pixel Detectors: Principle

Paul Scherrer Institut

Ch. Brönnimann, SLS

Pixel Sensor X-rays

Pixel Read-out Chip

0.2 mm

0.2 mm0.3 mm

Bump Bonds

Sensor

Chip

GlobalTresh

Tresholdcorrection

CSAmp

Comp

Reset

BumpPad

Enable/Disable

-

+

Cal1.7fF

Analog Block Digital Block

15 bit SRcounter

Φ12

ClockGen

RBI

RBO

ExtClock

Ext/CompClock

Detector

Pixel electronics

Radiation hard

n+

p+

n++

Al

X-rays

Edrift Vbias

+-

Si pn-junction

3.6 eV to create1 eh-pair

The SLS Pixel Detector

Paul Scherrer Institut

Ch. Brönnimann, SLS

& Size: 40 x 40 cm2 (0.16m2)

& 2000 x 2000 pixels

& Pixel size: 200 x 200 µm2

& Modular detector -> dead area ~6%

& High frame rate: >10Hz

& High duty cycle: <6% (Tro~6ms)

& In operation: 1.8.2001 (1000x1000)

Base plate(water cooled)

Bank with5 modules

Moduleswith 16 chips

Paul Scherrer Institut

Ch. Brönnimann, SLS

SLS Pixel Module

Sensor

Read-out chips

Wire bonds

High density flexiblecapton interconnect

Base plate

Al support

Module Control Board MCBCable

Module Geometry

Paul Scherrer Institut

Ch. Brönnimann, SLS

275 125

Sensor Pixels

Chip Pixels

200

140

110

Readout chip Readout chip

Readout chip Readout chip

Sensitive Area

81.0

79.60.18

9.82

18.25

36.5

0.1135.4

341 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

Horizontal Vertical TotalPixel size 0.2 0.2 mm 0.04 mm^2Chip Nr of pixels 48 85 4080Chip size 9.82 18.25 mm 179.215 mm^2Sensor Nr of Pixels 398 170 67660Nr of double pixels 14 170 2380Sensor active area 79.6 34 2706.4Module outside dim 81 36.6 mm 2964.6 mm^2

Read-out electronics

Paul Scherrer Institut

Ch. Brönnimann, SLS

Main parameters

! Low noise analog block (ENC tot < 100 e-)

! Shaping time tsh = 100 ns -> 1MHz

! Radiation tolerant

! power consumption <100 µW/Pixel

! Robust comparator

! Individual threshold adjustment

! Low overall threshold variation (σ < 100e-)

! 15 bit pseudo random counter

! Large size (20 x 10 mm2)

Prototypes

Name Size Pixel Architecture ChipArchitecture

Subm. Receiv.

SLS01 8x2 array Analog, comparator,counter

- Dez 98 April 99

SLS02 22 x 30 Analog, comparator!,counter, trimbits

Indiv.Coloumnarchitectur

May 99 Nov 99

SLS03 1 x 90 As SLS02, final lengthcolumn

- Aug 99 Mar 00

SLS04 22 x 30 As SLS02 but withcorrect comparator

As SLS02 Dez 99 Exp May 00

SLS05 30 x 30 As SLS04, improvedtrimbitmechanism

Indiv. PixelArchitecture(Yield tolerantdesign)

Feb 00 Exp July 00

SLS06(Final chip)

48 x 85 As SLS05 As SLS05 Exp Oct 00 Exp Feb 01

Pixel Layout

Paul Scherrer Institut

Ch. Brönnimann, SLS

Designed in radiation hard DMILL technology (R. Baur, Ch. Brönnimann)

Size: 200 x 200 µm2

Low noise preamp(folded cascode)

Bump Pad

Shaper

Threshold trimming(3 Bits)

AC-coupled comparator

15 bit semi-staticpseudo random counter+control logic

Size 200 x 200 µm

Ch. Brönnimann, SLS

Paul Scherrer Institut

SLS02 Architecture

TBI

In

CLK

DIS

FF

Shift

Shift Shift Shift

Shift

Clockgen

TCL OUTTBO

ChipControl

& & && & &> > >

ClockGen

ClockGen

ClockGen

ColumnControl

ColumnControl

ColumnControl

Analog15Bit

CounterPad

Pixel 30

Pixel1

DIS

Mode Mode

CLKCLK

OUT

200f 100f

200f

1.5f10f 20f

Pr ShComp

Mode

Mode

comp

previousnext

clk

Xor

Clockgen

Xor

ds_shift ds_shift ds_shift ds_shift ds_shift ds_shift

Phi1

Phi2

Bit1 Bit2 Bit3 Bit13 Bit14 Bit15

Icomp

Vcal

LS

Pixel+

Dis

Column1 Column22

DOUT

Pixel: Preamp-Shaper

Paul Scherrer Institut

Ch. Brönnimann, SLS

FC

FB

SF

FC=folded cascodeSF=source followerFB=Feedback

Preamp Shaper

t ~30nst ~60ns

peak

shape

200f80f

1.7f10f 20f

ShaperComp

100f

Preamp

I =I +Icomp c trim

Vcal

SLS02 Analog Part Results

Paul Scherrer Institut

Ch. Brönnimann, SLS

! Noise measurements (without detector):

ENC ~50e- (P=75 µW/pixel, tsh = 100 ns)

! Amplification: ~60mV/1000e-

! Linearity limit: ~6000e (21keV)y = 0.0564x + 18.14

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000 5000 6000 7000

Analog out signal

Calibrationsignal

100ns/div, Ch1: 100mV/div, Ch2: 50mV/div

Signal charge

AnalogOutput[mV]

VRF\VRFS-700 -600 -500 -400 -300 -200

300 96 71 63 74 45 70200 95 69 61 56 50 77100 96 82 67 75 64 78

0 120 98 100 75 83 100

-700 -600 -500 -400 -300 -200300

1000

20

40

60

80

100

120

100-120

80-100

60-80

40-60

20-40

0-20

Noise depence on feedback resistors settings

Pixel: Comparator and trimming

Paul Scherrer Institut

Ch. Brönnimann, SLS

Vtrim

T1 T2 T3

100f

I =5 Ab µ

I ~0.2 Ac µI ~1 Ac0 µ

local global

Threshold setting

Inc

Outc

Dis

Comp

Levelshift

AC-coupled comparator with diode feedback

•simple inverter as comparator•comparator biasing done via pn-junction of the diode ->

expect lower threshold variations on the chip•radiation insensitive•low power consumption

Comparator Results

Paul Scherrer Institut

Ch. Brönnimann, SLS

! Minimum Threshold < 700e-

! Threshold variation: 130 e- untrimmed

Trimbits SLS04

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

4.14.154.24.254.34.354.4

Vtrim [V]

DV

thr

[e]

Trim1

Trim2

Trim4

Trim7

Power

Threshold trimming:

Very low trim currents

Paul Scherrer Institut

Ch. Brönnimann, SLS

SLS03: 2cm long column biased via periphery

AOUT of Pixel #18 and #90

-40

-20

0

20

40

60

80

100

120

140

160

-200 0 200 400 600 800 1000 1200 1400

time [ns]

Amplitude [mV]

Pixel 18Pixel 90

1. supply in [V] out [V] ∆ [V]

VD+ 5.025 4.81 -0.22VD- 0.000 0.22 +0.22VA+ 5.024 4.93 -0.09VA- 0.000 0.10 +0.10

VSF- 1.012 1.14 +0.13VC- 2.983 3.06 +0.08

VGND 3.741 3.50 -0.24Vsh 3.741 3.74 ±0.00Vg+ 5.024 4.92 -0.10VC+ 5.024 4.95 -0.07

90

18

1

supplies

Ch. Brönnimann, SLS

Paul Scherrer Institut

SLS05 Architecture

&

CTIN

DIN

DCLK

EN

CALFF

Shift Shift

C 1Φ CΦ2 DOUT AOUT CHSEL PSELCTOUT

Chip Control

>

R 1Φ

RTIN

R 2Φ

RTOUT

Shift

Shift

Shift

Shift

Shift

Shift

Pad200f

200f

100f

1.5f10f30f

PrSh

Comp

RS&CS0: Readout1: Count

clk

comp

Xor

In

Clockgen

XOR

shift shift shift shift shift

shift shift shift

Phi1

Phi2

Bit1 Bit2 Bit3 Bit4 Bit5

Bit15 Bit14 Bit13

Vcomp

Vrfs Vrf

LS

+

Dis

Trim

bit 1

Trim

bit 2

15-bitcounter

& &

&

ColumnControl

InCal Clk Dis

Shift

VA-

VD+

Row Control

RS&CS

1: CS active0: Selected pixel in cnt mode

CTOUT

CTOUT

PSEL

CHSEL

CSAout

{

PSEL

Pixel

CHSEL

CHSEL

+

VC-

Paul Scherrer Institut

Ch. Brönnimann, SLS

Final Chip: Yield estimation

Yield measurements of SLS02 chip (22x30 pixels):

Defects due to dynamic logic (Semi-static SR in Pixels):

3.8x10-4 /bit -> 5.8x10-3/pixel

(Yield for 85 pixel column: 60%)

Defects in analog part:

3/19=0.842/chip

Yield estimation for 48 x 85 pixel chip

XY-Adressing, 133 SR-cells: 0.898

Analog part 0.346

30 bad pixels 0.916

Expected overall yield 0.28

Binomial Distribution

0.000E+00

2.000E-01

4.000E-01

6.000E-01

8.000E-01

1.000E+00

4045 4050 4055 4060 4065 4070 4075 4080 4085

Nr of Pixels working

Pro

bab

ility

Sum

Design of a large read-out chip for proteincrystallography:

Conclusions

Paul Scherrer Institut

Ch. Brönnimann, SLS

Prototype chips with 22x30 pixels are working

Simulated final chip with one 20mm long column-> working

Dynamic logic in DMILL is a yield killer

Design with yield tolerant architecture is a must