pions in nuclei and tensor force

30
10.2.23 [email protected] 1 Pions in nuclei and tensor force Hiroshi Toki (RCNP, Osaka) in collaboration with Yoko Ogawa (RCNP, Osaka) Jinniu Hu (RCNP, Osaka) Takayuki Myo (Osaka Inst. Tech.) Kiyomi Ikeda (RIKEN)

Upload: jamal

Post on 12-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Pions in nuclei and tensor force. Hiroshi Toki (RCNP, Osaka) in collaboration with Yoko Ogawa (RCNP, Osaka) Jinniu Hu (RCNP, Osaka) Takayuki Myo (Osaka Inst. Tech.) Kiyomi Ikeda (RIKEN). Pion is important !! In Nuclear Physics. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Pions in nuclei and tensor force

10.2.23 [email protected] 1

Pions in nuclei and tensor force

Hiroshi Toki (RCNP, Osaka)in collaboration with

Yoko Ogawa (RCNP, Osaka)Jinniu Hu (RCNP, Osaka)

Takayuki Myo (Osaka Inst. Tech.)Kiyomi Ikeda (RIKEN)

Page 2: Pions in nuclei and tensor force

10.2.23 [email protected] 2

Pion is important !! In Nuclear Physics

Yukawa introduced pion as mediator of nuclear interaction for nuclei. (1934)

Nuclear Physics started by shell model with strong spin-orbit interaction.

  (1949: Meyer-Jensen: Phenomenological)The pion had not played the central role in

nuclear physics until recent years.

Page 3: Pions in nuclei and tensor force

10.2.23 [email protected] 3

Variational calculation of light nuclei with NN interaction

C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51(2001)

ΨVπ Ψ

Ψ VNN Ψ~ 80%

Ψ=φ(r12)φ(r23)...φ(rij )

VMC+GFMC

VNNN

Fujita-Miyazawa

Relativistic

Pion is a key elementWe want to calculate heavy nuclei!!

Page 4: Pions in nuclei and tensor force

10.2.23 [email protected] 4

RCNP experiment (good resolution)

Y. Fujita et al.,E.Phys.J A13 (2002) 411

H. Fujita et al., PRC

Ψf στ Ψ i

Not simpleGiant GT

Page 5: Pions in nuclei and tensor force

10.2.23 [email protected] 5

The pion (tensor) is important.

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Deuteron (1+)QuickTime˛ Ç∆

TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

NN interaction S=1 and L=0 or 2

π

Page 6: Pions in nuclei and tensor force

10.2.23 [email protected] 6

Deuteron and tensor interaction

Central interaction has strong repulsion.Tensor interaction is strong in 3S1 channel.S-wave function has a dip.D-wave component is only 6%.Tensor attraction provides 80% of entire at

traction.D-wave is spatially shrank by a half.

rσ 1 ⋅

r q

r σ 2 ⋅

r q =

1

3q2S12( ˆ q ) +

1

3

r σ 1 ⋅

r σ 2q

2

S12( ˆ q ) = 24π Y2( ˆ q ) σ 1σ 2[ ]2[ ]0

Pion Tensor spin-spin

Page 7: Pions in nuclei and tensor force

10.2.23 [email protected] 7

Chiral symmetry (Nambu:1960)

Chiral symmetry is the key symmetry to connect real world with QCD physics

Chiral model is very powerful in generating various hadronic states

Nucleon gets mass dynamicallyPion is the Nambu-Goldstone particle of the c

hiral symmetry breaking

Page 8: Pions in nuclei and tensor force

10.2.23 [email protected] 8

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

He was motivated by the BCS theory (1958) .

E p = ±( p2 + m2)1/ 2

Nobel prize (2008)

rσ ⋅

rp ψ R + mψ L = E pψ R

−r σ ⋅

r p ψ L + mψ R = E pψ L

Δ is the order parameter is the order parameter

m

Particle number Chiral symmetry€

εiψ i + Δψ i * = E iψ i

−ε iψ i * + Δ*ψ i = E iψ i

*

E i = ±(ε i2 + Δ2)1/ 2

Page 9: Pions in nuclei and tensor force

10.2.23 [email protected] 9

Nambu-Jona-Lasinio Lagrangian

Mean field approximation; Hartree approximation

Fermion gets mass.

The chiral symmetry is spontaneously broken.

ψ ψ → ψ ψ cos(2α ) +ψ iγ 5ψsin(2α )

ψ iγ 5ψ →ψ iγ 5ψ cos(2α ) −ψ ψsin(2α )

ψ → e iαγ 5ψChiral transformation

Pion appears as a Nambu-Goldstone boson.

Page 10: Pions in nuclei and tensor force

10.2.23 [email protected] 10

Chiral sigma model

Chiral sigma model

Linear Sigma Model Lagrangian

Polar coordinate

Weinberg transformation

Y. Ogawa et al. PTP (2004)

Pion is the Nambu boson of chiral symmetry

Page 11: Pions in nuclei and tensor force

10.2.23 [email protected] 11

Non-linear sigma modelNon-linear sigma model

Lagrangian = fπ + φ

whereM = gσfπ M* = M + gσ φ

mπ2 = 2 + fπ mσ

2 = 2 +3 fπ

m = gfπ m

= m + gφ

~ ~

Free parameters are and

gω (Two parameters)

N

Page 12: Pions in nuclei and tensor force

10.2.23 [email protected] 12

Ψ=Ψ(σ ,ω)⊗Ψ(N)Mean field approximation for mesons.

Ψ(N) = C0 RMF + Ci

i

∑ 2p − 2hi

Nucleons are moving in the mean field and occasionally broughtup to high momentum states

due to pion exchange interaction

σ

σ

h h

p p

Bruekner argument

Relativistic Chiral Mean Field ModelWave function for mesons and nucleons

Page 13: Pions in nuclei and tensor force

10.2.23 [email protected] 13

Relativistic Brueckner-Hartree-Fock theory

Brockmann-Machleidt (1990)

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

G = V + VQ

eG

Us~ -400MeVUv~ 350MeV

π

πrelativity

RBHF theory provides a theoretical foundation of RMF model.

RBHF

Non-RBHF

Page 14: Pions in nuclei and tensor force

10.2.23 [email protected] 14

Density dependent RMF model

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Brockmann Toki PRL(1992)

Page 15: Pions in nuclei and tensor force

10.2.23 [email protected] 15

Why 2p-2h states are necessary for the tensorinteraction?

G.S.

Spin-saturated

The spin flipped states are alreadyoccupied by other nucleons.

Pauli forbidden

σ1σ 2[ ]2⋅Y2(r)

Page 16: Pions in nuclei and tensor force

10.2.23 [email protected] 16

Energy minimization with respect tomeson and nucleon fields

δΨ H Ψ

Ψ Ψ= 0

δE

δσ= 0

δE

δω= 0

(Mean field equation)

δE

δψ i(x)= 0

δE

δCi

= 0

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅBQuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 17: Pions in nuclei and tensor force

10.2.23 [email protected] 17

Energy

Energy minimization

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 18: Pions in nuclei and tensor force

10.2.23 [email protected] 18

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

RCMF equation

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Page 19: Pions in nuclei and tensor force

10.2.23 [email protected] 19

Energy minimization with respect tomeson and nucleon fields

δΨ H Ψ

Ψ Ψ= 0

δE

δσ= 0

δE

δω= 0

(Mean field equation)

δE

δψ i(x)= 0

δE

δCi

= 0

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB€

δE

δbi

= 0 (Corrrelation function)

Page 20: Pions in nuclei and tensor force

10.2.23 [email protected] 20

Unitary Correlation Operator Method

H. Feldmeier, T. Neff, R. Roth, J. Schnack, NPA632(1998)61

corr. uncorr. SM, HF, FMDCΨ = ⋅Φ ←

{ }12exp( ), ( ) ( )ij r r

i j

C i g g p s r s r p<

= − = +∑

short-range correlator † 1 (Unitary trans.)C C−=

rp p pΩ= +r r r

Bare Hamiltonian

† : Hermitian generatorg g=

Shift operator depending on the relative distance r

C+HCΦ = EΦ

HΨ = EΨ

(UCOM)

Page 21: Pions in nuclei and tensor force

10.2.23 [email protected] 21

Short-range correlator : C

† 1 1

( ) ( )r rC p C p

R r R r+ +

=′ ′

†C lC l=r r

† ( )C r C R r+= †12 12C S C S=†C sC s=r r

Hamiltonian in UCOM

2-body approximation in the cluster expansion of operator€

H = T + V = Ti

i

∑ − TC .M + V (rij

i< j

∑ )

C+HC = ˜ T + ˜ V

˜ T = T + ΔT

ΔT = uij

i< j

˜ V = V (R+

i< j

∑ (rij ))

( ( ))( )

( )

s R rR r

s r+

+′ =

Page 22: Pions in nuclei and tensor force

10.2.23 [email protected] 22

Numerical results (1)

4He12C16O

Ogawa TokiNP 2009

Adjust binding energyand size.

Page 23: Pions in nuclei and tensor force

10.2.23 [email protected] 23

Numerical results 2

The difference between 12C and 16O is 3MeV/N.

The difference comes from low pion spin states (J<3).This is the Pauli blocking effect.

P3/2

P1/2

C

O

S1/2

Pion energy Pion tensor provides large attraction to 12C

Page 24: Pions in nuclei and tensor force

10.2.23 [email protected] 24

Chiral symmetry

Nucleon mass is reducedby 20% due to sigma.

We want to work out heavier nuclei for magic number.Spin-orbit splitting should be worked out systematically.

Ogawa TokiNP(2009)

Not 45%

N

Page 25: Pions in nuclei and tensor force

10.2.23 [email protected] 25

Nuclear matter

Hu Ogawa TokiPhys. Rev. 2009

ψ ψ

E/A

Total

Pion

Σ ~ 50MeV

Page 26: Pions in nuclei and tensor force

10.2.23 [email protected] 26

Deeply bound pionic atom

Toki Yamazaki, PL(1988)

Predicted to exist

Found by (d,3He) @ GSIItahashi, Hayano, Yamazaki..Z. Phys.(1996), PRL(2004)

Findings: isovector s-wave

b1

b1(ρ )=1− 0.37

ρ

ρ 0

fπ2mπ

2 = −2mq ψ ψ

ψ ψ

ψ ψ=1− 0.37

ρ

ρ 0

b1 ∝1

fπ2

Page 27: Pions in nuclei and tensor force

10.2.23 [email protected] 27

Halo structure in 11LiQuickTime˛ Ç∆

TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Deuteron-like state ismade by 2p-2h states in shell model.

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Deuteron wave function

Myo Kato Toki Ikeda PRC(2008)

Page 28: Pions in nuclei and tensor force

10.2.23 [email protected] 28

QuickTime˛ Ç∆TIFFÅiîÒà≥èkÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Tensor interaction needs2p-2h excitation of pnpair.

P1/2 orbit is used for thisExcitation.

This orbit is blocked When we want to put two neutrons.

S1/2 orbit is free of this.

Tensor interaction

Page 29: Pions in nuclei and tensor force

10.2.23 [email protected] 29

ConclusionPion (tensor) is treated within relativistic chi

ral mean field model.We extended RBHF theory for finite nuclei.Nucleon mass is reduced by 20%Chiral condensate is similar to the model in

dependent value. (Sigma term~50MeV)Deeply bound pionic atom seems to verify p

artial recovery of chiral symmetry.

Page 30: Pions in nuclei and tensor force

10.2.23 [email protected] 30

Picture of nucleus

proton

neutron

pionic pair

Snapshot