phytoplankton and primary production-1folk.uio.no/steinka/roya/marine botany 1-26jan.pdf · marine...

41
Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen 2009 k a Literature (Pensum): Chap. 13, 14 in Garrison Chap. 5 in Skjoldal p. 3-50 in Paasche (or Chap 2 in Kaiser et al.)

Upload: others

Post on 31-Oct-2019

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Marine pelagic ecology BIO 4400

Phytoplankton and primaryproduction-1

Bente Edvardsen 2009ka

Literature (Pensum):

Chap. 13, 14 in Garrison

Chap. 5 in Skjoldal

p. 3-50 in Paasche (or Chap 2 in Kaiser et al.)

Page 2: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Aims of learning - marine botanyGive an understanding and knowledge on:• Ecological role of phytoplankton• Primary production, photosynthesis and growth• Effects of ecological factors: light, nutrients,

temperature, salinity • Distribution in time and space• Ecological strategies• Phytoplankton diversity

Page 3: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Content

• Phytoplankton size groups• Primary production• Light• Photosynthesis and effect of light• Nutrients (C, N, P and Si)

Page 4: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Phytoplankton (Planteplankton)

Most are microscopically small, drifting, single celled algae. They are small to float and to have an efficient nutrient uptake. Some live in colonies.

Photo: Jahn Throndsen (JT)

Page 5: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Size variation of phytoplankton

The size of phytoplankton:< 2 µm picoplankton2-20 µm nanoplankton20-200 µm microplankton200-2000 µm mesoplankton

Page 6: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Plankton and size-groups

(Sieburt 1978)

Page 7: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Microplankton (20-200 μm)

CeratiumDinophysis

Guinardia

dinoflagellates diatoms

JTJT

Page 8: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Nanoplankton (2-20 μm)

ChrysochromulinaEmiliania huxleyi

haptophytes

cryptophytes

Identification in electron microscopy often needed

JT

Page 9: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Picoplankton (0.2-2 μm)

Micromonas pusilla

Prokaryota Eukaryota

Prochlorococcus

Synechococcus

Page 10: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Phytoplankton as primary producers

Half of the Earth’s primary productivity is by marine microbes

Phytoplankton

bacteria

protists

zooplankton

From Paasche 2005

Page 11: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Nutrition in microalgae (trophy)

• autotrophy: use CO2 as carbon source and light as energy• auxotrophy: autotrophy, but need some

organic compounds e.g. vitamins• heterotrophy: use organic carbon as

carbon source • phagotrophy: nutrition from organic particles• osmotrophy: nutrition from dissolved organic

material (DOM)• mixotrophy: both autotrophy and

heterotrophy

Page 12: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Primary production - definition

Formation of organic matter through assimilation of inorganic elements through photosynthesis or chemosynthesis

Page 13: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Photosynthesis

light6CO2 + 6H2O + -> C6H12O6 + 6O2

Garrison, Fig 13.2

Page 14: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Chemosynthesis in chemolithotrophic bacteriae.g. in sediments

Garrison, Fig 13.4

Page 15: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Chemolithotrophic bacteria

Beggiatoa is a sulfur-oxidizing bacteria

Keiser et al. Fig 2.7

Page 16: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Primary production in the sea

• phytoplankton 90-96%• benthic algae 2-5%• chemolithotrophic bacteria 2-5%

• c. 50 . 109 tonnes C per year in the sea• c. 60 . 109 tonnes C per year on land

• biomass 1-2 . 109 tonnes in the sea• c. 800 109 tonnes on land

Page 17: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Primary production:Carbon assimilationper area (or volume) and per time unit

Absolute units:g C· m -2 · day-1 (or y-1)or g C· L-1 ·h-1

Specific units:

g C· C-1 · day-1Garrison, Fig 13.5

Page 18: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Effect of environmental factors on primary production

• Light reaction in the photosynthesis: light, CO2

• Dark reaction (production of sugar, then lipids and proteins): nutrients and temperature

Page 19: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Photosynthesis:

RUBISCO

RUBISCO= Ribulosebiphosphate carboxylase/oxygenase

Light reaction

dark reaction

Calvin - Bensoncycle

Page 20: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Radiation (stråling) – visible light

Energy E, E= h f or E=hc/ λwhere f is frequency h is Plancks constant, c is light speed and λ (lambda) is wavelength of irradiance

Page 21: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Units for irradiance (innstråling)

Paasche Fig. 1

Page 22: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Irradiance varieswith latitude and through the year

Paasche 2005, Fig. 2 og 3

Page 23: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Light in the sea

Page 24: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Spectral distribution in water

Skjoldal

Page 25: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

JT03

Light attenuation in water

Page 26: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Attenuation(svekking) of

light in varioustypes of water

Paasche Fig. 6

Pure sea water

Coastal water

Page 27: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Irradiance(Innstråling)

Euphotic zone = the well lit zonewith enough lightfor growth

Approx. 1% lightdepth (the depth where 1% ofsurface light remains)

Garrison, Fig 13.15

Page 28: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

PigmentsAlgae can utilise irradiance of wave

lengths 350-700 nm = PAR photosynthetically available radiation≈ visible light (400-700 nm)

PS I + II: chlorophyll a

Accessory pigments:chlorophyll b, c• carotenoids (carotenes , fucoxanthin

etc, xanthofylls)• Phycobiliproteins (phycoerythrin,

phycocyanin, allophycocyanin)

“Sunglass pigments”:• carotenoids (diatoxanthin,

diadinoxanthin, zeaxanthin)WE

Photo: Wenche Eikrem

Page 29: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Absorption spectrum for chlorofyll a

= the amount of absorbed light at various wave lenghts

Page 30: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Absorption spectrum for some accessorypigments

they fill inn some of the “optical window”

Page 31: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Absorptionspectra and

action spectra

= photosynthesis(O2 development) at various wavelengths)

dinoflagellate

diatom

Sea lattice

kelp

Page 32: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Photosynthsis as a function of irradiance(P/E curve)

P photosynthesis

R respiration

I (=E) irradiance

Ik saturation irradiance

Ic compensation irradiance

Pmax light saturated photosynthesis

N nett

B gross

Page 33: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

P/E curve

PBmax: Light saturated photosynthesis per biomasse (measured

as chlorophyll a)

α shows how efficient P is

Page 34: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Photoacclimation

High light adapted

Low light adapted

Irradiance

Page 35: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Photosynthesis vs. light and depth

DC = compensation depth

photosynthesis=respiration

photoxidation

average DC ≈ lower limit for euphotic zone

Page 36: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen
Page 37: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Compensation and critical depth

Euphotic zone

Kaiser et al.

Page 38: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Effect of environmental factors on primary production

• Light reaction in the photosynthesis: light, CO2

• Dark reaction (production of sugar, then lipids and proteins): nutrients and temperature

Page 39: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Elemental composition of algal cells

99% of the living biomass is made up of C, H, O and N

Page 40: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Dissolved inorganic carbon in sea water

Page 41: Phytoplankton and primary production-1folk.uio.no/steinka/roya/Marine botany 1-26jan.pdf · Marine pelagic ecology BIO 4400 Phytoplankton and primary production-1 Bente Edvardsen

Carbon dioxide• At 35 PSU and pH 8.2, 90% of inorganic

carbon occurs as HCO3-

• This is converted within the cell to CO2

• The supply of inorganic C for photosynthesis is rarely limiting in marine systems