phytochemical study of oligoresveratrol from...

26
PHYTOCHEMICAL STUDY OF OLIGORESVERATROL FROM SOME SPECIES OF HOPEA Sri Atun Department Chemistry education, Universitas Negeri Yogyakarta, Karangmalang, Depok, Sleman, Yogyakarta, 55281

Upload: dangdieu

Post on 25-Apr-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

PHYTOCHEMICAL STUDY OF OLIGORESVERATROL FROMSOME SPECIES OF HOPEA

Sri Atun

Department Chemistry education, Universitas Negeri Yogyakarta, Karangmalang, Depok, Sleman, Yogyakarta, 55281

Hopea is one the main genus of Dipterocarpaceae, consisting of approximately 100 species and widely distributed in Indonesia specially in Kalimantan

The local name is “ cengal, merawan hitam or pengarawan”. The plant ussually can be used as material building, plywood etc.

This family of plant is known to produce a variety of resveratrol oligomer

These structures are very interesting and showed interesting biological activity, such as antibacterial, anticancer, antihepatotoxic, and anti-HIV

Objective

The following discussion will focus on the structure diversity of oligoresveratrol that have

been found, biogenetic relationship, and biological activity of the compound, that has

been reported until 2008

How to isolated oligoresveratrol ?

Activity test

elusidasion structure by

spektroskopi methode

(UV, FT-IR, NMR, MS)

STRUCTURE

MOLECULE

Repeated Chromatography

EKSTRAK

Extraction by organic solvent :

acetone or methanol

Sample: milled dried stem bark

BIOACTIVE

COMPOUNDS

Pure compounds

S-1, S-2, … dst

By fractionated (VLC)

Fr. A Fr. B Fr. C Fr. D

HOW TO ISOLATED COMPOUNDS FROM NATURAL PRODUCT

Maserated by organic solvent removal of the

solvent under reduced pressure

Prepared for VLC

VLC Series of fraction

1

2

3

4

5

chromatogram from chromatography coloumn

How to identification these structure ?

Spektrum UV dan IR Vaticanol B

Spectrum 1H and 13C NMR of vaticanol B

O

O

HO

HO

HO

HO

HO HO

OH OH

OH

H

H

H HHH

H

H

OH

Spectrum H-H COSY NMR of vaticanol B

8b7c

8a8c8d

7b7d7a12b

8b

7c

8a8c

8d

7b

7d

7a

12b

O

O

HO

HO

HO

HO

HO

HO

OH

OH

OH

H

H

H H

H

H

H

H

OH

D1D2

A1

A2

B1

B2

C1

C2

7a

8a

7d

8d

7b

Table 1. Oligoresveratrol compounds from some species of Hopea

Species Oligoresveratrol

H. odorata (Cogon, 1970), Hopheaphenol

H. cardifolia (Sotheesswaran, 1983)

copaliferol A; stemonoporol

H. jucunda (Diyasena, 1985) Hopeaphenol

H. malibato (Dai, 1998), malibatol A; malibatol B ; dibalanokarpol

H. parviflora (Tanaka, 2000), (-)-ε-viniferin ; (-)-ampelopsin A; balanocarpol; (+)-parviflorol ; hopeaphenol

H. utilis (Tanaka, 2001) vaticanol B; hopeaphenol

H. sangal (Sri Atun, 2004), (-)-ampelopsin A ; (-)-ε-viniferin ; vaticanol B; hopeaphenol

H. bancana (Tukiran, 2004) (+)-α-viniferin ; hopeaphenol

H. mengarawan ( Sri Atun, 2006)

Balanocarpol; heimiol A; vaticanol G; vaticanol B;

H. odorata ( Sri Atun, 2005-2006)

balanokarpol; hopeafenol; ampelopsin H; hemlesyanol C

H. nigra ( Sri Atun, 2006) Vaticanol G

Diversity structure oligoresveratrol from Hopea

Monomer and dimer resveratrol

O

H

H

HO OH

HOOH

HO

HO

HO

OH

OOH

OH

H

H

HOH

H

HO OH

OH

Resveratrol

(H. utilis)

ε-viniferin

(H. parviflora)

(-)-ampelopsin A

(H. parviflora,

H. sangal )

HO

HO

OH

OOH

OH

H

H

HOHH

(-)-balanokarpol

(H. parviflora)

HO

OH

O

HO

OH

HO

H

OH

H

(+)-parviflorol

(H. parviflora)

HO

HO

HO

O

OH

OH

HOH

H

HO

HO

OH

O

OH

OH

HOH

H

HO

Malibatol A malibatol B

(H. malibato)

Trimer resveratrol

OH

OH

OH

OH

HO

OH

HO

HO

H H

H

HOH

OH

OH

OH

OH

HO

OH

HO

HO

H H

HH

H H OH

O

O

O

HO

HO

HO

HO

OH

H

HH

H

HH

OH

Stemonoporol

(H. cardifolia)

Kopaliferol A

(H. cardifolia)

α-viniferin

(H. bancana)

Tetramer resveratrol

O

O

HO

HO

HO

HO

HO HO

OH OH

OH

H

H

H HHH

H

H

OH

OHO

HO

HO

OH

OH

H

H

H

O

OH

OHHOHO

HO

H

H

H

HH

HO

HO

O

OH

OH

OH

H

H

OHH

HO

HO

O

HO

HO

OH

H

H

HO H

Vatikanol B

(H. sangal, H. utilis)

Dibalanokarpol

(H. malibato)

(-)-hopeafenol

(H. sangal, H. odorata, H. parviflora, H. utilis, H. bancana

O

O

HO

HO

OH

H

H

OH OH

HH

HOHO OH

OH

OH

H

H

H

H

A1

A2

B1

B2

1a

4a

7a

8a

10a12a

7b

8b

1b

4b

12b

14b

Ampelopsin H (H. odorata) (Sri Atun, 2005)

O

OH

H

HO

OH

HO

OH

OH

H H

H

HH

H

OH

HO

OH

OH

OH

A1

A2

B2

B1

C1

C2

D1

D2

1a

4a

7a

8a

10a12a

7b8b

4b

12b

7c

8c

12c

7d

8d

4d

12d

4c

Hemlesyanol C (H. odorata)(Sri Atun, 2006)

Tetramer resveratrol

HO

HO

OH

O

H

H

HO OH

HOOH

HO

COOH

HONH2

COOH

Carbohydrate

OH

OH

OH

OH

HO

OH

HO

HO

H H

HH

H H OH

O

O

O

HO

HO

HO

HO

OH

H

HH

H

HH

OH

HO

HO

OH

OOH

OH

H

H

HOH

H

HO

HO

HO

O

OH

OH

HOH

H

HO

HO

OH

O

OH

OH

HOH

H

HO

HO

OH

O

HO

OH

HO

H

OH

H

O

O

HO

HO

HO

HO

HO HO

OH OH

OH

H

H

H HHH

H

H

OH

OHO

HO

HO

OH

OH

H

H

H

O

OH

OHHOHO

HO

H

H

H

HH

Biogenetic relationship of oligoresveratrol structure from Hopea genus

Biological activity of oligoresveratrol compounds from Hopea

HO OH

OHO

H

H

HO OH

HOOH

HO

HO

HO

OH

OOH

OH

H

H

HOH

H

HO

HO

OH

OOH

OH

H

H

HOHH

Resveratrol

anticancer

ε –viniferin

antibacterial

(-)-ampelopsin A

sitotoxicMalibatol A malibatol B

sitotoxic

HO

HO

HO

O

OH

OH

HOH

H

HO

HO

OH

O

OH

OH

HOH

H

HO

HO

HO

O

OH

OH

OH

H

H

OHH

HO

HO

O

HO

HO

OH

H

H

HO H

OHO

HO

HO

OH

OH

H

H

H

O

OH

OHHOHO

HO

H

H

H

HH

(-)-balanokarpol

Anti HIV

Dibalanokarpol

Anti-HIV

(-)-hopeafenol

(sitotoxic)

Table 2. Data activity test as hydroxyl radical scavenger

Sample

IC50

( g/ml)

Note

Balanocarpol 1802,3 Less active

Heimiol A 4575.3 Less active

Vaticanol G 683.96 active

Vaticanol B 2146.6 Less active

Hopheaphenol 61,8 High active

Ampelopsin H 4840,0 Less active

Hemlesyanol C 425,5 active

Ascorbat acid 83,9 High active

Butylated Hydroxy Toluene

(BHT)

1328,1 Less active

Table. 4. LC50 of some compounds from steam bark of Hopea

against HeLa-S3 cell

No Sample LC50 g/ml Note

1 Balanocarpol 682,16 Less active

2 Heimiol A Very high Not active

3 Vaticanol G Very high Not active

4 Ampelopsin H 8,12 Very active

5 Vaticanol B 92,04 Very active

6 Hopeaphenol 1931,52 Less active

7 Hemsleyanol C 531,00 Active

8 Doksorubisin (positif

control)

96,27 Very active

Table. 5. LC50 of some compounds from steam bark of

Hopea against Raji cell

No Sample LC50

g/ml

Note

1 Balanocarpol 277,58 Active

2 Heimiol A Very high Not active

3 Vaticanol G 11050,96 Not active

4 Ampelopsin H 91,07 Very active

5 Vaticanol B 107,00 Very active

6 Hopeaphenol 135,64 Active

7 Hemsleyanol C 166,84 Active

8 Doksorubisin (positif control) 156,64 Active

Hela S3 cell lines Hela S3 cell lines before experiment after experiment

Cytotoxicity test by Hela S3 cell lines

Raji cell lines Raji cell lines before experiment after experiment

Cytotoxicity test by Raji cell lines

FITOFARMAKA ANTIHEPATOTOKSIK EKSTRAK TUMBUHAN H. MENGARAWAN

Uji aktivitas antihepatotoksik (Uji Farmakologi)-Dosis 75 – 300 mg/kg BB-Dosis 10-50 mg/kg BB

Uji keamanan :

• Toksisitas acut

• Toksisitas subkronis

• Teratogenik

• Mutagenik

Standarisasi :

• Bahan baku

• Proses ekstraksi

• Senyawa aktif

(balanokarpol)

Formulasi Shelf life produk

Uji Praklinik Produk Jadi

• Toksisitas acut

• Toksisitas subcronis

Uji Klinik(Fase 1, 2,3,4)

Analisis proses produksi; pemasaran

Obat herbal terstandar

(Pendaftaran Regristasi)

Conclusion

Molecular structure of oligoresveratrol have ben found in the Hopeagenus included dimer, trimer and tetramer with resveratrol. The structures ofthe oligoresveratrol isolated contain a heterocyclic ring namely trans-2-aryl-2,3-dihydrobezofuran, originated from oxidative coupling between two unitof resveratrol to produce (-)-ε-viniferin (2) and other compounds. Thesestructures are very interesting and showed interesting biological activity,such as antibacterial, anticancer, antihepatotoxic, and anti-HIV

Acknowledgements

This work was supported by Competitive research (HB 2004-2005); Fundamental research (2006-2007; Rapid (2007-2009) from Directorate General Higher Education, Republic of Indonesia; competitive grant (Insentif Riset Dasar, Ristek-2008), Ministry Research and Technology, Republic of Indonesia The authors are grateful to my teamwork Prof. Dr. Nurfina Aznam and Retno Arianingrum, M.Si(UNY), Prof. Masatake Niwa and Dr. Yoshiaki Takaya (Meijo University, Japan) who contributed for this study.