physics 521, quantum mechanics i problem set #10:...

4
Physics 521, Quantum Mechanics I Problem Set #10: Angular Momentum in Quantum Mechanics Cohen-Tannoudji et al., Chapter VI, Sakurai 3.1, 3.5, 3.6, Merzbacher Chapter 11 Due: Tues. Nov. 25, 2014 Problem 1: Cohen-Tannoudji et al. Vol. I, Prob. 5, p. 767 (10 Points). Using Spherical Harmonics Problem 2: Cohen-Tannoudji et al. Vol. I, Prob. 6, p. 768 (20 Points). The Electric Quadrapole Moment

Upload: dotuong

Post on 20-May-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physics 521, Quantum Mechanics I Problem Set #10: …info.phys.unm.edu/~ideutsch/Classes/Phys521F14/ProblemSets/Phys5… · Physics 521, Quantum Mechanics I Problem Set #10: Angular

Physics 521, Quantum Mechanics I

Problem Set #10: Angular Momentum in Quantum Mechanics Cohen-Tannoudji et al., Chapter VI,

Sakurai 3.1, 3.5, 3.6, Merzbacher Chapter 11 Due: Tues. Nov. 25, 2014

Problem 1: Cohen-Tannoudji et al. Vol. I, Prob. 5, p. 767 (10 Points).

Using Spherical Harmonics

Problem 2: Cohen-Tannoudji et al. Vol. I, Prob. 6, p. 768 (20 Points). The Electric Quadrapole Moment

Page 2: Physics 521, Quantum Mechanics I Problem Set #10: …info.phys.unm.edu/~ideutsch/Classes/Phys521F14/ProblemSets/Phys5… · Physics 521, Quantum Mechanics I Problem Set #10: Angular

Problem 3: The Isotropic Harmonic Oscillator in Two Dimensions (25 Points) Consider a particle moving in a 2D isotropic harmonic potential ˆ V (x, y) = 1

2mω 2( ˆ x 2 + ˆ y 2 ) .

(a) Show that the Hamiltonian commutes with ˆ L z . Please interpret.

(b) Defining the usual polar coordinates (ρ,φ) via x = ρcosφ , y = ρ sinφ , show that the

Hamiltonian can be written as

ˆ H =1

2mˆ p ρ

2 +ˆ L z

2

ρ2

⎛ ⎝ ⎜ ⎞

⎠ ⎟ +

12

mω 2 ˆ ρ 2 ,

where ˆ p ρ

2 = −! 2 1ρ

∂∂ρ

ρ∂∂ρ

⎛ ⎝ ⎜ ⎞

⎠ ⎟ is the radial momentum squared and

ˆ L z = −i! ∂

∂φ.

(c) Separating coordinates , writing the energy eigenstates ψ n,m (ρ,φ ) = Rn,m(ρ)Φm (φ) ,

with Φm(φ) the usual eigenstates of ˆ L z = −i! ∂

∂φ, find the "radial equation, for Rn,m(ρ) .

(d) In class we solved this problem, separating in Cartesian coordinates Ψ nx , ny (x,y) = unx (x)uny (y) where unx (x ) and uny (y) are the usual energy eigenfunctions

in 1D. The energy eigenvalues are En = !ω (n + 1) with degeneracy n +1 . It must be

possible to expand these eigenfunction in terms of the eigenfunction in polar coordinates. Express the five eigenfunctions Ψ 0, 0(x, y) , Ψ1, 0(x, y) , Ψ 0,1(x, y) , Ψ1,1(x,y), Ψ 2, 0(x, y) , Ψ 0, 2(x, y) in this basis. That is write

Ψnx ,ny(x, y) = cn,m

m=?

?

∑ ψ n,m (ρ,φ), n = nx + ny ,

and thus find the eigenstates ψ n,m (ρ,φ ) for n=0,1, and 2.

(e) Show that Rn,m(ρ) satisfy the radial equation you found in (c)

(f) Finally, given the state Ψ1,1(x,y) , what are the probabilities of finding the system

with angular momentum eigenvalues m = 2,1,0, −1,−2 respectively?

Page 3: Physics 521, Quantum Mechanics I Problem Set #10: …info.phys.unm.edu/~ideutsch/Classes/Phys521F14/ProblemSets/Phys5… · Physics 521, Quantum Mechanics I Problem Set #10: Angular
Page 4: Physics 521, Quantum Mechanics I Problem Set #10: …info.phys.unm.edu/~ideutsch/Classes/Phys521F14/ProblemSets/Phys5… · Physics 521, Quantum Mechanics I Problem Set #10: Angular