physical review d comprehensive all-sky search for periodic gravitational waves...

14
Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data B. P. Abbott, 1 R. Abbott, 1 T. D. Abbott, 2 M. R. Abernathy, 3 F. Acernese, 4,5 K. Ackley, 6 C. Adams, 7 T. Adams, 8 P. Addesso, 9 R. X. Adhikari, 1 V. B. Adya, 10 C. Affeldt, 10 M. Agathos, 11 K. Agatsuma, 11 N. Aggarwal, 12 O. D. Aguiar, 13 L. Aiello, 14,15 A. Ain, 16 P. Ajith, 17 B. Allen, 10,18,19 A. Allocca, 20,21 P. A. Altin, 22 S. B. Anderson, 1 W. G. Anderson, 18 K. Arai, 1 M. C. Araya, 1 C. C. Arceneaux, 23 J. S. Areeda, 24 N. Arnaud, 25 K. G. Arun, 26 S. Ascenzi, 27,15 G. Ashton, 28 M. Ast, 29 S. M. Aston, 7 P. Astone, 30 P. Aufmuth, 19 C. Aulbert, 10 S. Babak, 31 P. Bacon, 32 M. K. M. Bader, 11 P. T. Baker, 33 F. Baldaccini, 34,35 G. Ballardin, 36 S. W. Ballmer, 37 J. C. Barayoga, 1 S. E. Barclay, 38 B. C. Barish, 1 D. Barker, 39 F. Barone, 4,5 B. Barr, 38 L. Barsotti, 12 M. Barsuglia, 32 D. Barta, 40 J. Bartlett, 39 I. Bartos, 41 R. Bassiri, 42 A. Basti, 20,21 J. C. Batch, 39 C. Baune, 10 V. Bavigadda, 36 M. Bazzan, 43,44 M. Bejger, 45 A. S. Bell, 38 B. K. Berger, 1 G. Bergmann, 10 C. P. L. Berry, 46 D. Bersanetti, 47,48 A. Bertolini, 11 J. Betzwieser, 7 S. Bhagwat, 37 R. Bhandare, 49 I. A. Bilenko, 50 G. Billingsley, 1 J. Birch, 7 R. Birney, 51 S. Biscans, 12 A. Bisht, 10,19 M. Bitossi, 36 C. Biwer, 37 M. A. Bizouard, 25 J. K. Blackburn, 1 C. D. Blair, 52 D. G. Blair, 52 R. M. Blair, 39 S. Bloemen, 53 O. Bock, 10 M. Boer, 54 G. Bogaert, 54 C. Bogan, 10 A. Bohe, 31 C. Bond, 46 F. Bondu, 55 R. Bonnand, 8 B. A. Boom, 11 R. Bork, 1 V. Boschi, 20,21 S. Bose, 56,16 Y. Bouffanais, 32 A. Bozzi, 36 C. Bradaschia, 21 P. R. Brady, 18 V. B. Braginsky, 50 M. Branchesi, 57,58 J. E. Brau, 59 T. Briant, 60 A. Brillet, 54 M. Brinkmann, 10 V. Brisson, 25 P. Brockill, 18 J. E. Broida, 61 A. F. Brooks, 1 D. A. Brown, 37 D. D. Brown, 46 N. M. Brown, 12 S. Brunett, 1 C. C. Buchanan, 2 A. Buikema, 12 T. Bulik, 62 H. J. Bulten, 63,11 A. Buonanno, 31,64 D. Buskulic, 8 C. Buy, 32 R. L. Byer, 42 M. Cabero, 10 L. Cadonati, 65 G. Cagnoli, 66,67 C. Cahillane, 1 J. Calderón Bustillo, 65 T. Callister, 1 E. Calloni, 68,5 J. B. Camp, 69 K. C. Cannon, 70 J. Cao, 71 C. D. Capano, 10 E. Capocasa, 32 F. Carbognani, 36 S. Caride, 72 J. Casanueva Diaz, 25 C. Casentini, 27,15 S. Caudill, 18 M. Cavaglià, 23 F. Cavalier, 25 R. Cavalieri, 36 G. Cella, 21 C. B. Cepeda, 1 L. Cerboni Baiardi, 57,58 G. Cerretani, 20,21 E. Cesarini, 27,15 M. Chan, 38 S. Chao, 73 P. Charlton, 74 E. Chassande-Mottin, 32 B. D. Cheeseboro, 75 H. Y. Chen, 76 Y. Chen, 77 C. Cheng, 73 A. Chincarini, 48 A. Chiummo, 36 H. S. Cho, 78 M. Cho, 64 J. H. Chow, 22 N. Christensen, 61 Q. Chu, 52 S. Chua, 60 S. Chung, 52 G. Ciani, 6 F. Clara, 39 J. A. Clark, 65 F. Cleva, 54 E. Coccia, 27,14 P.-F. Cohadon, 60 A. Colla, 79,30 C. G. Collette, 80 L. Cominsky, 81 M. Constancio, Jr., 13 A. Conte, 79,30 L. Conti, 44 D. Cook, 39 T. R. Corbitt, 2 N. Cornish, 33 A. Corsi, 72 S. Cortese, 36 C. A. Costa, 13 M. W. Coughlin, 61 S. B. Coughlin, 82 J.-P. Coulon, 54 S. T. Countryman, 41 P. Couvares, 1 E. E. Cowan, 65 D. M. Coward, 52 M. J. Cowart, 7 D. C. Coyne, 1 R. Coyne, 72 K. Craig, 38 J. D. E. Creighton, 18 T. Creighton, 87 J. Cripe, 2 S. G. Crowder, 83 A. Cumming, 38 L. Cunningham, 38 E. Cuoco, 36 T. Dal Canton, 10 S. L. Danilishin, 38 S. DAntonio, 15 K. Danzmann, 19,10 N. S. Darman, 84 A. Dasgupta, 85 C. F. Da Silva Costa, 6 V. Dattilo, 36 I. Dave, 49 M. Davier, 25 G. S. Davies, 38 E. J. Daw, 86 R. Day, 36 S. De, 37 D. DeBra, 42 G. Debreczeni, 40 J. Degallaix, 66 M. De Laurentis, 68,5 S. Deléglise, 60 W. Del Pozzo, 46 T. Denker, 10 T. Dent, 10 V. Dergachev, 1 R. De Rosa, 68,5 R. T. DeRosa, 7 R. DeSalvo, 9 R. C. Devine, 75 S. Dhurandhar, 16 M. C. Díaz, 87 L. Di Fiore, 5 M. Di Giovanni, 88,89 T. Di Girolamo, 68,5 A. Di Lieto, 20,21 S. Di Pace, 79,30 I. Di Palma, 31,79,30 A. Di Virgilio, 21 V. Dolique, 66 F. Donovan, 12 K. L. Dooley, 23 S. Doravari, 10 R. Douglas, 38 T. P. Downes, 18 M. Drago, 10 R. W. P. Drever, 1 J. C. Driggers, 39 M. Ducrot, 8 S. E. Dwyer, 39 T. B. Edo, 86 M. C. Edwards, 61 A. Effler, 7 H.-B. Eggenstein, 10 P. Ehrens, 1 J. Eichholz, 6,1 S. S. Eikenberry, 6 W. Engels, 77 R. C. Essick, 12 T. Etzel, 1 M. Evans, 12 T. M. Evans, 7 R. Everett, 90 M. Factourovich, 41 V. Fafone, 27,15 H. Fair, 37 S. Fairhurst, 91 X. Fan, 71 Q. Fang, 52 S. Farinon, 48 B. Farr, 76 W. M. Farr, 46 M. Favata, 92 M. Fays, 91 H. Fehrmann, 10 M. M. Fejer, 42 E. Fenyvesi, 93 I. Ferrante, 20,21 E. C. Ferreira, 13 F. Ferrini, 36 F. Fidecaro, 20,21 I. Fiori, 36 D. Fiorucci, 32 R. P. Fisher, 37 R. Flaminio, 66,94 M. Fletcher, 38 J.-D. Fournier, 54 S. Frasca, 79,30 F. Frasconi, 21 Z. Frei, 93 A. Freise, 46 R. Frey, 59 V. Frey, 25 P. Fritschel, 12 V. V. Frolov, 7 P. Fulda, 6 M. Fyffe, 7 H. A. G. Gabbard, 23 J. R. Gair, 95 L. Gammaitoni, 34 S. G. Gaonkar, 16 F. Garufi, 68,5 G. Gaur, 96,85 N. Gehrels, 69 G. Gemme, 48 P. Geng, 87 E. Genin, 36 A. Gennai, 21 J. George, 49 L. Gergely, 97 V. Germain, 8 Abhirup Ghosh, 17 Archisman Ghosh, 17 S. Ghosh, 53,11 J. A. Giaime, 2,7 K. D. Giardina, 7 A. Giazotto, 21 K. Gill, 98 A. Glaefke, 38 E. Goetz, 39 R. Goetz, 6 L. Gondan, 93 G. González, 2 J. M. Gonzalez Castro, 20,21 A. Gopakumar, 99 N. A. Gordon, 38 M. L. Gorodetsky, 50 S. E. Gossan, 1 M. Gosselin, 36 R. Gouaty, 8 A. Grado, 100,5 C. Graef, 38 P. B. Graff, 64 M. Granata, 66 A. Grant, 38 S. Gras, 12 C. Gray, 39 G. Greco, 57,58 A. C. Green, 46 P. Groot, 53 H. Grote, 10 S. Grunewald, 31 G. M. Guidi, 57,58 X. Guo, 71 A. Gupta, 16 M. K. Gupta, 85 K. E. Gushwa, 1 E. K. Gustafson, 1 R. Gustafson, 101 J. J. Hacker, 24 B. R. Hall, 56 E. D. Hall, 1 G. Hammond, 38 M. Haney, 99 M. M. Hanke, 10 J. Hanks, 39 C. Hanna, 90 M. D. Hannam, 91 J. Hanson, 7 T. Hardwick, 2 J. Harms, 57,58 G. M. Harry, 3 I. W. Harry, 31 M. J. Hart, 38 M. T. Hartman, 6 C.-J. Haster, 46 K. Haughian, 38 A. Heidmann, 60 M. C. Heintze, 7 H. Heitmann, 54 P. Hello, 25 G. Hemming, 36 M. Hendry, 38 I. S. Heng, 38 J. Hennig, 38 J. Henry, 102 A. W. Heptonstall, 1 M. Heurs, 10,19 S. Hild, 38 D. Hoak, 36 D. Hofman, 66 K. Holt, 7 D. E. Holz, 76 P. Hopkins, 91 J. Hough, 38 E. A. Houston, 38 E. J. Howell, 52 Y. M. Hu, 10 S. Huang, 73 E. A. Huerta, 103 D. Huet, 25 B. Hughey, 98 S. Husa, 104 S. H. Huttner, 38 T. Huynh-Dinh, 7 N. Indik, 10 D. R. Ingram, 39 R. Inta, 72 H. N. Isa, 38 J.-M. Isac, 60 M. Isi, 1 T. Isogai, 12 B. R. Iyer, 17 K. Izumi, 39 T. Jacqmin, 60 H. Jang, 78 K. Jani, 65 P. Jaranowski, 105 S. Jawahar, 106 L. Jian, 52 F. Jiménez-Forteza, 104 W. W. Johnson, 2 D. I. Jones, 28 R. Jones, 38 R. J. G. Jonker, 11 L. Ju, 52 K. Haris, 107 C. V. Kalaghatgi, 91 V. Kalogera, 82 S. Kandhasamy, 23 G. Kang, 78 J. B. Kanner, 1 PHYSICAL REVIEW D 94, 042002 (2016) 2470-0010=2016=94(4)=042002(14) 042002-1 © 2016 American Physical Society

Upload: others

Post on 29-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

Comprehensive all-sky search for periodic gravitational wavesin the sixth science run LIGO data

B. P. Abbott,1 R. Abbott,1 T. D. Abbott,2 M. R. Abernathy,3 F. Acernese,4,5 K. Ackley,6 C. Adams,7 T. Adams,8 P. Addesso,9

R. X. Adhikari,1 V. B. Adya,10 C. Affeldt,10 M. Agathos,11 K. Agatsuma,11 N. Aggarwal,12 O. D. Aguiar,13 L. Aiello,14,15

A. Ain,16 P. Ajith,17 B. Allen,10,18,19 A. Allocca,20,21 P. A. Altin,22 S. B. Anderson,1 W. G. Anderson,18 K. Arai,1

M. C. Araya,1 C. C. Arceneaux,23 J. S. Areeda,24 N. Arnaud,25 K. G. Arun,26 S. Ascenzi,27,15 G. Ashton,28 M. Ast,29

S. M. Aston,7 P. Astone,30 P. Aufmuth,19 C. Aulbert,10 S. Babak,31 P. Bacon,32 M. K.M. Bader,11 P. T. Baker,33

F. Baldaccini,34,35 G. Ballardin,36 S. W. Ballmer,37 J. C. Barayoga,1 S. E. Barclay,38 B. C. Barish,1 D. Barker,39 F. Barone,4,5

B. Barr,38 L. Barsotti,12 M. Barsuglia,32 D. Barta,40 J. Bartlett,39 I. Bartos,41 R. Bassiri,42 A. Basti,20,21 J. C. Batch,39

C. Baune,10 V. Bavigadda,36 M. Bazzan,43,44 M. Bejger,45 A. S. Bell,38 B. K. Berger,1 G. Bergmann,10 C. P. L. Berry,46

D. Bersanetti,47,48 A. Bertolini,11 J. Betzwieser,7 S. Bhagwat,37 R. Bhandare,49 I. A. Bilenko,50 G. Billingsley,1 J. Birch,7

R. Birney,51 S. Biscans,12 A. Bisht,10,19 M. Bitossi,36 C. Biwer,37 M. A. Bizouard,25 J. K. Blackburn,1 C. D. Blair,52

D. G. Blair,52 R. M. Blair,39 S. Bloemen,53 O. Bock,10 M. Boer,54 G. Bogaert,54 C. Bogan,10 A. Bohe,31 C. Bond,46

F. Bondu,55 R. Bonnand,8 B. A. Boom,11 R. Bork,1 V. Boschi,20,21 S. Bose,56,16 Y. Bouffanais,32 A. Bozzi,36 C. Bradaschia,21

P. R. Brady,18 V. B. Braginsky,50 M. Branchesi,57,58 J. E. Brau,59 T. Briant,60 A. Brillet,54 M. Brinkmann,10 V. Brisson,25

P. Brockill,18 J. E. Broida,61 A. F. Brooks,1 D. A. Brown,37 D. D. Brown,46 N. M. Brown,12 S. Brunett,1 C. C. Buchanan,2

A. Buikema,12 T. Bulik,62 H. J. Bulten,63,11 A. Buonanno,31,64 D. Buskulic,8 C. Buy,32 R. L. Byer,42 M. Cabero,10

L. Cadonati,65 G. Cagnoli,66,67 C. Cahillane,1 J. Calderón Bustillo,65 T. Callister,1 E. Calloni,68,5 J. B. Camp,69

K. C. Cannon,70 J. Cao,71 C. D. Capano,10 E. Capocasa,32 F. Carbognani,36 S. Caride,72 J. Casanueva Diaz,25

C. Casentini,27,15 S. Caudill,18 M. Cavaglià,23 F. Cavalier,25 R. Cavalieri,36 G. Cella,21 C. B. Cepeda,1

L. Cerboni Baiardi,57,58 G. Cerretani,20,21 E. Cesarini,27,15 M. Chan,38 S. Chao,73 P. Charlton,74 E. Chassande-Mottin,32

B. D. Cheeseboro,75 H. Y. Chen,76 Y. Chen,77 C. Cheng,73 A. Chincarini,48 A. Chiummo,36 H. S. Cho,78 M. Cho,64

J. H. Chow,22 N. Christensen,61 Q. Chu,52 S. Chua,60 S. Chung,52 G. Ciani,6 F. Clara,39 J. A. Clark,65 F. Cleva,54

E. Coccia,27,14 P.-F. Cohadon,60 A. Colla,79,30 C. G. Collette,80 L. Cominsky,81 M. Constancio, Jr.,13 A. Conte,79,30

L. Conti,44 D. Cook,39 T. R. Corbitt,2 N. Cornish,33 A. Corsi,72 S. Cortese,36 C. A. Costa,13 M.W. Coughlin,61

S. B. Coughlin,82 J.-P. Coulon,54 S. T. Countryman,41 P. Couvares,1 E. E. Cowan,65 D. M. Coward,52 M. J. Cowart,7

D. C. Coyne,1 R. Coyne,72 K. Craig,38 J. D. E. Creighton,18 T. Creighton,87 J. Cripe,2 S. G. Crowder,83 A. Cumming,38

L. Cunningham,38 E. Cuoco,36 T. Dal Canton,10 S. L. Danilishin,38 S. D’Antonio,15 K. Danzmann,19,10 N. S. Darman,84

A. Dasgupta,85 C. F. Da Silva Costa,6 V. Dattilo,36 I. Dave,49 M. Davier,25 G. S. Davies,38 E. J. Daw,86 R. Day,36 S. De,37

D. DeBra,42 G. Debreczeni,40 J. Degallaix,66 M. De Laurentis,68,5 S. Deléglise,60 W. Del Pozzo,46 T. Denker,10 T. Dent,10

V. Dergachev,1 R. De Rosa,68,5 R. T. DeRosa,7 R. DeSalvo,9 R. C. Devine,75 S. Dhurandhar,16 M. C. Díaz,87 L. Di Fiore,5

M. Di Giovanni,88,89 T. Di Girolamo,68,5 A. Di Lieto,20,21 S. Di Pace,79,30 I. Di Palma,31,79,30 A. Di Virgilio,21 V. Dolique,66

F. Donovan,12 K. L. Dooley,23 S. Doravari,10 R. Douglas,38 T. P. Downes,18 M. Drago,10 R.W. P. Drever,1 J. C. Driggers,39

M. Ducrot,8 S. E. Dwyer,39 T. B. Edo,86 M. C. Edwards,61 A. Effler,7 H.-B. Eggenstein,10 P. Ehrens,1 J. Eichholz,6,1

S. S. Eikenberry,6 W. Engels,77 R. C. Essick,12 T. Etzel,1 M. Evans,12 T. M. Evans,7 R. Everett,90 M. Factourovich,41

V. Fafone,27,15 H. Fair,37 S. Fairhurst,91 X. Fan,71 Q. Fang,52 S. Farinon,48 B. Farr,76 W.M. Farr,46 M. Favata,92 M. Fays,91

H. Fehrmann,10 M.M. Fejer,42 E. Fenyvesi,93 I. Ferrante,20,21 E. C. Ferreira,13 F. Ferrini,36 F. Fidecaro,20,21 I. Fiori,36

D. Fiorucci,32 R. P. Fisher,37 R. Flaminio,66,94 M. Fletcher,38 J.-D. Fournier,54 S. Frasca,79,30 F. Frasconi,21 Z. Frei,93

A. Freise,46 R. Frey,59 V. Frey,25 P. Fritschel,12 V. V. Frolov,7 P. Fulda,6 M. Fyffe,7 H. A. G. Gabbard,23 J. R. Gair,95

L. Gammaitoni,34 S. G. Gaonkar,16 F. Garufi,68,5 G. Gaur,96,85 N. Gehrels,69 G. Gemme,48 P. Geng,87 E. Genin,36

A. Gennai,21 J. George,49 L. Gergely,97 V. Germain,8 Abhirup Ghosh,17 Archisman Ghosh,17 S. Ghosh,53,11 J. A. Giaime,2,7

K. D. Giardina,7 A. Giazotto,21 K. Gill,98 A. Glaefke,38 E. Goetz,39 R. Goetz,6 L. Gondan,93 G. González,2

J. M. Gonzalez Castro,20,21 A. Gopakumar,99 N. A. Gordon,38 M. L. Gorodetsky,50 S. E. Gossan,1 M. Gosselin,36

R. Gouaty,8 A. Grado,100,5 C. Graef,38 P. B. Graff,64 M. Granata,66 A. Grant,38 S. Gras,12 C. Gray,39 G. Greco,57,58

A. C. Green,46 P. Groot,53 H. Grote,10 S. Grunewald,31 G. M. Guidi,57,58 X. Guo,71 A. Gupta,16 M. K. Gupta,85

K. E. Gushwa,1 E. K. Gustafson,1 R. Gustafson,101 J. J. Hacker,24 B. R. Hall,56 E. D. Hall,1 G. Hammond,38 M. Haney,99

M. M. Hanke,10 J. Hanks,39 C. Hanna,90 M. D. Hannam,91 J. Hanson,7 T. Hardwick,2 J. Harms,57,58 G. M. Harry,3

I. W. Harry,31 M. J. Hart,38 M. T. Hartman,6 C.-J. Haster,46 K. Haughian,38 A. Heidmann,60 M. C. Heintze,7 H. Heitmann,54

P. Hello,25 G. Hemming,36 M. Hendry,38 I. S. Heng,38 J. Hennig,38 J. Henry,102 A.W. Heptonstall,1 M. Heurs,10,19 S. Hild,38

D. Hoak,36 D. Hofman,66 K. Holt,7 D. E. Holz,76 P. Hopkins,91 J. Hough,38 E. A. Houston,38 E. J. Howell,52 Y. M. Hu,10

S. Huang,73 E. A. Huerta,103 D. Huet,25 B. Hughey,98 S. Husa,104 S. H. Huttner,38 T. Huynh-Dinh,7 N. Indik,10

D. R. Ingram,39 R. Inta,72 H. N. Isa,38 J.-M. Isac,60 M. Isi,1 T. Isogai,12 B. R. Iyer,17 K. Izumi,39 T. Jacqmin,60 H. Jang,78

K. Jani,65 P. Jaranowski,105 S. Jawahar,106 L. Jian,52 F. Jiménez-Forteza,104 W.W. Johnson,2 D. I. Jones,28 R. Jones,38

R. J. G. Jonker,11 L. Ju,52 K. Haris,107 C. V. Kalaghatgi,91 V. Kalogera,82 S. Kandhasamy,23 G. Kang,78 J. B. Kanner,1

PHYSICAL REVIEW D 94, 042002 (2016)

2470-0010=2016=94(4)=042002(14) 042002-1 © 2016 American Physical Society

Page 2: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

S. J. Kapadia,10 S. Karki,59 K. S. Karvinen,10 M. Kasprzack,36,2 E. Katsavounidis,12 W. Katzman,7 S. Kaufer,19 T. Kaur,52

K. Kawabe,39 F. Kéfélian,54 M. S. Kehl,108 D. Keitel,104 D. B. Kelley,37 W. Kells,1 R. Kennedy,86 J. S. Key,87 F. Y. Khalili,50

I. Khan,14 S. Khan,91 Z. Khan,85 E. A. Khazanov,109 N. Kijbunchoo,39 Chi-Woong Kim,78 Chunglee Kim,78 J. Kim,110

K. Kim,111 N. Kim,42 W. Kim,112 Y.-M. Kim,110 S. J. Kimbrell,65 E. J. King,112 P. J. King,39 J. S. Kissel,39 B. Klein,82

L. Kleybolte,29 S. Klimenko,6 S. M. Koehlenbeck,10 S. Koley,11 V. Kondrashov,1 A. Kontos,12 M. Korobko,29 W. Z. Korth,1

I. Kowalska,62 D. B. Kozak,1 V. Kringel,10 B. Krishnan,10 A. Królak,113,114 C. Krueger,19 G. Kuehn,10 P. Kumar,108

R. Kumar,85 L. Kuo,73 A. Kutynia,113 B. D. Lackey,37 M. Landry,39 J. Lange,102 B. Lantz,42 P. D. Lasky,115 M. Laxen,7

A. Lazzarini,1 C. Lazzaro,44 P. Leaci,79,30 S. Leavey,38 E. O. Lebigot,32,71 C. H. Lee,110 H. K. Lee,111 H. M. Lee,116 K. Lee,38

A. Lenon,37 M. Leonardi,88,89 J. R. Leong,10 N. Leroy,25 N. Letendre,8 Y. Levin,115 J. B. Lewis,1 T. G. F. Li,117 A. Libson,12

T. B. Littenberg,118 N. A. Lockerbie,106 A. L. Lombardi,119 L. T. London,91 J. E. Lord,37 M. Lorenzini,14,15 V. Loriette,120

M. Lormand,7 G. Losurdo,58 J. D. Lough,10,19 H. Lück,19,10 A. P. Lundgren,10 R. Lynch,12 Y. Ma,52 B. Machenschalk,10

M. MacInnis,12 D. M. Macleod,2 F. Magaña-Sandoval,37 L. Magaña Zertuche,37 R. M. Magee,56 E. Majorana,30

I. Maksimovic,120 V. Malvezzi,27,15 N. Man,54 I. Mandel,46 V. Mandic,83 V. Mangano,38 G. L. Mansell,22 M. Manske,18

M. Mantovani,36 F. Marchesoni,121,35 F. Marion,8 S. Márka,41 Z. Márka,41 A. S. Markosyan,42 E. Maros,1 F. Martelli,57,58

L. Martellini,54 I. W. Martin,38 D. V. Martynov,12 J. N. Marx,1 K. Mason,12 A. Masserot,8 T. J. Massinger,37

M. Masso-Reid,38 S. Mastrogiovanni,79,30 F. Matichard,12 L. Matone,41 N. Mavalvala,12 N. Mazumder,56 R. McCarthy,39

D. E. McClelland,22 S. McCormick,7 S. C. McGuire,122 G. McIntyre,1 J. McIver,1 D. J. McManus,22 T. McRae,22

S. T. McWilliams,75 D. Meacher,90 G. D. Meadors,31,10 J. Meidam,11 A. Melatos,84 G. Mendell,39 R. A. Mercer,18

E. L. Merilh,39 M. Merzougui,54 S. Meshkov,1 C. Messenger,38 C. Messick,90 R. Metzdorff,60 P. M. Meyers,83

F. Mezzani,30,79 H. Miao,46 C. Michel,66 H. Middleton,46 E. E. Mikhailov,123 L. Milano,68,5 A. L. Miller,6,79,30 A. Miller,82

B. B. Miller,82 J. Miller,12 M. Millhouse,33 Y. Minenkov,15 J. Ming,31 S. Mirshekari,124 C. Mishra,17 S. Mitra,16

V. P. Mitrofanov,50 G. Mitselmakher,6 R. Mittleman,12 A. Moggi,21 M. Mohan,36 S. R. P. Mohapatra,12 M. Montani,57,58

B. C. Moore,92 C. J. Moore,125 D. Moraru,39 G. Moreno,39 S. R. Morriss,87 K. Mossavi,10 B. Mours,8 C. M. Mow-Lowry,46

G. Mueller,6 A. W. Muir,91 Arunava Mukherjee,17 D. Mukherjee,18 S. Mukherjee,87 N. Mukund,16 A. Mullavey,7

J. Munch,112 D. J. Murphy,41 P. G. Murray,38 A. Mytidis,6 I. Nardecchia,27,15 L. Naticchioni,79,30 R. K. Nayak,126

K. Nedkova,119 G. Nelemans,53,11 T. J. N. Nelson,7 M. Neri,47,48 A. Neunzert,101 G. Newton,38 T. T. Nguyen,22

A. B. Nielsen,10 S. Nissanke,53,11 A. Nitz,10 F. Nocera,36 D. Nolting,7 M. E. N. Normandin,87 L. K. Nuttall,37 J. Oberling,39

E. Ochsner,18 J. O’Dell,127 E. Oelker,12 G. H. Ogin,128 J. J. Oh,129 S. H. Oh,129 F. Ohme,91 M. Oliver,104 P. Oppermann,10

Richard J. Oram,7 B. O’Reilly,7 R. O’Shaughnessy,102 D. J. Ottaway,112 H. Overmier,7 B. J. Owen,72 A. Pai,107 S. A. Pai,49

J. R. Palamos,59 O. Palashov,109 C. Palomba,30 A. Pal-Singh,29 H. Pan,73 C. Pankow,82 F. Pannarale,91 B. C. Pant,49

F. Paoletti,36,21 A. Paoli,36 M. A. Papa,31,18,10 H. R. Paris,42 W. Parker,7 D. Pascucci,38 A. Pasqualetti,36 R. Passaquieti,20,21

D. Passuello,21 B. Patricelli,20,21 Z. Patrick,42 B. L. Pearlstone,38 M. Pedraza,1 R. Pedurand,66,130 L. Pekowsky,37 A. Pele,7

S. Penn,131 A. Perreca,1 L. M. Perri,82 M. Phelps,38 O. J. Piccinni,79,30 M. Pichot,54 F. Piergiovanni,57,58 V. Pierro,9

G. Pillant,36 L. Pinard,66 I. M. Pinto,9 M. Pitkin,38 M. Poe,18 R. Poggiani,20,21 P. Popolizio,36 A. Post,10 J. Powell,38

J. Prasad,16 V. Predoi,91 T. Prestegard,83 L. R. Price,1 M. Prijatelj,10,36 M. Principe,9 S. Privitera,31 R. Prix,10 G. A. Prodi,88,89

L. Prokhorov,50 O. Puncken,10 M. Punturo,35 P. Puppo,30 M. Pürrer,31 H. Qi,18 J. Qin,52 S. Qiu,115 V. Quetschke,87

E. A. Quintero,1 R. Quitzow-James,59 F. J. Raab,39 D. S. Rabeling,22 H. Radkins,39 P. Raffai,93 S. Raja,49 C. Rajan,49

M. Rakhmanov,87 P. Rapagnani,79,30 V. Raymond,31 M. Razzano,20,21 V. Re,27 J. Read,24 C. M. Reed,39 T. Regimbau,54

L. Rei,48 S. Reid,51 D. H. Reitze,1,6 H. Rew,123 S. D. Reyes,37 F. Ricci,79,30 K. Riles,101 M. Rizzo,102 N. A. Robertson,1,38

R. Robie,38 F. Robinet,25 A. Rocchi,15 L. Rolland,8 J. G. Rollins,1 V. J. Roma,59 J. D. Romano,87 R. Romano,4,5

G. Romanov,123 J. H. Romie,7 D. Rosińska,132,45 S. Rowan,38 A. Rüdiger,10 P. Ruggi,36 K. Ryan,39 S. Sachdev,1

T. Sadecki,39 L. Sadeghian,18 M. Sakellariadou,133 L. Salconi,36 M. Saleem,107 F. Salemi,10 A. Samajdar,126 L. Sammut,115

E. J. Sanchez,1 V. Sandberg,39 B. Sandeen,82 J. R. Sanders,37 B. Sassolas,66 B. S. Sathyaprakash,91 P. R. Saulson,37

O. E. S. Sauter,101 R. L. Savage,39 A. Sawadsky,19 P. Schale,59 R. Schilling,10,* J. Schmidt,10 P. Schmidt,1,77 R. Schnabel,29

R. M. S. Schofield,59 A. Schönbeck,29 E. Schreiber,10 D. Schuette,10,19 B. F. Schutz,91,31 J. Scott,38 S. M. Scott,22 D. Sellers,7

A. S. Sengupta,96 D. Sentenac,36 V. Sequino,27,15 A. Sergeev,109 Y. Setyawati,53,11 D. A. Shaddock,22 T. Shaffer,39

M. S. Shahriar,82 M. Shaltev,10 B. Shapiro,42 P. Shawhan,64 A. Sheperd,18 D. H. Shoemaker,12 D. M. Shoemaker,65

K. Siellez,65 X. Siemens,18 M. Sieniawska,45 D. Sigg,39 A. D. Silva,13 A. Singer,1 L. P. Singer,69 A. Singh,31,10,19 R. Singh,2

A. Singhal,14 A. M. Sintes,104 B. J. J. Slagmolen,22 J. R. Smith,24 N. D. Smith,1 R. J. E. Smith,1 E. J. Son,129 B. Sorazu,38

F. Sorrentino,48 T. Souradeep,16 A. K. Srivastava,85 A. Staley,41 M. Steinke,10 J. Steinlechner,38 S. Steinlechner,38

D. Steinmeyer,10,19 B. C. Stephens,18 R. Stone,87 K. A. Strain,38 N. Straniero,66 G. Stratta,57,58 N. A. Strauss,61 S. Strigin,50

R. Sturani,124 A. L. Stuver,7 T. Z. Summerscales,134 L. Sun,84 S. Sunil,85 P. J. Sutton,91 B. L. Swinkels,36

M. J. Szczepańczyk,98 M. Tacca,32 D. Talukder,59 D. B. Tanner,6 M. Tápai,97 S. P. Tarabrin,10 A. Taracchini,31 R. Taylor,1

T. Theeg,10 M. P. Thirugnanasambandam,1 E. G. Thomas,46 M. Thomas,7 P. Thomas,39 K. A. Thorne,7 E. Thrane,115

S. Tiwari,14,89 V. Tiwari,91 K. V. Tokmakov,106 K. Toland,38 C. Tomlinson,86 M. Tonelli,20,21 Z. Tornasi,38 C. V. Torres,87,*

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-2

Page 3: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

C. I. Torrie,1 D. Töyrä,46 F. Travasso,34,35 G. Traylor,7 D. Trifirò,23 M. C. Tringali,88,89 L. Trozzo,135,21 M. Tse,12

M. Turconi,54 D. Tuyenbayev,87 D. Ugolini,136 C. S. Unnikrishnan,99 A. L. Urban,18 S. A. Usman,37 H. Vahlbruch,19

G. Vajente,1 G. Valdes,87 N. van Bakel,11 M. van Beuzekom,11 J. F. J. van den Brand,63,11 C. Van Den Broeck,11

D. C. Vander-Hyde,37 L. van der Schaaf,11 J. V. van Heijningen,11 A. A. van Veggel,38 M. Vardaro,43,44 S. Vass,1

M. Vasúth,40 R. Vaulin,12 A. Vecchio,46 G. Vedovato,44 J. Veitch,46 P. J. Veitch,112 K. Venkateswara,137 D. Verkindt,8

F. Vetrano,57,58 A. Viceré,57,58 S. Vinciguerra,46 D. J. Vine,51 J.-Y. Vinet,54 S. Vitale,12 T. Vo,37 H. Vocca,34,35 C. Vorvick,39

D. V. Voss,6 W. D. Vousden,46 S. P. Vyatchanin,50 A. R. Wade,22 L. E. Wade,138 M. Wade,138 M. Walker,2 L. Wallace,1

S. Walsh,31,10 G. Wang,14,58 H. Wang,46 M. Wang,46 X. Wang,71 Y. Wang,52 R. L. Ward,22 J. Warner,39 M. Was,8

B. Weaver,39 L.-W. Wei,54 M. Weinert,10 A. J. Weinstein,1 R. Weiss,12 L. Wen,52 P. Weßels,10 T. Westphal,10 K. Wette,10

J. T. Whelan,102 B. F. Whiting,6 R. D. Williams,1 A. R. Williamson,91 J. L. Willis,139 B. Willke,19,10 M. H. Wimmer,10,19

W. Winkler,10 C. C. Wipf,1 H. Wittel,10,19 G. Woan,38 J. Woehler,10 J. Worden,39 J. L. Wright,38 D. S. Wu,10 G. Wu,7

J. Yablon,82 W. Yam,12 H. Yamamoto,1 C. C. Yancey,64 H. Yu,12 M. Yvert,8 A. Zadrożny,113 L. Zangrando,44 M. Zanolin,98

J.-P. Zendri,44 M. Zevin,82 L. Zhang,1 M. Zhang,123 Y. Zhang,102 C. Zhao,52 M. Zhou,82 Z. Zhou,82 X. J. Zhu,52

M. E. Zucker,1,12 S. E. Zuraw,119 and J. Zweizig1

(LIGO Scientific Collaboration and Virgo Collaboration)

1LIGO, California Institute of Technology, Pasadena, California 91125, USA2Louisiana State University, Baton Rouge, Louisiana 70803, USA

3American University, Washington, D.C. 20016, USA4Università di Salerno, Fisciano, I-84084 Salerno, Italy

5INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy6University of Florida, Gainesville, Florida 32611, USA

7LIGO Livingston Observatory, Livingston, Louisiana 70754, USA8Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université Savoie Mont Blanc,

CNRS/IN2P3, F-74941 Annecy-le-Vieux, France9University of Sannio at Benevento, I-82100 Benevento, Italy

and INFN, Sezione di Napoli, I-80100 Napoli, Italy10Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover, Germany

11Nikhef, Science Park, 1098 XG Amsterdam, The Netherlands12LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

13Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil14INFN, Gran Sasso Science Institute, I-67100 L’Aquila, Italy15INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy

16Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India17International Centre for Theoretical Sciences, Tata Institute of Fundamental Research,

Bangalore 560012, India18University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA

19Leibniz Universität Hannover, D-30167 Hannover, Germany20Università di Pisa, I-56127 Pisa, Italy

21INFN, Sezione di Pisa, I-56127 Pisa, Italy22Australian National University, Canberra, Australian Capital Territory 0200, Australia

23The University of Mississippi, University, Mississippi 38677, USA24California State University Fullerton, Fullerton, California 92831, USA

25LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France26Chennai Mathematical Institute, Chennai 603103, India27Università di Roma Tor Vergata, I-00133 Roma, Italy

28University of Southampton, Southampton SO17 1BJ, United Kingdom29Universität Hamburg, D-22761 Hamburg, Germany

30INFN, Sezione di Roma, I-00185 Roma, Italy31Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Potsdam-Golm, Germany

32APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu,Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France

33Montana State University, Bozeman, Montana 59717, USA34Università di Perugia, I-06123 Perugia, Italy

35INFN, Sezione di Perugia, I-06123 Perugia, Italy36European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy

37Syracuse University, Syracuse, New York 13244, USA38SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

COMPREHENSIVE ALL-SKY SEARCH FOR PERIODIC … PHYSICAL REVIEW D 94, 042002 (2016)

042002-3

Page 4: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

39LIGO Hanford Observatory, Richland, Washington 99352, USA40Wigner RCP, RMKI, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary

41Columbia University, New York, New York 10027, USA42Stanford University, Stanford, California 94305, USA

43Università di Padova, Dipartimento di Fisica e Astronomia, I-35131 Padova, Italy44INFN, Sezione di Padova, I-35131 Padova, Italy

45CAMK-PAN, 00-716 Warsaw, Poland46University of Birmingham, Birmingham B15 2TT, United Kingdom

47Università degli Studi di Genova, I-16146 Genova, Italy48INFN, Sezione di Genova, I-16146 Genova, Italy

49RRCAT, Indore, MP 452013, India50Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

51SUPA, University of the West of Scotland, Paisley PA1 2BE, United Kingdom52University of Western Australia, Crawley, Western Australia 6009, Australia

53Department of Astrophysics/IMAPP, Radboud University Nijmegen,P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

54Artemis, Université Côte d’Azur, CNRS, Observatoire Côte d’Azur, CS 34229, Nice cedex 4, France55Institut de Physique de Rennes, CNRS, Université de Rennes 1, F-35042 Rennes, France

56Washington State University, Pullman, Washington 99164, USA57Università degli Studi di Urbino “Carlo Bo,” I-61029 Urbino, Italy58INFN, Sezione di Firenze, I-50019 Sesto Fiorentino, Firenze, Italy

59University of Oregon, Eugene, Oregon 97403, USA60Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University,

Collège de France, F-75005 Paris, France61Carleton College, Northfield, Minnesota 55057, USA

62Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland63VU University Amsterdam, 1081 HV Amsterdam, The Netherlands

64University of Maryland, College Park, Maryland 20742, USA65Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology,

Atlanta, Georgia 30332, USA66Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France

67Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France68Università di Napoli “Federico II,” Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy

69NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA70RESCEU, University of Tokyo, Tokyo 113-0033, Japan

71Tsinghua University, Beijing 100084, China72Texas Tech University, Lubbock, Texas 79409, USA

73National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China74Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia

75West Virginia University, Morgantown, West Virginia 26506, USA76University of Chicago, Chicago, Illinois 60637, USA77Caltech CaRT, Pasadena, California 91125, USA

78Korea Institute of Science and Technology Information, Daejeon 305-806, Korea79Università di Roma “La Sapienza,” I-00185 Roma, Italy

80University of Brussels, Brussels 1050, Belgium81Sonoma State University, Rohnert Park, California 94928, USA

82Center for Interdisciplinary Exploration & Research in Astrophysics (CIERA), Northwestern University,Evanston, Illinois 60208, USA

83University of Minnesota, Minneapolis, Minnesota 55455, USA84The University of Melbourne, Parkville, Victoria 3010, Australia85Institute for Plasma Research, Bhat, Gandhinagar 382428, India86The University of Sheffield, Sheffield S10 2TN, United Kingdom

87The University of Texas Rio Grande Valley, Brownsville, Texas 78520, USA88Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy

89INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy90The Pennsylvania State University, University Park, Pennsylvania 16802, USA

91Cardiff University, Cardiff CF24 3AA, United Kingdom92Montclair State University, Montclair, New Jersey 07043, USA

93MTA Eötvös University, “Lendulet” Astrophysics Research Group, Budapest 1117, Hungary

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-4

Page 5: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

94National Astronomical Observatory of Japan,2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

95School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom96Indian Institute of Technology, Gandhinagar, Ahmedabad, Gujarat 382424, India

97University of Szeged, Dóm tér 9, Szeged 6720, Hungary98Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA

99Tata Institute of Fundamental Research, Mumbai 400005, India100INAF, Osservatorio Astronomico di Capodimonte, I-80131 Napoli, Italy

101University of Michigan, Ann Arbor, Michigan 48109, USA102Rochester Institute of Technology, Rochester, New York 14623, USA

103NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA104Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain

105University of Białystok, 15-424 Białystok, Poland106SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom

107IISER-TVM, CET Campus, Trivandrum, Kerala 695016, India108Canadian Institute for Theoretical Astrophysics, University of Toronto,

Toronto, Ontario M5S 3H8, Canada109Institute of Applied Physics, Nizhny Novgorod 603950, Russia

110Pusan National University, Busan 609-735, Korea111Hanyang University, Seoul 133-791, Korea

112University of Adelaide, Adelaide, South Australia 5005, Australia113NCBJ, 05-400 Świerk-Otwock, Poland

114IM-PAN, 00-956 Warsaw, Poland115Monash University, Victoria 3800, Australia

116Seoul National University, Seoul 151-742, Korea117The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China

118University of Alabama in Huntsville, Huntsville, Alabama 35899, USA119University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA

120ESPCI, CNRS, F-75005 Paris, France121Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy

122Southern University and A&M College, Baton Rouge, Louisiana 70813, USA123College of William and Mary, Williamsburg, Virginia 23187, USA

124Instituto de Física Teórica, University Estadual Paulista/ICTPSouth American Institute for Fundamental Research, São Paulo, SP 01140-070, Brazil

125University of Cambridge, Cambridge CB2 1TN, United Kingdom126IISER-Kolkata, Mohanpur, West Bengal 741252, India

127Rutherford Appleton Laboratory, HSIC, Chilton, Didcot, Oxon OX11 0QX, United Kingdom128Whitman College, 345 Boyer Avenue, Walla Walla, Washington 99362, USA

129National Institute for Mathematical Sciences, Daejeon 305-390, Korea130Université de Lyon, F-69361 Lyon, France

131Hobart and William Smith Colleges, Geneva, New York 14456, USA132Janusz Gil Institute of Astronomy, University of Zielona Góra, 65-265 Zielona Góra, Poland

133King’s College London, University of London, London WC2R 2LS, United Kingdom134Andrews University, Berrien Springs, Michigan 49104, USA

135Università di Siena, I-53100 Siena, Italy136Trinity University, San Antonio, Texas 78212, USA

137University of Washington, Seattle, Washington 98195, USA138Kenyon College, Gambier, Ohio 43022, USA

139Abilene Christian University, Abilene, Texas 79699, USA(Received 14 May 2016; published 15 August 2016)

We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band100–1500 Hz and with a frequency time derivative in the range of ½−1.18;þ1.00� × 10−8 Hz=s. Such asignal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in ourgalaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameterspace with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weakoutliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. Nogravitational wave signals were observed, and upper limits were placed on their strength. Our smallest

*Deceased

COMPREHENSIVE ALL-SKY SEARCH FOR PERIODIC … PHYSICAL REVIEW D 94, 042002 (2016)

042002-5

Page 6: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7 × 10−25 near 169 Hz, while at thehigh end of our frequency range we achieve a worst-case upper limit of 5.5 × 10−24. Both cases refer to allsky locations and entire range of frequency derivative values.

DOI: 10.1103/PhysRevD.94.042002

I. INTRODUCTION

In this paper we report the results of a comprehensiveall-sky search for continuous, nearly monochromaticgravitational waves in data from LIGO’s sixth science(S6) run. The search covered frequencies from 100 Hzthrough 1500 Hz and frequency derivatives from−1.18 × 10−8 Hz=s through 1.00 × 10−8 Hz=s.A number of searches for periodic gravitational waves

have been carried out previously in LIGO data [1–10],including coherent searches for gravitational radiation fromknown radio and X-ray pulsars. An Einstein@Home searchrunning on the BOINC infrastructure [11] has performedblind all-sky searches on S4 and S5 data [12–14].The results in this paper were produced with the

PowerFlux search program. It was first described in [1]together with two other semicoherent search pipelines(Hough, Stackslide). The sensitivities of all three methodswere compared, with PowerFlux showing better results infrequency bands lacking severe spectral artifacts. A sub-sequent article [3] based on the data from the S5 run featuredimproved upper limits and a systematic outlier follow-upsearch based on the Loosely Coherent algorithm [15].The analysis of the data set from the sixth science run

described in this paper has several distinguishing featuresfrom previously published results:

(i) A number of upgrades to the detector were madein order to field-test the technology for AdvancedLIGO interferometers. This resulted in a factor ofabout two improvement in intrinsic noise level athigh frequencies compared to previously publishedresults [3].

(ii) The higher sensitivity allowed us to use less datawhile still improving upper limits in high frequencybands by 25% over previously published results.This smaller data set allowed covering larger param-eter space, and comprehensive exploration of highfrequency data.

(iii) This search improved on previous analyses by par-titioning the data in≈ 1month chunks and looking forsignals in any contiguous sequence of these chunks.This enables detections of signals that conform toideal signal model over only part of the data. Suchsignals could arise because of a glitch, or because ofinfluence of a long-period companion object.

(iv) The upgrades to the detector, while improvingsensitivity on average, introduced a large numberof detector artifacts, with 20% of frequency rangecontaminated by non-Gaussian noise. We addressed

this issue by developing a new universal statistic[16] that provides correct upper limits regardless ofthe noise distribution of the underlying data, whilestill showing close to optimal performance forGaussian data.

We have observed no evidence of gravitational radiationand have established the most sensitive upper limits to datein the frequency band 100–1500 Hz. Our smallest 95%confidence level upper limit on worst-case (linearly polar-ized) strain amplitude h0 is 9.7 × 10−25 near 169 Hz, whileat the high end of our frequency range we achieve a worst-case upper limit of 5.5 × 10−24. Both cases refer to all skylocations and entire range of frequency derivative values.

II. LIGO INTERFEROMETERS ANDS6 SCIENCE RUN

The LIGO gravitational wave network consists of twoobservatories, one in Hanford, Washington and the other inLivingston, Louisiana, separated by a 3000 km baseline.During the S6 run each site housed one suspendedinterferometer with 4 km long arms.While the sixth science run spanned a ≈ 15 months

period of data acquisition, this analysis used only data fromGPS 951534120 (2010 Mar 02 03:01:45 UTC) throughGPS 971619922 (2010 Oct 20 14:25:07 UTC), for whichstrain sensitivity was best. Since interferometers sporadi-cally fall out of operation (“lose lock”) due to environ-mental or instrumental disturbances or for scheduledmaintenance periods, the data set was not contiguous.The Hanford interferometer H1 had a duty factor of 53%,while the Livingston interferometer L1 had a duty factor of51%. The strain sensitivity was not uniform, exhibiting a∼50% daily variation from anthropogenic activity as wellas gradual improvement toward the end of the run [17,18].Nonstationarity of noise was especially severe at

frequencies below 100 Hz, and since the average detectorsensitivity for such frequencies was not significantly betterthan that observed in the longer S5 run [3], this search wasrestricted to frequencies above 100 Hz.A detailed description of the instruments and data can be

found in [19].

III. THE SEARCH FOR CONTINUOUSGRAVITATIONAL RADIATION

A. Overview

In this paper we assume a classical model of a spinningneutron star with a rotating quadrupole moment that

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-6

Page 7: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

produces circularly polarized gravitational radiation alongthe rotation axis and linearly polarized radiation in thedirections perpendicular to the rotation axis. The linearpolarization is the worst case as such signals contribute thesmallest amount of power to the detector.The strain signal template is assumed to be

hðtÞ ¼ h0

�Fþðt; α0; δ0;ψÞ

1þ cos2ðιÞ2

cosðΦðtÞÞ

þ F×ðt; α0; δ0;ψÞ cosðιÞ sinðΦðtÞÞ�; ð1Þ

where Fþ and F× characterize the detector responses tosignals with “þ” and “×” quadrupolar polarizations [1–3],the sky location is described by right ascension α0 anddeclination δ0, the inclination of the source rotation axis tothe line of sight is denoted ι, and the phase evolution of thesignal is given by the formula

ΦðtÞ ¼ 2πðfsource · ðt − t0Þ þ fð1Þ · ðt − t0Þ2=2Þ þ ϕ; ð2Þ

with fsource being the source frequency and fð1Þ denotingthe first frequency derivative (which, when negative, istermed the spindown). We use t to denote the time in theSolar System barycenter frame. The initial phase ϕ iscomputed relative to reference time t0. When expressed as afunction of local time of ground-based detectors Eq. (2)acquires sky-position-dependent Doppler shift terms. Weuse ψ to denote the polarization angle of the projectedsource rotation axis in the sky plane.The search has two main components. First, the main

PowerFlux algorithm [1–3,20–22] was run to establishupper limits and produce lists of outliers with signal-to-noise ratio (SNR) greater than 5. Next, the LooselyCoherent detection pipeline [3,15,23] was used to rejector confirm collected outliers.Both algorithms calculate power for a bank of signal

model templates and compute upper limits and signal-to-noise ratios for each template based on comparison totemplates with nearby frequencies and the same skylocation and spindown. The input time series is brokeninto 50% overlapping 1800 s long segments which areHann windowed and Fourier transformed. The resultingshort Fourier transforms (SFTs) are arranged into an inputmatrix with time and frequency dimensions. The powercalculation can be expressed as a bilinear form of the inputmatrix fat;fg:

P½f� ¼Xt1;t2

at1;fþδfðt1Þa�t2;fþδfðt2ÞKt1;t2;f ð3Þ

Here δfðtÞ denotes the detector frame frequency drift due tothe effects from both Doppler shifts and the first frequencyderivative. The sum is taken over all times t correspondingto the midpoint of the short Fourier transform time interval.

The kernel Kt1;t2;f includes the contribution of timedependent SFT weights, antenna response, signal polari-zation parameters and relative phase terms [15,23].The main semi-coherent PowerFlux algorithm uses a

kernel with main diagonal terms only and is very fast.The Loosely Coherent algorithms increase coherence timewhile still allowing for controlled deviation in phase [15].This is done by more complicated kernels that increaseeffective coherence length.The effective coherence length is captured in a parameter

δ, which describes the amount of phase drift that the kernelallows between SFTs, with δ ¼ 0 corresponding to a fullycoherent case, and δ ¼ 2π corresponding to incoherentpower sums.Depending on the terms used, the data from different

interferometers can be combined incoherently (such as instages 0 and 1, see Table II) or coherently (as used in stages2, 3 and 4). The coherent combination is more computa-tionally expensive but provides much better parameterestimation.The upper limits (Fig. 1) are reported in terms of the

worst-case value of h0 (which applies to linear polarizationswith ι ¼ π=2) and for the most sensitive circular polariza-tion (ι ¼ 0 or π). As described in the previous paper [3], thepipeline does retain some sensitivity, however, to non-general-relativity GW polarization models, including alongitudinal component, and to slow amplitude evolution.The 95% confidence level upper limits (see Fig. 1)

produced in the first stage are based on the overall noiselevel and largest outlier in strain found for every templatein each 0.25 Hz band in the first stage of the pipeline. The0.25 Hz bands are analyzed by separate instances ofPowerFlux [3]. A followup search for detection is carriedout for high-SNR outliers found in the first stage. Certainfrequency ranges (Table I) were excluded from the analysisbecause of gross contamination by detector artifacts.

B. Universal statistics

The detector sensitivity upgrades introduced manyartifacts, so that in 20% of the sensitive frequency rangethe noise follows non-Gaussian distributions which, inaddition, are unknown. As the particular non-Gaussiandistribution can vary widely depending on particulardetector artifacts, the ideal estimate based on full knowl-edge of the distribution is not usually available. In theprevious analysis [1–3], the frequency bands where thenoise distribution was non-Gaussian were not used to putupper limits. However, in the present case this approachwould have resulted in excluding most of the frequencybands below 400 Hz and many above 400 Hz; even thoughthe average strain sensitivity in many of these frequencybands is better than in the past.To make use of the entire spectrum, we used in this work

the Universal statistic algorithm [16] for establishing upperlimits. The algorithm is derived from the Markov inequality

COMPREHENSIVE ALL-SKY SEARCH FOR PERIODIC … PHYSICAL REVIEW D 94, 042002 (2016)

042002-7

Page 8: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

and shares its independence from the underlying noisedistribution. It produces upper limits less than 5% aboveoptimal in case of Gaussian noise. In non-Gaussian bands itcan report values larger than what would be obtained if thedistribution were known, but the upper limits are always atleast 95% valid. Figure 2 shows results of an injection runperformed as described in [3]. Correctly established upperlimits are above the red line.

C. Detection pipeline

The detection pipeline used in [3] was extended withadditional stages (see Table II) to winnow the larger numberof initial outliers, expected because of non-Gaussianartifacts and larger initial search space. This detectionpipeline was also used in the search of the Orion spur [4].

The initial stage (marked 0) scans the entire sky withsemicoherent algorithm that computes weighted sums ofpowers of 1800 s Hann-windowed SFTs. These powersums are then analyzed to identify high-SNR outliers. A

Frequency (Hz)

h0

50 300 500 700 900 1100 1300 1500

1e−

251e

−24

1e−

23

worst case (linear)best case (circular)60 Hz harmonics

FIG. 1. S6 upper limits. The upper (yellow) curve shows worst-case (linearly polarized) 95% CL upper limits in analyzed 0.25 Hzbands (see Table I for list of excluded bands). The lower (grey) curve shows upper limits assuming a circularly polarized source. Thevalues of solid points and circles mark frequencies within 1.25 Hz of 60 Hz power line harmonics for circularly (solid points) andlinearly (open circles) polarized sources. The data for this plot can be found in [24].

TABLE I. Frequency regions excluded from upper limit analy-sis. “Violin modes” are resonant vibrations of the wires whichsuspend the many mirrors of the interferometer.

Category Description

First harmonicof violin modes

343.25–343.75 Hz,347–347.25 Hz

Second harmonicof violin modes

686.25–687.5 Hz

Third harmonic ofviolin modes

1031.00–1031.25 Hz

log10(Injection strain)

log 1

0( Upp

er li

mit)

−24

−23

−22

−21

−20

−19

−18

−24.5 −24.0 −23.5 −23.0

FIG. 2. Upper limit validation. Each point represents a separateinjection in the 400–1500 Hz frequency range. Each establishedupper limit (vertical axis) is compared against the injected strainvalue (horizontal axis, red line).

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-8

Page 9: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

separate algorithm uses universal statistics [16] to establishupper limits.The entire data set was partitioned into 7 segments of

equal length and power sums were produced independentlyfor any contiguous combinations of these stretches. As in[4] the outlier identification was performed independentlyin each stretch.High-SNR outliers were subject to a coincidence test.

For each outlier with SNR > 7 in the combined H1 and L1data, we required there to be outliers in the individualdetector data that had SNR > 5, matching the parametersof the combined-detector outlier within a distance of0.03 rad · 400 Hz=f on the sky, 2 mHz in frequency,and 3 × 10−10 Hz=s in spindown. However, the com-bined-detector SNR could not be lower than either sin-gle-detector SNR.The identified outliers using combined data are then

passed to followup stage using Loosely Coherent algorithm[15] with progressively tighter phase coherence parametersδ, and improved determination of frequency, spindown andsky location.As the initial stage 0 only sums powers it does not use

relative phase between interferometers, which results insome degeneracy between sky position, frequency andspindown. The first Loosely Coherent followup stage alsocombines interferometer powers incoherently, but demandsgreater temporal coherence (smaller δ) within each inter-ferometer, which should boost SNR of viable outliers by atleast 20%. Subsequent stages use data coherently providingtighter bounds on outlier location.The testing of the pipeline was done above 400 Hz

and included both Gaussian and non-Gaussian bands. Wefocused on high frequency performance because prelimi-nary S6 data indicated the sensitivity at low frequencieswas unlikely to improve over S5 results due to detectorartifacts.The followup code was tested to recover 95% of

injections 50% above the upper limit level assuminguniform distribution of injection frequency (Fig. 3).Recovery of signals injected into frequency bands whichexhibits non-Gaussian noise was 75% (Fig. 4). Ourrecovery criterion demanded that an outlier close to thetrue injection location (within 2 mHz in frequency f,

3 × 10−10 Hz=s in spindown and 12 rad · Hz=f in skylocation) be found and successfully pass through all stagesof the detection pipeline. As each stage of the pipeline onlypasses outliers with an increase in SNR, this resulted in anoutlier that strongly stood out above the background, withgood estimates of the parameters of the underlying signal.It should be noted that the injection recovery curve in

Fig. 3 passes slightly below the 95% level for h0 equal tothe upper limit. However, the upper limits are based onpower levels measured by stage 0, independent of anyfollow-up criteria. That is, we can say with 95% confidencethat a signal above the upper limit level is inconsistent withthe observed power, even though such a (hypothetical)signal might not pass all of our follow-up criteria to be“detected.” The main reason that these injections fail to bedetected is the different sensitivities of the H1 and L1

TABLE II. Analysis pipeline parameters. Starting with stage 1, all stages used the Loosely Coherent algorithm for demodulation. Thesky and frequency refinement parameters are relative to values used in the semicoherent PowerFlux search.

StageInstrument

sumPhase coherence Spindown step Sky

refinementFrequencyrefinement

SNR increaserad Hz/s %

0 Initial/upper limitsemicoherent

NA 2 × 10−10 1 1=2 NA

1 Incoherent π=2 1.0 × 10−10 1=4 1=8 202 Coherent π=2 5.0 × 10−11 1=4 1=8 03 Coherent π=4 2.5 × 10−11 1=8 1=16 124 Coherent π=8 5.0 × 10−12 1=16 1=32 12

h0 relative to upper limit

% fo

und

0

20

40

60

80

100

0 1 2 3 4

Stage_0Stage_1Stage_2

Stage_3Stage_4

FIG. 3. Injection recovery in frequency bands above 400 Hz.The injected strain divided by the upper limit in this band (beforeinjection) is shown on the horizontal axis. The percentage ofsurviving injections is shown on the vertical axis, with horizontalline drawn at 95% level. Stage 0 is the output of the coincidencetest after the initial semicoherent search.

COMPREHENSIVE ALL-SKY SEARCH FOR PERIODIC … PHYSICAL REVIEW D 94, 042002 (2016)

042002-9

Page 10: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

detectors. When one interferometer is less sensitive sensi-tive we can still set a good upper limit, but the initialcoincidence criteria requires that an outlier be marginallyseen in both interferometers. In the previous analysis [3] theinterferometers had similar sensitivity and the curve passedthrough the intersection of the green lines (horizontal axisvalue of 1, vertical axis value of 95%).

D. Gaussian false alarm event rate

The computation of the false alarm rate for the outlierspassing all stages of the pipeline is complicated by the factthat most outliers are caused by instrumental artifacts forwhich we do not know the underlying probability distri-bution. In principle, one could repeat the analysis manytimes using nonphysical frequency shifts (which wouldexclude picking up a real signal by accident) in order toobtain estimates of false alarm rate, but this approach isvery computationally expensive. Even assuming a perfectGaussian background, it is difficult to analytically modelthe pipeline in every detail to obtain an accurate estimate ofthe false alarm rate, given the gaps in interferometeroperations and nonstationary noise.Instead, following [4], we compute a figure of merit that

overestimates the actual Gaussian false alarm event rate.We simplify the problem by assuming that the entireanalysis was carried out with the resolution of the verylast stage of follow-up and we are merely triggering on theSNR value of the last stage. This is extremely conservativeas we ignore the consistency requirements that allow the

outlier to proceed from one stage of the pipeline to the next;the actual false alarm rate could be lower.The SNR of each outlier is computed relative to the

Loosely Coherent power sum for 501 frequency binsspaced at 1=1800 Hz intervals (including the outlier) butwith all the other signal parameters held constant. Thespacing assures that correllations between neighboringsub-bins do not affect the statistics of the power sum.To simplify computation we assume that we are dealing

with a simple χ2 distribution with the number of degrees offreedom given by the timebase divided by the coherencelength and multiplied by a conservative duty factor reflect-ing interferometer uptime and the worst-case weights fromlinearly-polarized signals.Thus to find the number N of degrees of freedom we will

use the formula

N ≈timebase · δ · duty factor

1800 s · 2πð4Þ

with the duty factor taken to be 0.125 and δ giving thephase coherence parameter of the Loosely Coherent search.The duty factor was chosen to allow for only 50%interferometer uptime and only one quarter of the datareceiving high weights from our procedure, which weightsthe contribution of data inversely as the square of theestimated noise [20,21].Thus we define the outlier figure of merit describing

Gaussian false alarm (GFA) event rate as

GFA ¼ K · Pχ2ðN þ SNR ·ffiffiffiffiffiffiffi2N

p;NÞ ð5Þ

where N defines the number of degrees of freedom as givenby equation (4), Pχ2ðx;NÞ gives the probability for a χ2

distribution with N degrees of freedom to exceed x, andK ¼ 1.3 × 1014 is the estimated number of templates.We point out that the GFA is overly conservative when

applied to frequency bands with Gaussian noise, but is onlyloosely applicable to bands with detector artifacts, whichcan affect both the estimate of the number of degrees offreedom of the underlying distribution and the assumptionof uncorrelated underlying noise.

IV. RESULTS

The PowerFlux algorithm and Loosely Coherent methodcompute power estimates for gravitational waves in a givenfrequency band for a fixed set of templates. The templateparameters usually include frequency, first frequencyderivative and sky location.Since the search target is a rare monochromatic signal,

it would contribute excess power to one of the frequencybins after demodulation. The upper limit on the maximumexcess relative to the nearby power values can then beestablished. For this analysis we use a universal statistic[16] that places conservative 95% confidence level upper

h0 relative to upper limit

% fo

und

0

20

40

60

80

0.0 0.5 1.0 1.5 2.0 2.5

Stage_0Stage_1Stage_2

Stage_3Stage_4

FIG. 4. Injection recovery in non-Gaussian bands above400 Hz. The injected strain divided by the upper limit in thisband (before injection) is shown on the horizontal axis. Thepercentage of surviving injections is shown on the vertical axis,with horizontal line drawn at 75% level.

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-10

Page 11: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

limits for an arbitrary statistical distribution of noise power.The universal statistic has been designed to provide closeto optimal values in the common case of Gaussiandistribution.The PowerFlux algorithm and Loosely Coherent method

have been described in detail in [1,2,15,20–22].Most natural sources are expected to have negative first

frequency derivative, as the energy lost in gravitational orelectromagnetic waves would make the source spin moreslowly. The frequency derivative can be positive when thesource is affected by a strong slowly-variable Doppler shift,such as due to a long-period orbit.The large gap in data taking due to installation of

Advanced LIGO interferometers provided an opportunityto cover an extended parameter space (Fig. 5). With respectto previous searches, we have chosen to explore compre-hensively both negative and positive frequency derivativesto avoid missing any unexpected sources in our data.The upper limits obtained in the search are shown in

Fig. 1. The numerical data for this plot can be obtainedseparately [24]. The upper (yellow) curve shows the upperlimits for a worst-case (linear) polarizations when thesmallest amount of gravitational energy is projected towardEarth. The lower curve shows upper limits for an optimallyoriented source. Because of the day-night variability of theinterferometer sensitivity due to anthropogenic noise, thelinearly polarized sources are more susceptible to detectorartifacts, as the detector response to such sources varieswith the same period. The neighborhood of 60 Hz har-monics is shown as circles for worst case upper limits anddots for circular polarization upper limits. Thanks to the useof universal statistic they do represent valid values even ifcontaminated by human activity.Each point in Fig. 1 represents a maximum over the sky:

only a small excluded portion of the sky near ecliptic poles

that is highly susceptible to detector artifacts, due tostationary frequency evolution produced by the combina-tion of frequency derivative and Doppler shifts. Theexclusion procedure is described in [3] and applied to0.033% of the sky over the entire run.A few frequency bands shown in Table I were so

contaminated that every SFTwas vetoed by data condition-ing code and the analysis terminated before reachinguniversal statistic stage. While the universal statistic couldhave established upper limits with veto turned off, we optedto simply exclude these bands, as the contamination wouldraise upper limits to be above physically interesting values.If one assumes that the source spindown is solely due to

emission of gravitational waves, then it is possible to recastupper limits on source amplitude as a limit on sourceellipticity. Figure 6 shows the reach of our search underdifferent assumptions on source distance. Superimposedare lines corresponding to sources of different ellipticities.The detection pipeline produced 16 outliers (Table III).

Each outlier is identified by a numerical index. We reportSNR, decimal logarithm of Gaussian false alarm rate, aswell as frequency, spindown and sky location.The “Segment” column describes the persistence of the

outlier through the data, and specified which contiguoussubset of the 7 equal partitions of the timespan contributedmost significantly to the outlier: see [4] for details. Acontinuous signal will normally have [0, 6] in this column(similar contribution from all 7 segments), or on rare

0 500 1000 1500

−1e

−08

0e+

005e

−09

1e−

08

Frequency, Hz

Spi

ndow

n, H

z/s

PowerFlux S6

PowerFlux S5

Einstein@Home S5

FIG. 5. Parameter space covered in the analysis. Einstein@Homesearches use longer coherence times than PowerFlux, with bettersensitivity to narrow band signals. The results for area marked“PowerFlux S6” are reported in this paper.

Frequency (Hz)

Fre

quen

cy d

eriv

ativ

e (H

z/s)

100 300 500 700 1100

1e−

131e

−11

1e−

091e

−07

ε=1e−5

ε=1e

−6

ε=1e

−7

ε=1e

−8

10 pc

100 pc

1 kpcε=8e−7

at 1500 Hz

10 kpc

FIG. 6. Range of the PowerFlux search for neutron starsspinning down solely due to gravitational radiation. This is asuperposition of two contour plots. The grey and red solid linesare contours of the maximum distance at which a neutron starcould be detected as a function of gravitational-wave frequency fand its derivative _f. The dashed lines are contours of thecorresponding ellipticity ϵðf; _fÞ. The fine dotted line marksthe maximum spindown searched. Together these quantities tellus the maximum range of the search in terms of variouspopulations (see text for details).

COMPREHENSIVE ALL-SKY SEARCH FOR PERIODIC … PHYSICAL REVIEW D 94, 042002 (2016)

042002-11

Page 12: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

occasions [0, 5] or [1, 6]. Any other range is indicative of anoncontinuous signal or artifact.During the S6 run several simulated pulsar signals were

injected into the data by applying a small force to theinterferometer mirrors. Several outliers were due to suchhardware injections (Table IV). The full list of injectionsincluding those too weak to be found by an all-sky searchcan be found in [25]. The hardware injection ip3 wasexceptionally strong with a clear signature even in non-Gaussian band.The recovery of the injections gives us confidence that

no potential signals were missed. Manual followup hasshown noninjection outliers to be caused by pronounceddetector artifacts.

V. CONCLUSIONS

We have performed the most sensitive all-sky searchto date for continuous gravitational waves in the range

100–1500 Hz. We explored both positive and negativespindowns and placed upper limits on expected andunexpected sources. At the highest frequencies we aresensitive to neutron stars with an equatorial ellipticity assmall as 8 × 10−7 and as far away as 1 kpc for favorablespin orientations. The use of a universal statistic allowed usto place upper limits on both Gaussian and non-Gaussianfrequency bands. The maximum ellipticity a neutron starcan theoretically support is at least 1 × 10−5 according to[26,27]. Our results exclude such maximally deformedpulsars above 200 Hz pulsar rotation frequency (400 Hzgravitational frequency) within 1 kpc.A detection pipeline based on a Loosely Coherent

algorithm was applied to outliers from our search. Thispipeline was demonstrated to be able to detect simulatedsignals at the upper limit level for both Gaussian andnon-Gaussian bands. Several outliers passed all stages ofthe coincidence pipeline; their parameters are shown in

TABLE III. Outliers that passed detection pipeline. Only the highest-SNR outlier is shown for each 0.1 Hz frequency region. Outliersmarked with “line” had strong narrowband disturbances identified near the outlier location. Outliers marked as “non-Gaussian” wereidentified as having non-Gaussian statistics in their power sums, often due to a very steeply sloping spectrum. GFA is the Gaussian falsealarm figure of merit described in Sec. III D. Segment column reports the set of contiguous segments of the data that produced theoutlier, as described in IV. Frequencies are converted to epoch GPS 961577021.

Idx SNR log10ðGFAÞ SegmentFrequency Spindown RAJ2000 DECJ2000

DescriptionHz nHz/s degrees degrees

1 3331 −9360 [0, 6] 192.49269 −8.650 351.371 −33.342 Hardware injection ip821 1329 −3114 [1, 5] 108.85717 −0.000 178.417 −33.400 Hardware injection ip3,

Non-Gaussian, disturbed H1 spectrum42 957 −2622 [0, 6] 575.16354 0.005 215.261 3.370 Hardware injection ip269 112 −196 [0, 3] 397.51894 −0.115 271.698 67.257 Non-Gaussian, Line in H1, disturbed spectrum in L172 93 −78 [4, 4] 1397.76097 −11.220 296.704 −16.069 Induced by loud hardware injection ip4,

Non-Gaussian, highly disturbed H1þ L1 spectra76 82 −162 [0, 5] 1145.20043 0.400 90.936 −67.610 Highly disturbed H1 spectrum, stationary line area79 64 −98 [1, 4] 566.08359 −4.850 91.028 86.915 Line in H1 at 566.085 Hz81 54 −68 [2, 4] 704.03500 4.110 117.932 50.411 Disturbed H1 and L1 spectrum82 48 −86 [0, 6] 1220.74448 −1.120 223.413 −20.502 Hardware injection ip7, sloping H1 and L1 spectra83 48 −73 [0, 4] 140.41014 −0.010 270.298 66.821 Highly disturbed H1 spectrum, stationary line area94 36 −44 [0, 3] 192.65413 9.270 145.440 10.439 Induced by loud hardware injection ip895 35 −28 [2, 3] 250.01082 2.750 247.459 −76.842 Lines in H1 and L1, Non-Gaussian101 19 −13 [2, 6] 1145.30312 8.515 196.471 33.778 Highly disturbed H1 spectrum102 18 −12 [0, 4] 1397.91328 1.070 42.627 32.827 Induced by loud hardware injection ip4,

Non-Gaussian, highly disturbed H1þ L1 spectra103 17 −4 [3, 4] 1143.41710 −2.455 107.611 −56.347 Highly disturbed H1 spectrum107 14 −0 [2, 3] 451.47993 −10.880 49.317 33.890 Line in H1 at 451.5 Hz

TABLE IV. Parameters of hardware-injected simulated signals detected by PowerFlux (epoch GPS 961577021).

LabelFrequency Spindown RAJ2000 DECJ2000

Hz nHz/s degrees degrees

ip2 575.163 54 −1.37 × 10−4 215.256 17 3.4440ip3 108.857 16 −1.46 × 10−8 178.372 57 −33.4366ip4 1397.831 947 −25.4 4.886 71 −12.4666ip7 1220.744 496 −1.12 223.425 62 −20.4506ip8 192.492 709 −0.865 351.389 58 −33.4185

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-12

Page 13: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

Table III. However, manual examination revealed no truepulsar signals.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of theU. S. National Science Foundation (NSF) for the con-struction and operation of the LIGO Laboratory andAdvanced LIGO as well as the Science and TechnologyFacilities Council (STFC) of the United Kingdom,the Max-Planck-Society (MPS), and the State ofNiedersachsen/Germany for support of the constructionof Advanced LIGO and construction and operation of theGEO600 detector. Additional support for Advanced LIGOwas provided by the Australian Research Council. Theauthors gratefully acknowledge the Italian IstitutoNazionale di Fisica Nucleare (INFN), the French CentreNational de la Recherche Scientifique (CNRS) and theFoundation for Fundamental Research on Matter supportedby the Netherlands Organisation for Scientific Research,for the construction and operation of the Virgo detectorand the creation and support of the EGO consortium. Theauthors also gratefully acknowledge research support fromthese agencies as well as by the Council of Scientific andIndustrial Research of India, Department of Science and

Technology, India, Science & Engineering Research Board(SERB), India, Ministry of Human Resource Development,India, the Spanish Ministerio de Economía yCompetitividad, the Conselleria d’Economia iCompetitivitat and Conselleria d’Educació, Cultura iUniversitats of the Govern de les Illes Balears, theNational Science Centre of Poland, the EuropeanCommission, the Royal Society, the Scottish FundingCouncil, the Scottish Universities Physics Alliance, theHungarian Scientific Research Fund (OTKA), the LyonInstitute of Origins (LIO), the National ResearchFoundation of Korea, Industry Canada and the Provinceof Ontario through the Ministry of Economic Developmentand Innovation, the Natural Science and EngineeringResearch Council Canada, Canadian Institute forAdvanced Research, the Brazilian Ministry of Science,Technology, and Innovation, Fundação de Amparo àPesquisa do Estado de São Paulo (FAPESP), RussianFoundation for Basic Research, the Leverhulme Trust,the Research Corporation, Ministry of Science andTechnology (MOST), Taiwan and the Kavli Foundation.The authors gratefully acknowledge the support of the NSF,STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources.

[1] B. Abbott et al. (LIGO Scientific Collaboration), All-skysearch for periodic gravitational waves in LIGO S4 data,Phys. Rev. D 77, 022001 (2008).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration), All-SkyLIGO Search for Periodic Gravitational Waves in the EarlyS5 Data, Phys. Rev. Lett. 102, 111102 (2009).

[3] B. Abbott et al. (The LIGO and Virgo ScientificCollaboration), All-sky search for periodic gravitationalwaves in the full S5 data, Phys. Rev. D 85, 022001(2012).

[4] J. Aasi et al. (LIGO Scientific Collaboration and VirgoCollaboration), A search of the Orion spur for continuousgravitational waves using a “loosely coherent” algorithm ondata from LIGO interferometers, Phys. Rev. D 93, 042006(2016).

[5] B. Abbott, M. Kramer, A. G. Lyne, et al. (LIGO ScientificCollaboration), Limits on Gravitational-Wave Emissionfrom Selected Pulsars Using LIGO Data, Phys. Rev. Lett.94, 181103 (2005).

[6] B. Abbott, M. Kramer, A. G. Lyne, et al. (LIGO ScientificCollaboration), Upper limits on gravitational wave emissionfrom 78 radio pulsars, Phys. Rev. D 76, 042001 (2007).

[7] B. Abbott et al. (LIGO Scientific Collaboration), Searchesfor periodic gravitational waves from unknown isolatedsources and Scorpius X-1: Results from the second LIGOscience run, Phys. Rev. D 76, 082001 (2007).

[8] B. Abbott et al. (LIGO Scientific Collaboration), Beatingthe spin-down limit on gravitational wave emission from theCrab pulsar, Astrophys. J. Lett. 683, L45 (2008).

[9] B. P. Abbott et al. (LIGO Scientific Collaboration andVirgo Collaboration), Searches for gravitational waves fromknown pulsars with S5 LIGO data, Astrophys. J. 713, 671(2010).

[10] J. Abadie et al. (LIGO Scientific Collaboration), First searchfor gravitational waves from the youngest known neutronstar, Astrophys. J. 722, 1504 (2010).

[11] The Einstein@Home project is built upon the BOINC(Berkeley Open Infrastructure for Network Computing)architecture described at http://boinc.berkeley.edu/.

[12] B. Abbott et al. (LIGO Scientific Collaboration),Einstein@Home search for periodic gravitational wavesin LIGO S4 data, Phys. Rev. D 79, 022001 (2009).

[13] B. P. Abbott et al. (LIGO Scientific Collaboration),Einstein@Home search for periodic gravitational wavesin early S5 LIGO data, Phys. Rev. D 80, 042003(2009).

[14] B. P. Abbott et al. (LIGO Scientific Collaboration),Einstein@Home all-sky search for periodic gravitationalwaves in LIGO S5 data, Phys. Rev. D 87, 042001 (2013).

[15] V. Dergachev, On blind searches for noise dominatedsignals: A loosely coherent approach, Classical QuantumGravity 27, 205017 (2010).

COMPREHENSIVE ALL-SKY SEARCH FOR PERIODIC … PHYSICAL REVIEW D 94, 042002 (2016)

042002-13

Page 14: PHYSICAL REVIEW D Comprehensive all-sky search for periodic gravitational waves …physics.wm.edu/~evmik/cv_related/Mikhailov_pubs/2016... · 2017-09-08 · Comprehensive all-sky

[16] V. Dergachev, A novel universal statistic for computingupper limits in ill-behaved background, Phys. Rev. D 87,062001 (2013).

[17] B. Abbott et al. (LIGO Scientific Collaboration), LIGO: TheLaser Interferometer Gravitational-Wave Observatory, Rep.Prog. Phys. 72, 076901 (2009).

[18] J. Abadie et al. (LIGO Scientific Collaboration and VirgoCollaboration), Sensitivity Achieved by the LIGO and VirgoGravitational Wave Detectors during LIGO’s Sixth andVirgo’s Second and Third Science Runs, arXiv:1203.2674.

[19] J. Aasi et al. (LIGO Scientific Collaboration and VirgoCollaboration), Characterization of the LIGO detectorsduring their sixth science run, arXiv:1410.7764.

[20] V. Dergachev, LIGO Report No. LIGO-T050186, 2005,available in https://dcc.ligo.org/.

[21] V. Dergachev, LIGO Report No. LIGO-T1000272, 2010,available in https://dcc.ligo.org/.

[22] V. Dergachev and K. Riles, LIGO Report No. LIGO-T050187, 2005, available in https://dcc.ligo.org/.

[23] V. Dergachev, Loosely coherent searches for sets ofwell-modeled signals, Phys. Rev. D 85, 062003(2012).

[24] See Supplemental Material for http://link.aps.org/supplemental/10.1103/PhysRevD.94.042002 for numericalvalues of upper limits.

[25] J. Aasi et al. (LIGO Scientific Collaboration and VirgoCollaboration), Searches for continuous gravitational wavesfrom nine young supernova remnants, Astrophys. J. 813, 39(2015).

[26] C. J. Horowitz and K. Kadau, Breaking Strain of NeutronStar Crust and Gravitational Waves, Phys. Rev. Lett. 102,191102 (2009).

[27] N. K. Johnson-McDaniel and B. J. Owen, Maximum elasticdeformations of relativistic stars, Phys. Rev. D 88, 044004(2013).

B. P. ABBOTT et al. PHYSICAL REVIEW D 94, 042002 (2016)

042002-14