physical cosmology 31/3/2017 - istituto nazionale di...

46
Physical Cosmology 31/3/2017 Docente: Alessandro Melchiorri [email protected]

Upload: others

Post on 18-Oct-2019

2 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Physical Cosmology 31/3/2017

Docente: Alessandro Melchiorri [email protected]

Page 2: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Suggested textbooks

http://www.astro.caltech.edu/~george/ay21/readings/Ryden_IntroCosmo.pdf

Barbara Ryden, Introduction to Cosmology

Page 3: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Suggested textbooks

An introduction to General Relativity, Sean Carroll

Page 4: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Suggested textbooks

Modern Cosmology, Scott Dodelson

Page 5: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Suggested textbooks

T. Padmanabhan, structure formation in the universe

Page 6: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Cosmological Constant- Current cosmological data suggest the presence of a cosmological constant at high significance. Assuming a flat universe, as confirmed by CMB observations (we will see this in a future lecture), SN-Ia (JLA) data gives:

- But a cosmological constant is of extremely difficult theoretical interpretation !

- 123 orders of magnitude difference (smaller) with the vacuum fluctuations energy expected in Quantum Field Theory ! - Why now problem ? why we live with a cosmological constant today ?

Page 7: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Major goal of modern cosmology

- Do we really need a cosmological constant ? - Maybe data could be explained by a different component ? - We need to falsify a cosmological constant ! - A cosmological constant has:

Constant with time (redshift) energy density

Constant with time (redshift) equation of state and equal to -1 !We need to test these two things !

Page 8: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Dark EnergyAs a first step we can fit the data with a component with a generic equation of state w constant with redshift.

From the continuity equation. As we can see if w is different from -1 energy density is evolving with z !

Assuming a flat universe, current SN-Ia(JLA)+CMB data gives:

Very close to a cosmological constant !!!!

Page 9: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

No indication for w different from -1 !!!

Page 10: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

QuintessenceBut do we have physical models different from a cosmological constant that can lead to an accelerated universe ? If we consider a scalar field minimally coupled to gravity the action can be written as:

where and is the field potential.Varying the action respect to the field we have the equation of motion:

Page 11: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Quintessence The energy momentum tensor can be written as:

Energy and pressure densities of the field are given by:

Leading to the Friedmann equations:

Page 12: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

QuintessenceThe equation of state can be written as:

We therefore have an accelerating universe (w<-1/3) if

And we expect a time-evolving equation of state !Example:

And we have acceleration with p>1

Note: w is always larger than -1 !

Page 13: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Tracking Quintessence

Several quintessence models have been proposed. One interesting property of some of them is to follow the dominant energy component (tracking). This helps in alleviating the Why Now ? problem.

http://arxiv.org/pdf/astro-ph/0403324v3.pdf

Page 14: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Quintessence TrackingMost of these models show a “tracking” behaviour.

Page 15: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Quintessence- There are plenty of Quintessence models.

- Quintessence tracks the dominant energy component, this helps in solving the why now problem.

- The transition to an accelerating universe is often connected to the radiation-matter equality.

- Problems with Quintessence: energy scale too low, long range forces not observed.

Page 16: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Phantom modelsModels with w <-1 are compatible and also slightly preferred by current SN-Ia data. These models are called “Phantom"and have quite dramatic consequences.

for w<-1 in the future (z<0) this term could diverge in a finite time.

Page 17: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Phantom modelsIn these models the scale factor grows as:

(teq is the time of dark energy-matter equality)

And diverges in a finite amount of time !

Page 18: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Phantom models

For w=-1.1 …

Page 19: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Dynamical Dark EnergyOne could try a different parametrization introducing an equation of state that evolves with time. A possible (old) parametrization is:

(not good, diverges at high redshifts!)

In this case the luminosity distance is (try at home):

Results from SN-Ia from Riess et al, 2004 plus prior on matter density.

Black dot is a cosmological constant.

Page 20: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Parametrization of Chevallier-Polarski-Linder (CPL)

Is, in practice, a Taylor expansion in a at first order:

At high redshift, small a, converges to w0+wa

The continuity equation can be written as:

Integrating, we have that the energy density follows:

Page 21: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

This parametrization could seem trivial…

…but sometimes trivial things work well, these CP+L papers are extremely well cited !!!

Page 22: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Constraints on CPL

Gray region is SN-Ia (JLA) + CMB (Planck+WP) + Galaxy Clustering (BAO)

Constraints are weaker on w0 respect to w constant. Constraints on wa are very weak !!!

Cosmological constant (two dashed lines) is ok.

Betoule et al., 2014

Page 23: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Recent constraints from Planck 2015

Again, no evidence for something different from a cosmological constant. But constraints on the evolution of w are weak !

Page 24: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

QuintessenceSeveral model of quintessence (and even of modified gravity as DGP) are well mapped by the CPL parametrization. The current models of quintessence that provide the best fit to observations are of the type of “thawing”quintessence. These models have w=-1 at high redshifts.

For thawing models actually one parameter is enough, fixing:

Page 25: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

The ESA Euclid satellite experiment, expected to launch in 2020, by measuring galaxy clustering and Lensing should determine these parameters with the following accuracy:

i.e. more than one order of magnitude better than what we have now.

Page 26: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

More General Parametrizations

Another possible parametrization is the following one:

Constraints inside the bins are correlated. With current data, an increase in the number of bins does not change the result.

BSH is BAO, SN-Ia and Hubble constant constraint.

http://arxiv.org/pdf/1502.01590v1.pdf

Page 27: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Other parametrizations…Chaplygin gas. Introduced in aerodynamics in 1904.

Assuming , we get from the continuity equation:

This is a first example of Unified Dark Energy - Dark Matter model. At high redshift behaves as matter, at small redshift as a cosmological constant.

Page 28: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Another extremely well cited paper…

Page 29: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Chaplygin Gas

Chaplygin gas with alfa=1 is excluded from structure formation.Excluded Excluded

Excluded Excluded

http://arxiv.org/pdf/astro-ph/0301308.pdf

Page 30: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Cardassian UniverseWe can modify the Friedmann equation by hand:

and we get acceleration even if we have just ordinary matter.

Page 31: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Modified GravityOn the other hand, one could consider cosmic acceleration as a failure of General Relativity at cosmic scales. One possibility to “modify gravity” is to include a function of the Ricci Scalar in the action:

New term Energy Content: ordinary matter !

Page 32: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Modified Gravity - f(R)This brings to new Friedmann equations:

In practice, there are 2 workable f(R) models:

Hu W., Sawicki I., 2007, arXiv:0705.1158v1

Starobinsky A.A., 2007, JETP Lett., 86, 157

Hu and Sawicki

Starobinsky

When compared with observations, the best fit parameters of the models produce an acceleration very close to lambda.

Page 33: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Hu-SawickiIf fitted as a dark energy component, the Hu-Sawicki model provides an equation of state that varies with redshift and crosses w=-1.Current constraints on this model are weak.

Page 34: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Angular Diameter DistanceWe can measure the distance of an object by measuring its angular size and knowing its size (standard ruler).

In the comoving reference frame we have:

The angular diameter distance of an object at redshift z is:

Page 35: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Angular Diameter DistanceIn cosmology, the angular diameter distance and the luminosity distance of the same object can be completely different !

Page 36: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Angular Diameter Distance:SZ+X ray clusters

The hot gas in a cluster of galaxies produces a distortion in the blackbody spectrum of the Cosmic Microwave Background that is frequency dependent. (Inverse compton scattering, photons are shifted to higher energies).

Page 37: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

SZ Effect in CMB maps Abel 2319

44 GHz 70 GHz 100 GHz 143 GHz

217 GHz 353 GHz 545 GHz

Page 38: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

X ray emission from Clusters

Cluster of galaxies also emit X-ray radiation due to bremsstrahlung of ionized hot (10-100 megakelvins) intracluster gas

Page 39: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Angular diameter distanceTo put it simply we have that:

SZ: absorption

X-ray: emission

Integral over the cluster volume Free electrons density

If the cluster is almost spherical we have:

By measuring absorption and emission we measure the size of the cluster and we can get its angular distance !

Page 40: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Angular distance from clusters

Bonamente et al., http://arxiv.org/pdf/astro-ph/0512349.pdf

Useful for measuring the Hubble constant.

Page 41: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Etherington’s distance duality

In principle, we can use standard candles and standard rulers at the same redshift to test this relation. It is a fundamental prediction of an expanding universe.

Page 42: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Test of distance duality

Assuming eta as a constant:

http://arxiv.org/pdf/gr-qc/0606029.pdf

Page 43: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Lookback timeThe time that a photon emitted at redshift z has spent to reach us is given by (omitting radiation):

This time is clearly the difference between the age of the universe minus the age of the object that sent the photon and the age of the universe at the redshift of formation of the object:

Age of the universeAge of the object

Age of the Universe at z of object’s formation

http://arxiv.org/pdf/astro-ph/0410268.pdf

Page 44: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

H(z) from cosmic chronometers

The Hubble parameter depends on the differential age of the universe in function of redshift.

Differential Age

Differential redshift

If we measure the age and redshift of different objects for close enough redshifts and ages we could estimate the derivative and so H(z).

Page 45: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

H(z) from ages

Left Panel: age of passively evolving galaxies obtained from stellar population synthesis models in function of z.

Right Panel: H(z) obtained from differential ages from the same catalog. See http://arxiv.org/pdf/astro-ph/0412269.pdf

Page 46: Physical Cosmology 31/3/2017 - Istituto Nazionale di ...oberon.roma1.infn.it/alessandro/cosmo2017/cosmologia_017_7.pdf · Major goal of modern cosmology-Do we really need a cosmological

Constraints on w

Open: just CMB

Filled: CMB+H(z) (from cluster ages)

http://arxiv.org/pdf/0907.3149.pdf