physical chemistry: materials, structure & function · “physical chemistry: materials,...

15
FACULTY OF SCIENCE SCHOOL OF CHEMISTRY CHEM3011 Physical Chemistry: Materials, Structure & Function SESSION 1, 2014

Upload: others

Post on 20-Jun-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

FACULTY OF SCIENCE

SCHOOL OF CHEMISTRY

CHEM3011

Physical Chemistry: Materials, Structure & Function

SESSION 1, 2014

Page 2: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

1

Table of Contents

Information for staff........................................................................... Error! Bookmark not defined. 1. Information about the Course ......................................................................................................... 2

2. Staff Involved in the Course ............................................................................................................ 2

3. Course Details ................................................................................................................................... 4 4. Rationale and Strategies Underpinning the Course .................................................................... 6

5. Course Schedule ............................................................................................................................. 7 6. Assessment Tasks and Feedback ............................................................................................... 10

7. Additional Resources and Support ............................................................................................. 11 8. Required Equipment, Training and Enabling Skills ................................................................... 11

9. Course Evaluation and Development .......................................................................................... 12 10. Administration Matters ................................................................................................................. 13 UNSW Academic Honesty and Plagiarism ..................................................................................... 14

Page 3: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

2

Faculty of Science - Course Outline

1. Information about the Course NB: Some of this information is available on the UNSW Virtual Handbook

1

Year of Delivery 2014

Course Code CHEM3011

Course Name Physical Chemistry: Materials, Structure & Function

Academic Unit School of Chemistry

Level of Course 3

rd UG

Units of Credit 6 UOC

Session(s) Offered S1

Assumed Knowledge, Prerequisites or Co-requisites

Prerequisite: CHEM2011 or PHYS2040, 6 units of credit in Level 1 Physics, at least 6 UoC of level 1 MATH (MATH1131 and/or MATH1231; MATH1141 and/or MATH1241)

Hours per Week 6

Number of Weeks 12

Commencement Date March 3, 2014

Summary of Course Structure (for details see 'Course Schedule') Component HPW Time Day Location e.g. Lectures 3

Lecture 1 1 - 2 pm Wed ChemSci M10

Lecture 2 10 - 11 am Thurs ASB 216

Lecture 3 3 - 4 pm Fri RedCen M010

Laboratory 3*

Lab – Option 1 9 am - 12 pm Mon Chemical Sciences 162A

*N.B. there are EIGHT three hour lab classes operating on a roster basis during weeks 2 to 11

Tutorials As set by lecturer

Other activities, e.g., field trips

TOTAL Special Details • Safety glasses, enclosed footwear and laboratory coats required for laboratory classes

2. Staff Involved in the Course

Staff Role Name Contact Details Consultation Times

Course Convenor A/Prof John Stride

Room 131 Dalton [email protected] x 54672

In laboratory

Additional Teaching Staff

Lecturers & Facilitators

Dr Ron Haines Dr Graham Ball Prof Timothy Schmidt Dr Neeraj Sharma Prof. Scott Kable

Room 128 Dalton [email protected] x 54718 Room 129 Dalton [email protected] x 54720 Room 217 Dalton [email protected] x 54478 Room 216 Dalton [email protected] x 54714 Room 134 Dalton [email protected] x 54713

Tutors & Demonstrators

Mr Alex Mason Mr Jeffrey Black Mr Andrew Robinson Ms Fehmida Kanodarwala

Dalton 118 Dalton 118 Dalton 218 Dalton 218

1 UNSW Virtual Handbook: http://www.handbook.unsw.edu.au/2008/index.html

Page 4: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

3

Technical & Laboratory Staff

Ms Peta Di Bella Chemical Sciences 162A

Other Support Staff

Page 5: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

4

3. Course Details

Course Description

2

(Handbook Entry)

“Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011, adding the use of symmetry, computational chemistry and X-ray and neutron scattering, all of which are core to contemporary chemistry research. The application of physical techniques is illustrated by their use in studying the surfaces of solids and liquids, an area dominated by unique phenomena at the nanoscale and an area of intense interdisciplinary research interest.

Course Aims

3

The spectroscopic, computational and microscopic techniques described in CHEM3011 are used in most areas of modern chemistry, for example, in the study of atoms and molecules adsorbed on surfaces, the construction of nanodevices, and the development of bio–active molecules. CHEM3011 has been updated for 2011 to better fit the needs of the students who are taking the course. Four main areas are now addressed: • Quantum Chemistry and electronic structure • Symmetry and Group Theory • Crystallography and Scattering • Colloids and Surface Chemistry The course aims to develop the understanding of the students in these areas and, in the process, prepare them for research activities in these fields. The broad aims of the laboratory program are: (i) to illustrate and reinforce aspects of the lecture program and (ii) to provide students with opportunities to acquire and practice the basic skills of practical physical chemistry: namely collecting, assessing and interpreting various types of data.

Student Learning Outcomes

4

On completion of CHEM3011 you should be able to: Describe the application of quantum mechanics to both single electron and multi-electron atoms. To understand the principles behind electronic spectroscopy of atoms. Extend the ideas of atomic spectroscopy to molecular species: to understand the concepts behind the electronic levels within molecules. Be able to describe the decay processes of excited electronic states such as fluorescence, phosphorescence, inter–system crossing, radiationless decay and the implications for photochemistry. Be able to describe and contrast the Hartree–Fock, post Hartree-Fock and density functional approaches to accurately calculating molecular properties. Correctly use the language of symmetry, including terms such as: symmetry element, symmetry operation, rotation axis, reflection plane, centre of inversion, improper rotation, point group, class, representation. Identify symmetry elements and operations for molecules and classify molecules into point groups. Predict molecular properties such as polarity and chirality from the molecular point group. Construct representations of point groups based on aspects of a molecule's structure. Identify reducible representations and reduce these. Apply the concepts of symmetry and point groups to molecular vibrations and bonding. Recognise different atomic and ionic arrangements of condensed matter incorporating concepts such as crystal packing, electrons states in solids, the metallic state, insulators and semiconductors. Understand Miller index notation of surfaces and imperfections in atomic and ionic arrangements, defects, impurities and vacancies. Understand adsorption of species on to surfaces, physisorption, chemisorption and adsorption isotherms. Be familiar with neutron and X-ray techniques for the investigation of adsorption on to surfaces. Understand the chemistry underpinning surface phenomena including surface tension, flat and curved surfaces, capillary action, Laplace and Kelvin equations; adsorption at gas/liquid interfaces, surface pressure, Gibbs adsorption isotherm, insoluble monolayer films; adsorption at gas/solid interfaces, Langmuir adsorption isotherm and surface area of solids. Understand the physico-chemical properties of colloids: dispersion and association colloids; electro-kinetic phenomena; electrostatic stabilization of colloids, coagulation of colloids, colloidal assembly. Understand the process of self-assembly: what a surface active molecule is, what micelles and other phases of surfactants in a solution are, what self-assembled monolayers are. Understand the techniques of surface analysis and characterisation: scanning tunnelling microscopy, atomic force microscopy and vacuum surface science techniques.

Graduate Attributes Developed in this Course

5

2 UNSW Virtual Handbook: http://www.handbook.unsw.edu.au/2014/index.html

3 Learning and Teaching Unit: http://www.ltu.unsw.edu.au

4 Learning and Teaching Unit – Learning Outcomes: http://www.ltu.unsw.edu.au/content/course_prog_support/outcomes.cfm?ss=0

Page 6: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

5

Science Graduate Attributes

5 (maybe replaced

by UNSW, School or professional attributes)

Select the level of

FOCUS 0 = NO FOCUS

1 = MINIMAL 2 = MINOR 3 = MAJOR

Activities / Assessment

Research, inquiry and analytical thinking abilities

3

Laboratory course. Assignments. / Assessment of practical reports and assignments

Capability and motivation for intellectual development

3

Lectures and applied problems discussed in class. / Exam.

Ethical, social and professional understanding

2 Throughout course. /Exam

Communication

2

Write up of practicals and assignments/ Assessment of practical reports and assignments

Teamwork, collaborative and management skills

2 Laboratory course. / Assessment of practical reports.

Information literacy

1 Self study; Laboratory report writing / Report grading, final examination

5 Access the contextualised Science Graduate Attributes and your mapped courses:

http://www2.science.unsw.edu.au/guide/slatig/sciga.html (Mapped courses are available at this site)

Page 7: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

6

Major Topics (Syllabus Outline)

Quantum Chemistry and electronic structure (14 lectures) Electronic spectroscopy of atoms and molecules. Ab initio and density functional methods for calculating molecular properties. Symmetry and Group Theory (6 lectures) Symmetry elements, operations, point groups and their application to spectroscopy Crystallography and Scattering (4 lectures) Arrangements of condensed matter, adsorption of species on to surfaces and neutron and X-ray techniques for their investigation. Colloids and Surface Chemistry (6 lectures) Surface phenomena, colloids, self-assembly and surface analysis and characterization Spectroscopy and Dynamics of Polyatomic Molecules (6 lectures) Electronic spectroscopy of molecules, lasers and applications

Relationship to Other Courses within the Program

CHEM3011 builds primarily upon the thermodynamics and quantum chemistry in CHEM2011, adding the use of symmetry, computational chemistry and X-ray and neutron scattering, all of which are core to contemporary chemistry research. CHEM3011 complements other third year chemistry courses by providing the theoretical basis on which modern chemistry rests. CHEM3011 also complements other quantum mechanics courses taught in the faculty by providing insight into (i) the particular applications of quantum mechanics in chemistry and (ii) the methods of structure determination at the nanoscale.

4. Rationale and Strategies Underpinning the Course

Teaching Strategies

Lectures deliver the major informational content of the course. Some peripheral content is also delivered through the laboratory classes, however the main aim of the laboratory classes is to reinforce content delivered in lectures and to provide hand-on experience for students in using spectroscopic instrumentation thus engaging students in the learning process and also providing an opportunity for students to interact closely with staff. Assignments throughout the teaching session provide challenging tasks for students and provide an opportunity for students to take some responsibility for their own learning.

Rationale for learning and teaching in this course

6,

CHEM3011 is taught as a combination of lectures and laboratory classes with written assignments and laboratory reports assessed throughout the session and a final examination at the end of the teaching session. The practical sessions facilitate contextualising of the student learning experience.

6 LTU – Teaching Philosophy: http://www.ltu.unsw.edu.au/content/teaching_support/teaching_portfolio.cfm?ss=0#putting

Page 8: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

7

5. Course Schedule Some of this information is available on the Virtual Handbook

7 and the UNSW Timetable

8.

7 UNSW Virtual Handbook: http://www.handbook.unsw.edu.au/2014/index.html

8 UNSW Timetable: http://www.timetable.unsw.edu.au/

Page 9: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

8

Week

Lectures (day), Topics & Lecturers

Tutorials (day), Topics & Lecturers

Practical (day), Topics & Lecturers

Other

Assignment and Submission dates (see also 'Assessment Tasks & Feedback')

Week 1

Wednesday, Thursday & Friday: Electronic spectroscopy of molecules (A/Prof Stride)

The laboratory course requires the student to undertake 8 experiments rostered over eleven weeks in groups of 3 or 4 students. The experiments are:

EPR-MO EPR Spectroscopy and M.O. Calculations

ES Alkali Metal Emission Spectra

IR33 Infrared Group Frequencies (Methanols)

UV31 Electronic Absorption Spectrum of Iodine

C1 Electrophoresis and Coagulation of a Colloidal Sol

C3 Surface Tension of Surfactant Solutions

Fluorescence & Quenching OR Free Electron Model (UV)*

PXRD X-ray Powder diffraction (anatase & rutile)

* to be confirmed in week 1; course outline will be modified accordingly

Laboratory reports are due one week after completion of the experiment,

Week 2

Wednesday, Thursday & Friday: Electronic spectroscopy of molecules (A/Prof Stride)

Tutorials are due at the discretion of the lecturer, usually two weeks after issue

Week 3

Wednesday, Thursday & Friday: Crystallography and Scattering (A/Prof Stride)

Week 4

Wednesday: Crystallography and Scattering (A/Prof Stride) Thursday & Friday: Introduction to computational chemistry (Dr Ball)

Week 5

Wednesday, Thursday & Friday: Introduction to computational chemistry (Dr Ball)

Week 6 *

Wednesday, Thursday & Friday: Introduction to computational chemistry (Dr Ball)

Computational Chemistry Tutorial (done in own time)

Week 7

Wednesday, Thursday: Symmetry and its Applications in Chemistry (Dr Haines)

Week 8

Wednesday, Thursday & Friday: Symmetry and its Applications in Chemistry (Dr Haines)

Symmetry Tutorial (done in own time)

Week 9

Wednesday: Symmetry and its Applications in Chemistry (Dr Haines) Thursday & Friday: Colloids and Surface Chemistry (Dr Sharma)

Week 10

Wednesday, Thursday & Friday: Colloids and Surface Chemistry (Dr Sharma)

Week 11

Wednesday: Colloids and Surface Chemistry (Dr Sharma) Thursday & Friday: Spectroscopy and Dynamics of Polyatomic Molecules (Prof Schmidt)

Week 12

Wednesday, Thursday & Friday: Spectroscopy and Dynamics of Polyatomic Molecules (Prof Schmidt)

Page 10: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

9

Week 13

Wednesday: Spectroscopy and Dynamics of Polyatomic Molecules (A/Prof Stride)

*NB: As stated in the UNSW Assessment Policy: ‘one or more tasks should be set, submitted, marked and returned to students by the mid-point of a course, or no later than the end of Week 6 of a

12-week session'

Page 11: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

10

6. Assessment Tasks and Feedback

Task

Knowledge & abilities assessed

Assessment Criteria

% of total mark

Date of

Feedback

Release

Submission

WHO

WHEN

HOW

8 Practical reports

Understanding of the experiment, execution of the experiment, applications of the concepts of the experiment

The mark awarded for each of the exercises is divided approximately equally between a mark for the experimental work and that for data treatment and the report, Written communication skills, ability to write a technically correct report, correct answers to questions are assessed in the report

30 Report assessor Within 2 weeks of submission

Marks awarded, feed back written on reports, verbal advice

Tutorial assesments

Understanding of core course material

Answers to questions given correctly. Discussion shows knowledge and understanding of the course.

10

Final Examination

Understanding of core course material

Answers to questions given correctly. Discussion shows knowledge and understanding of the course.

60

* Insert rows as needed

Page 12: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

11

7. Additional Resources and Support

Text Books

Atkins P.W., Physical Chemistry, 9th edition, 2010 (Oxford University Press) or 8

th edition

Course Manual

Yes, available at UNSW Bookshop (recommended) or online

Required Readings

Aylward and Findlay, SI Chemical Data, 5th edition, 2002 or 6th edition, 2007 (Wiley) Available in UNSW bookshop

Additional Readings

Silverstein, R.M., Webster, F.X., and Kiemle, D.J., Spectrometric Identification of Organic Compounds, Wiley, 7th ed. (2005) Others will be distributed by individual lecturers

Recommended Internet Sites

Societies

Royal Australian Chemical Institute http://www.raci.org.au/ Students of Chemistry Society (UNSW) http://www.chem.unsw.edu.au/schoolinfo/socs.html

Computer Laboratories or Study Spaces

Laboratory – Chemical Sciences Building 162

Gibson Computer laboratory – Ground floor, Dalton Building

8. Required Equipment, Training and Enabling Skills

Equipment Required

Laboratory coat, safety spectacles, closed shoes

Enabling Skills Training Required to Complete this Course

OH&S briefing Awareness of School plagiarism guidelines

Page 13: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

12

9. Course Evaluation and Development

Student feedback is gathered periodically by various means. Such feedback is considered carefully with a view to acting on it constructively wherever possible. This course outline conveys how feedback has helped to shape and develop this course.

Mechanisms of Review

Last Review Date

Comments or Changes Resulting from Reviews

Major Course Review

2010

The content of this course has been updated starting from 2011 as part of a major review of courses offered by the School of Chemistry. The content should suit better the students from different science majors that take the course.

CATEI

9

2009

Other

e.g. student, industry focus groups

You could also include quotes about the course from students and or industry which may assist students in their course selection.

9 Science CATEI procedure: http://www2.science.unsw.edu.au/guide/slatig/catei.html

Page 14: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

13

10. Administration Matters

Information about each of the following matters is best presented in a generic School handout or webpage. Reference should be made in every course handout to where the information can be found, and the importance of being familiar with the information.

Expectations of Students

Workload Contact hours are 6 per week, in weeks 1 - 12. The major out-of-class workload is associated with the laboratory program. Pre-laboratory work is expected to take 30 minutes per week and post-laboratory write-up is expected to take 3-4 hours per week.

Assignment Submissions

Laboratory reports should be submitted to the box marked CHEM3011 reports outside the laboratory,Chemical Sciences 162. A cover sheet should be completed and a dated acknowledgement received.

See http://www.chem.unsw.edu.au/coursenotes/CHEM3011/ or blackboard for down-loadable

cover sheet

Occupational Health and Safety

10

Information on relevant Occupational Health and Safety policies and expectations both at

UNSW: http://www.hr.unsw.edu.au/ohswc/ohswc_home.html and if there are any school

specific requirements.

Assessment Procedures

Candidates for CHEM3011 must demonstrate a satisfactory performance in both laboratory work and the written examination. A mark of fifty percent is regarded as the minimum acceptable performance in the laboratory. Students who do not attain this mark in their laboratory work may not be awarded a pass in the subject irrespective of their performance in the examination. An attendance of 80% is required at the lab classes to pass the laboratory section, illness notwithstanding. Full details of expectations are given in the introduction to the lab manual and section 6 of this outline.

Equity and Diversity

Those students who have a disability that requires some adjustment in their teaching or learning environment are encouraged to discuss their study needs with the course Convenor prior to, or at the commencement of, their course, or with the Equity Officer (Disability) in the Equity and Diversity Unit (9385 4734 or http://www.studentequity.unsw.edu.au/

http://www.equity.unsw.edu.au/disabil.html). Issues to be discussed may include access to materials, signers or note-takers, the provision of services and additional exam and assessment arrangements. Early notification is essential to enable any necessary adjustments to be made. Information on designing courses and course outlines that take into account the needs of students with disabilities can be found at: www.secretariat.unsw.edu.au/acboardcom/minutes/coe/disabilityguidelines.pdf

Grievance Policy

11

School Contact

Faculty Contact

University Contact

Dr Jason Harper Dep. Director of Teaching [email protected] Tel: 9385 4692

A/Prof Julian Cox Associate Dean (Education) [email protected] Tel: 9385 8574 or Dr Scott Mooney Associate Dean (Student Affairs) [email protected] Tel: 9385 6125

Student Conduct and Appeals Officer (SCAO) within the Office of the Pro-Vice- Chancellor (Students) and Registrar. Tel: 02 9385 8515, email: [email protected]. au University Counselling and Psychological Services13

Tel: 9385 5418

10

UNSW Occupational Health and Safety: http://www.hr.unsw.edu.au/ohswc/ohswc_home.html 11

UNSW Grievance Policy: http://www.policy.unsw.edu.au/policy/student_grievance_resolution.pdf

Page 15: Physical Chemistry: Materials, Structure & Function · “Physical Chemistry: Materials, Structure and Function” builds on the thermodynamics and quantum chemistry in CHEM2011,

14

UNSW Academic Honesty and Plagiarism

The following information should appear in all course outlines or be available on the web in unaltered form. It is recommended, however, that additional discipline-specific advice and/or material be added to assist students wherever possible. Faculty of Science has information on the website

12:

What is Plagiarism?

Plagiarism is the presentation of the thoughts or work of another as one’s own. *Examples include:

direct duplication of the thoughts or work of another, including by copying material, ideas or concepts from a book, article, report or other written document (whether published or unpublished), composition, artwork, design, drawing, circuitry, computer program or software, web site, Internet, other electronic resource, or another person’s assignment without appropriate acknowledgement;

paraphrasing another person’s work with very minor changes keeping the meaning, form and/or progression of ideas of the original;

piecing together sections of the work of others into a new whole;

presenting an assessment item as independent work when it has been produced in whole or part in collusion with other people, for example, another student or a tutor; and

claiming credit for a proportion a work contributed to a group assessment item that is greater than that actually contributed.†

For the purposes of this policy, submitting an assessment item that has already been submitted for academic credit elsewhere may be considered plagiarism. Knowingly permitting your work to be copied by another student may also be considered to be plagiarism. Note that an assessment item produced in oral, not written, form, or involving live presentation, may similarly contain plagiarised material. The inclusion of the thoughts or work of another with attribution appropriate to the academic discipline does not amount to plagiarism. The Learning Centre website is main repository for resources for staff and students on plagiarism and academic honesty. These resources can be located via: www.lc.unsw.edu.au/plagiarism The Learning Centre also provides substantial educational written materials, workshops, and tutorials to aid students, for example, in:

correct referencing practices;

paraphrasing, summarising, essay writing, and time management;

appropriate use of, and attribution for, a range of materials including text, images, formulae and concepts. Individual assistance is available on request from The Learning Centre. Students are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting, and the proper referencing of sources in preparing all assessment items. * Based on that proposed to the University of Newcastle by the St James Ethics Centre. Used with kind permission from the University of Newcastle † Adapted with kind permission from the University of Melbourne

12

Faculty of Science – Academic Misconduct: http://www2.science.unsw.edu.au/guide/slatig/acadmisc.html