phys%102)) ) lab%04) …steinberg/teach...

13
PHYS102 LAB04 CAPACITORS and RCCIRCUITS 1. Objective The objective of this experiment is to measure the capacitance of a single capacitor in an RC circuit and to examine the effective capacitance of two capacitors when connected in a series, and a parallel configuration. 2. Theory Figure 1.A series RC circuit. In this lab the capacitance will be experimentally determined by measuring the timedependent voltage across a capacitor in an RC circuit driven by a periodic square voltage. The theoretical aspects of an RC circuit and how the capacitors behave in serial and parallel connections have been discussed in your textbook and only a brief review is presented here. Consider an RC circuit as shown in the diagram. If switch S is pushed down so as to start charging the initially uncharged capacitor C, then at some time t, the magnitude of the charge on one of the capacitor plates is given by Q(t) = Q o (t)[ 1 exp(t/RC)] [1] where Q o (t) = V batt C. The potential difference across C is given by V(t) = V batt [ 1 exp(t/RC)] [2]

Upload: vukhue

Post on 07-Apr-2018

217 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

PHYS-­‐102       LAB-­‐04  

CAPACITORS  and  RC-­‐CIRCUITS  

 

1.    Objective  

The  objective  of  this  experiment  is  to  measure  the  capacitance  of  a  single  capacitor  in   an   RC   circuit   and   to   examine   the   effective   capacitance   of   two   capacitors  when  connected  in  a  series,  and  a  parallel  configuration.  

2.    Theory  

 

Figure  1.A  series  RC  circuit.  

 

In  this  lab  the  capacitance  will  be  experimentally  determined  by  measuring  the  time-­‐dependent  voltage  across  a  capacitor  in  an  RC  circuit  driven  by  a  periodic  square  voltage.  The  theoretical  aspects  of  an  RC  circuit  and  how  the  capacitors  behave  in  serial  and  parallel  connections  have  been  discussed  in  your  textbook  and  only  a  brief  review  is  presented  here.  

 

Consider  an  RC  circuit  as  shown  in  the  diagram.  If  switch  S  is  pushed  down  so  as  to   start   charging   the   initially   uncharged   capacitor   C,   then   at   some   time   t,   the  magnitude  of  the  charge  on  one  of  the  capacitor  plates  is  given  by  

 

Q(t)  =  Qo(t)[  1-­‐  exp(-­‐t/RC)]                                                 [1]  

 

where  Qo(t)  =  VbattC.  The  potential  difference  across  C  is  given  by  

 

V(t)  =  Vbatt  [  1-­‐  exp(-­‐t/RC)]                 [2]  

Page 2: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

 

 If   switch   S   is   thrown   in   the   ’up’   position   after   the   capacitor   has   been   fully  charged,   the   charge  on   the   capacitor  will   exponentially  decay  with   time  and   is  given  by  

 

Q(t)  =  Qo(t)exp(-­‐t/RC)               [3]  

 

And  the  voltage  across  C  is  given  by  

 

V(t)  =  Vbatt  exp(-­‐t/RC)             [4]  

 

When  t  =  RC,  according  to  [3]  

 

Q(t)  =  Qo(t)exp(-­‐  1)  =    Qo(t)/e  =  0.37  Qo(t)           [5]  

 

or     the   charge  has   fallen   to  37%  of   its  original   value.  The   time  when   t  =  RC   is  called  the  time  constant  τ  of  the  RC  circuit.  

[Note:  during  the  charging  process,  the  charge  on  C  would  have  risen  to  63%  of  its  final  value  in  one  time  constant.  Similar  statements  can  be  made  for  V(t).]  

 

Experimentally,  it  is  easier  and  more  convenient  to  measure  t1/2,  the  time  it  takes  for  the  voltage  across  the  capacitor  (or  the  charge  on  it)  to  rise  (during  charging  from   an   initial   Q   =   0   state)   or   fall   (from   an   initial   Q   =   Q0   state)   to   half   its  maximum  value.  Thus    

 

½  =  exp[  -­‐  t1/2 / RC] = exp[  -­‐  t1/2 / τ]

or τ = RC = t1/2 /ln 2 [6]

Page 3: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

3. Experimental Procedure

The  experimental  procedure   for   this   laboratory   is  very  simple.  An  RC  circuit   is  driven   by   a   periodic   square   voltage   and   the   resulting   time-­‐dependent   voltage  across  the  capacitor(s)  is  displayed  on  an  oscilloscope  screen  from  which  t1/2 is measured followed by the use of eq.[6] to determine C.

3.1 Apparatus

[i]. AT-­‐700  Portable  Analog/Digital  Laboratory.  

[ii] An assortment of connector wires, capacitors and resistors.

 

You   will   be   working   with   the   AT-­‐700   Portable   Analog/Digital   Laboratory.   It  consists  of  two  main  parts.  As  shown  in  the  picture  below  there  is  a  breadboard  surrounded   by   a   variety   of   functional   input   and   output   circuits.   In   this  experiment  we  are  only  concerned  with  just  one  device  –  the  function  generator  (FG).  The  FG   is  a  device   that  can  produce  periodic  voltage  signals  –  sinusoidal,  triangular   and   square  wave.  Here,  we  will   only   utilize   the   square  wave   signal.  The  solderless  breadboard  allows  electrical  components  to  be  easily  plugged  in,  removed   and   interconnected   without   cumbersome   soldering   and   desoldering.  Here   is  a  brief  description  of  various   terms  and  how  a  breadboard  works.  The  holes   that   you   see   in   a   breadboard   are   called   tie   points.   You   connect   two   tie  points  using  a  connector  wire.  

The  tie  points  are  organized  in  two  distinct  arrangements  called  the  distribution  strip  and  the  terminal  strip  (see  diagram  below).  

 

Page 4: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

 

Figure  2a.  The  AT-­‐700  Portable  Analog/Digital  Laboratory.  

 

The  distribution  strip  is  a  series  of  two  parallel  rows.  In  a  given  distribution  strip,  all   tie  points   in  a  given  row  are  connected  by  a  copper  base  strip  under  the  tie  points.   This   means   you   can   connect   two   wires   by   simply   sticking   two   wires  anywhere   in   a   given   row.   In   a   terminal   strip   all   five   vertical   tie   points   in   a  vertical  column  are  connected  by  a  base  conducting  strip.  Thus  you  can  connect  two  wires  by  sticking  them  in  the  same  column  in  a  terminal  strip.          

 

Figure  2b.  Close  up  of  the  Bread  Board.  

 

Page 5: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

3.2  Experimental  Procedure  

 

A.  Resistance  Measurement.  

 

You  will  be  given  two  capacitors  of  capacitance  in  the  5.0  to  10.0nF  range  and  a   resistor,   R   of   nominal   resistance   of   10.0   –   20.0   kΩ.   Measure   the   actual  value  of  R  using  a  digital  multimeter  and  enter  this  value  in  Table-­‐I.  

 

The  capacitance  values  will  be  imprinted  on  the  capacitors,  however,  we  will  determine  the  capacitance  using  an  RC  circuit  and  then  compare  these  values  to  the  imprinted  values.    

 

 

B.  Single  Capacitor  

 

Using  one  of  the  capacitors  and  the  resistor  R,  construct  the  circuit  as  shown  below.  

 

 

FG

C

R

OSC

Ch-1

Ch-2

OSC

t1/2

t1/2V1/2

V1/2

Oa timeb

c

Figure  3a.  Single  capacitor  circuit  charging  and  discharging  with  response  curve.  

 

Page 6: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

Adjust  the  FG  frequency  in  the  10  –  20kHz  range  (this  can  be  later  adjusted  to  optimize   the   reading   precision).   The   voltage   across   the   capacitor   will   be  displayed  on  CH-­‐02  of  the  oscilloscope.  CH-­‐01  will  show  the  driving  voltage  being   applied   to   the  RC   circuit.   (Note:  The   amplitude  of   the   sinusoidal   and  the   triangular   voltage   signals   can   be   adjusted   with   the   Amplitude   knob.  However,  the  amplitude  of  the  square  wave  is  not  adjustable  and  is  fixed  at  5.0  V).  With  the  Vertical  Position  knob  adjust  the  vertical  position  of  the  CH-­‐02  signal  so  that  the  signal  trace  is  cut   in  half  by  the  horizontal  axis.  Adjust  the  vertical  scale  of  CH-­‐02  so  that  the  voltage  trace  is  large  enough  to  fill  as  much  of   the  oscilloscope  screen  as  possible.  This  will   improve  the  accuracy  for   locating   the  vertical  halfway   level.  Adjust   the   time  scale  so   that  you  can  see  at   least  one  charging  and  one  discharging  scale  well  on  the  oscilloscope  screen.  Using   the   time  markers,  measure   the   t1/2   shown   as  Oa   or  bc   in   the  diagram  above.  Make  three  measurements  for  each  t1/2  .Enter  these  values  in  Table-­‐I   and   calculate   C1   as   indicated   in   the   Table.   Repeat   the   procedure  outlined  above  for  the  second  capacitor.  

 

C.  Capacitors  in  Series  

Using  the  two  given  capacitors  and  the  resistor,  make  the  series  circuit  as  shown  in  the  diagram.  Repeat  the  procedure  outlined  above  for  a  single  capacitor  to  measure  the  equivalent  capacitance  of  C1  and  C2.  

 

 

 

 

 

 

 

 

 

Figure  4.  Charging  circuit  with  capacitors  in  series.  

 

 

 

FG

R

OSC

Ch-1

Ch-2

OSC

C2

C1

Page 7: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

D.  Capacitors  in  Parallel  

Using  the  two  given  capacitors  and  the  resistor,  make  the  parallel  circuit  as  shown   in   the   diagram.   Repeat   the   procedure   outlined   above   for   a   single  capacitor  to  measure  the  equivalent  capacitance  of  C1  and  C2.  

 

 

 

 

 

 

 

 

 

 

Figure  5.    Charging  circuit  with  capacitors  in  parallel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

C1 C2

FG

R

OSC

Ch-1

Ch-2

OSC

Page 8: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

LAB-­‐04  Capacitors  and  RC-­‐Circuits  

 

Name:_______________________    Sec./Group__________              Date:_____________  

 

4.  Prelab  

 

Suppose,  you  are  given  three  capacitors  C1  =  2.0µF,  C2 =  4.0µF,  and  C3  =  6.0µF.  

 

1.    What  is  the  minimum  and  the  maximum  capacitance  you  can  obtain  using  all  three  capacitors  in  a  circuit?  

 

 

 

 

 

 

 

 

2.     If   you   apply   a   voltage   Vab   =   12.0V   to   the   terminals   of   the   series   and   parallel  capacitor  circuits  of  part  [a]  above  to  charge  the  capacitors,  what  is  the  ratio  of  the  energy  that  can  be  stored  in  the  2.0µF  and  the  4.0µF  capacitors  when  they  are  parts  of    

 

[a]  the  minimum  capacitance?  

 

 

 

[b]  the  maximum  capacitance  configuration?  

Page 9: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

LAB-­‐04  Capacitors  and  RC-­‐Circuits  

 

Name:_______________________    Sec./Group__________              Date:_____________  

 

5.  Data  

 

5.1  Single  Capacitors  

 

Resistance,  R  (kΩ)    =    _________  

 

TABLE-­‐I  

Capacitor    

t1/2  

(μsec)  

Average  

t1/2  

(μsec)  

Capacitance  

Cexp  =  t1/2/(Rln2)  

(nF)  

 

C1        

 

 

C2        

 

 

   

(Below  C1  and  C2  are  the  values  printed  on  the  capacitor  cases)  

1 1,exp 1% ( / ) 100difference C C C= − ×  =  

    2 2 2 100,exp% ( / )difference C C C= − × =  

 

Page 10: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

5.2  Capacitors  in  series  

 

TABLE-­‐II  

 

t1/2  

(μsec)  

Average  

t1/2  

(μsec)  

Equivalent  Capacitance  

Cexp  =  t1/2/(Rln2)  

(nF)  

     

 

 

 

Ctheo.  =  C1C2/  (C1  +  C2)    =  

 

 

exp% ( / ) 100theo theodifference C C C= − × =      

 

 

 

 

 

 

 

 

 

 

 

 

Page 11: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

LAB-­‐04  Capacitors  and  RC-­‐Circuits  

 

Name:_______________________    Sec./Group__________              Date:_____________  

 

5.3  Capacitors  in  parallel  

 

TABLE-­‐III  

 

t1/2  

(μsec)  

Average  

t1/2  

(μsec)  

Equivalent  Capacitance  

Cexp  =  t1/2/(Rln2)  

(nF)  

 

     

 

 

 

Ctheo.  =  C1  +  C2  =  

 

 

exp% ( / ) 100theo theodifference C C C= − × =  

 

 

 

6.  Analysis  

 

There  is  no  extra  analysis  for  this  lab.  

 

Page 12: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

 

6.  JUST  FOR  THE  FUN  OF  IT.  

 

6.1  When  Ohm’s  law  is  not  obeyed.  

An  LED  is  an  example  of  a  non-­‐Ohmic  device  –  it  

does  not  obey  the  relation  V  =  IR.  An  I-­‐V  plot  of  an  

LED  is  shown  in  Fig.6.  To  demonstrate  this  

behavior,  connect  two  LED’s  in  parallel  across  the  

function  generator  of  the  AT-­‐700.  Use  a  square  

wave  signal  in  the  1  –  5  Hz  range.  If  you  don’t  see  

the  two  LED’s  blink  (glow  and  dim)  alternately,  

pull  one  of  the  LED’s,  flip  its  leads  and  reinsert  it  in  

the  distribution  strip.  Now  the  two  LED’s  will  

blink  alternately  –  LED1  glows  (no  current  

through  LED2)  in  the  first  half  of  the  square  wave  when  the  current  flows  from  a  to  

b  while  in  the  other  half  of  the  square  pulse  the  current  flows  from  c  to  d  and  LED2  

glows  (no  current  through  LED1).    

 Figure  7  

6.2  Connecting  Ammeters  and  Voltmeters  

In  this  experiment  we  will  use  the  brightness  of  an  LED  as  an  approximate  indicator  

of  the  current  flowing  through  it.  Keep  just  one  LED  in  the  circuit,  remove  the  other  

one  you  used  in  the  experiment  above.  Take  a  resistor  R1  in  the  range  of  20  –  100Ω.  

Connect  it  in  parallel  with  the  LED.  You  will  notice  a  sharp  reduction  in  the  

brightness  of  the  LED.  Now  connect  the  same  resistance  in  series  with  the  LED.  Now  

For positive voltageI increases non-linearlywith V.

For negative voltagealmost no currentflows.

OV

I

Figure 6

Page 13: PHYS%102)) ) LAB%04) …steinberg/TEACH (OLD)/phys102/Labs/D...Theobjective$of$this$experiment$is$to$measure$the$capacitance$of$a$single$capacitor$ ... Microsoft Word - PHYS-LAB MANUAL-

what  do  you  observe?  Repeat  the  experiment  with  a  large  resistor  R2  (10-­‐  20kΩ)  

resistor.  Note  the  change  in  the  brightness  of  the  LED  when  R2  is  connected  in  

parallel  and  then  in  series  with  the  LED.    

Use  your  observations  to  explain  why  an  ammeter  (a  low  resistance  device)  in  

connected  in  series  with  a  circuit  element  to  measure  the  current  through  it,  and  a  

voltmeter  (a  very  high  resistance  device)  is  connected  across  a  circuit  element  to  

measure  the  voltage  drop  across  it.