photodetection principles, performance and limitations

13
Photodetection EDI T EDIT 2011 N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. Renker 1 Photodetection rinciples, Performance and Limitations Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar (JSI Ljubljana) Yuri Musienko (Northwestern U, USA) Veronique Puill (LAL, Orsay) Dieter Renker (TU Munich) 1

Upload: kare

Post on 16-Feb-2016

57 views

Category:

Documents


1 download

DESCRIPTION

Photodetection Principles, Performance and Limitations. Nicoleta Dinu (LAL Orsay) Thierry Gys (CERN) Christian Joram (CERN) Samo Korpar (JSI Ljubljana) Yuri Musienko (Northwestern U, USA) Veronique Puill (LAL, Orsay) Dieter Renker (TU Munich) . 1. OUTLINE Basics - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 1

Photodetection Principles, Performance and Limitations

Nicoleta Dinu (LAL Orsay)Thierry Gys (CERN)Christian Joram (CERN)Samo Korpar (JSI Ljubljana)Yuri Musienko (Northwestern U, USA) Veronique Puill (LAL, Orsay)Dieter Renker (TU Munich)

1

Page 2: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 2

OUTLINE

• Basics

• Requirements on photodetectors

• Photosensitive materials

• ‘Family tree’ of photodetectors

• Detector types

• Applications

Page 3: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 3

Basics

1. Photoelectric effect2. Solids, liquids, gaseous materials3. Internal vs. external photoeffect, electron affinity4. Photodetection as a multi-step process5. The human eye as a photodetector

Page 4: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 4

Formatting guidelines for preparing slides

Use Calibri as default fontDefault color: white (avoid text in red, difficult to read for many people)Main title: 24 ptsNormal text: 16 ptsReferences: 10 pts

Page 5: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 5

Page 6: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 6

Energy loss eVth in (thin) ohmic contact

Hybrid Photon Detectors (HPD’s) – Basic Principles

• Combination of vacuum photon detectors and solid-state technology;

• Input: collection lens, (active) optical window, photo-cathode;

• Gain: achieved in one step by energy dissipation of keV pe’s in solid-state detector anode; this results in low gain fluctuations;

• Output: direct electronic signal;• Encapsulation in the tube implies:• compatibility with high vacuum

technology (low outgassing, high T° bake-out cycles);

• internal (for speed and fine segmentation) or external connectivity to read-out electronics;

• heat dissipation issues;

DV

(C.A. Johansen et al., NIM A 326 (1993) 295-298)

Optical input window

n+

n

p+

- ++ -+

-

Photon

Photoelectron

Typical stopping range 3-5mm

Page 7: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 7

• Photo-emission from photo-cathode;• Photo-electron acceleration to DV 10-

20kV;• Energy dissipation through ionization and

phonons (WSi=3.6eV to generate 1 e-h pair in Si) with low fluctuations (Fano factorF 0.12 in Si);

• Gain M:

• Intrinsic gain fluctuations sM :

dominated by electronics• Example: DV = 20kV

M 5000 and sM 25• suited for single photon detection with

high resolution;

SiWVthVeM )( D

(C.P. Datema et al., NIM A 387 (1997) 100-103)

Background from electron back-scattering

at Si surface

MFM s

1 pe

2 pe 3 pe

4 pe

6 pe

7 pe

5 pe

Energy resolution of HPD’s - Basic Properties

Page 8: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 8

(http://cmsinfo.cern.ch/Welcome.html/CMSdetectorInfo/CMShcal.html)

(P. Cushman et al., NIM A 504 (2003) 502)

Possible cross-talks

(http://cmsinfo.cern.ch/Welcome.html/CMSdetectorInfo/CMShcal.html)

Multi-pixel proximity-focussed HPD – CMS HCAL

• B=4T proximity-focussing with 3.35mm gap and HV=10kV;

• Minimize cross-talks:– pe back-scattering: align with B;– capacitive: Al layer coating;– internal light reflections: a-Si:H AR

coating optimized @ l = 520nm (WLS fibres);

• Results in linear response over a large dynamic range from minimum ionizing particles (muons) up to 3 TeV hadron showers;

Page 9: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 11

Object illuminance: 0.1lx

EBCCDproximity-focussed

Commercial 2/3” CCD

Hamamatsu N7640EB-CCD

(Hamamatsu)

Electron-bombarded CCD (EBCCD)

extra slide

not shown

Page 10: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 13

• Industry-LHCb development:• LHCb-dedicated pixel array sensor bump-

bonded to binary electronic chip (in close collaboration with ALICE-ITS), specially-developed high T° bump-bonding;

• Flip-chip assembly encapsulated inside vacuum tube using full-custom ceramic carrier;

(M. Moritz et al., IEEE TNS Vol. 51,No. 3, June 2004, 1060-1066)

50mm

Pixel-HPD anode

72mm

(K. Wyllie et al., NIMA 530 (2004) 82-86)

Pixel-HPD’s for LHCb RICHes

(M. Campbell et al., IEEE TNS Vol. 53,No. 4, August 2006, 2296-2302)

Page 11: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 14

RICH2 H X-section

Upper RICH1 HPD plane

Pixel-HPD’s for LHCb RICHes

• Single photon sensitivity over 200nm-600nm (aerogel response and scattering, and chromatic dispersion in gases)

• Detection area of 3.3m2 (500 HPD’s) with active area fraction of ~65% and position resolution 2.5mm (optimum of pixel vs chromatic vs emission point errors)

• Fast response for LHC bunch-crossing rate of 40MHz with good signal-to-noise ratio

• Radiation tolerant (3krad per year)

LHCb data(preliminary)

K ring in RICH1

Page 12: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 16

• Non-exhaustive list:• www.photonis.com: “Photomultiplier tubes, principles and applications”;• www.hamamatsu.com;• www.photek.com;• A.H. Sommer, ”Photoemissive materials”, J. Wiley & Sons (1968);• H. Bruining, “Physics and Applications of Secondary Electron Emission”, Pergamon Press

(1954); • I. P. Csorba, “Image Tubes”, Sams (1985);• Proceedings of the triennial NDIP (New Developments in Photo-detection) Conference (1996-

2008), published in NIMA;

Literature

Page 13: Photodetection  Principles, Performance and Limitations

Photodetection

EDIT

N. Dinu, T. Gys, C. Joram, S. Korpar, Y. Musienko, V. Puill, D. RenkerEDIT 2011 17

Applications

1. Readout of scintillators / fibres with PMT/MAPMT. 2. Readout of RICH detectors with HPD. 3. Readout of RICH detector with gas based detectors4. Readout of inorganic crystals with APD. Example: CMS ECAL.5. Readout of scintillators with G-APD. 6. Ultrafast timing for TOF with MCP-PMT