phonetic features in asr

18
Phonetic features in ASR Kurzvortrag Institut für Kommunikationsforschung und Phonetik Bonn 17. Juni 1999 Jacques Koreman Institute of Phonetics University of the Saarland P.O. Box 15 11 50 D - 66041 Saarbrücken E-mail : Germany [email protected]

Upload: cyrus-ramos

Post on 31-Dec-2015

29 views

Category:

Documents


0 download

DESCRIPTION

Phonetic features in ASR. Kurzvortrag Institut für Kommunikationsforschung und Phonetik Bonn 17. Juni 1999 Jacques Koreman Institute of Phonetics University of the Saarland P.O. Box 15 11 50 D - 66041 Saarbrücken E-mail : [email protected]. ICSLP’98. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Phonetic features in ASR

Phonetic features in ASR

Kurzvortrag

Institut für Kommunikationsforschung und PhonetikBonn

17. Juni 1999

Jacques KoremanInstitute of PhoneticsUniversity of the SaarlandP.O. Box 15 11 50D - 66041 Saarbrücken E-mail: Germany [email protected]

Page 2: Phonetic features in ASR

ICSLP’98Do phonetic features help to improve consonant identification in ASR?

Jacques KoremanBistra AndreevaWilliam J. Barry

Institute of Phonetics, University of the SaarlandSaarbrücken, Germany

Page 3: Phonetic features in ASR

INTRODUCTIONVariation in the acoustic signal is not a problem for human perception, but causes inhomogeneity in the phone models for ASR, leading to poor consonant identification. We should

Bitar & Espy-Wilson do this by using a knowledge-based event-seeking approach for extracting phonetic features from the microphone signal on the basis of acoustic cues.We propose an acoustic-phonetic mapping procedure on the basis of a Kohonen network.

“directly target the linguistic information in the signal and ... minimize other extra-linguistic information that may yield large speech variability”

(Bitar & Espy-Wilson 1995a, p. 1411)

Page 4: Phonetic features in ASR

DATA

English, German, Italian and Dutch texts from the EUROM0 database, read by 2 male + 2 female speakers per language

Texts

Page 5: Phonetic features in ASR

DATA

• 12 mel-frequency cepstral coefficients (MFCC’s)• energy• corresponding delta parameters

16 kHz microphone signals

Hamming window: 15 msstep size: 5 mspre-emphasis: 0.97

Signals

Page 6: Phonetic features in ASR

SYSTEM ARCHITECTUREconsonant

language model

lexicon

phonetic features

hidden Markov modelling

C

Kohonen network

BASELINE

Kohonen network

MFCC’s + energy delta parameters

BASELINE

Kohonen network

Page 7: Phonetic features in ASR

CONFUSIONS BASELINE

phonetic categories: manner, place, voicing 1 category wrong 2 categories wrong 3 categories wrong

(by Attilio Erriquez)

Page 8: Phonetic features in ASR

CONFUSIONS MAPPING

phonetic categories: manner, place, voicing 1 category wrong 2 categories wrong 3 categories wrong

(by Attilio Erriquez)

Page 9: Phonetic features in ASR

ACIS =

Baseline system: 31.22 %

Mapping system:

68.47 %

total of all correct identification percentagesnumber of consonants to be identified

The Average Correct Identification Score compensates for the number of occurrences in the database, giving each consonant equal weight.It is the total of all percentage numbers along the diagonal of the confusion matrix divided by the number of consonants.

Page 10: Phonetic features in ASR

BASELINE SYSTEM

• good identification of language-specific phones• reason: acoustic homogeneity• poor identification of other phones

% correctcons. baseline mapping language 100.0 75.0 German 100.0 100.0 Italian 100.0 100.0 Italian 97.8 91.3 English 94.1 100.0 Engl., It. 91.2 96.5 English 88.2 93.4 G, NL

Page 11: Phonetic features in ASR

MAPPING SYSTEM

• good identification, also of acoustically variable phones• reason: variable acoustic parameters are mapped onto

homogenous, distinctive phonetic features

% correctcons. baseline mapping language 6.7 86.7 E,G, NL 0.0 58.2 all 0.0 44.0 all0.4 36.9 all 5.9 38.3 all 1.4 33.3 alletc.

Page 12: Phonetic features in ASR

APMS =

Baseline system: 1.79

Mapping system:

1.57

The Average Phonetic Misidentification Score gives a measure of the severity of the consonant confusions in terms of phonetic features.The multiple is the sum of all products of the misidentification percentages (in the non-diagonal cells) times the number of misidentified phonetic categories (manner, place and voicing). It is divided by the total of all the percentage numbers in the non-diagonal cells.

phonetic misidentification coefficientsum of the misidentification percentages

Page 13: Phonetic features in ASR

APMS =

• after mapping, incorrectly identified consonant is on average closer to the phonetic identity of the consonant which was produced

• reason: the Kohonen network is able to extract linguistically distinctive phonetic features which allow for a better separation of the consonants in hidden Markov modelling.

phonetic misidentification coefficientsum of the misidentification percentages

Page 14: Phonetic features in ASR

CONSONANT CONFUSIONS

cons. identified as (84%), (5%), l (4%) (94%), (6%) (63%), (11%), (10%),

(6%) (26%), (21%), (20%),

(6%) (46%), (23%), (15%),

(8%)

cons. identified as (61%), (16%), (13%) (53%), (18%), (12%),

(6%), (6%), (6%) (23%), (18%), (16%),

(13%), (10%) (28%), (18%), (16%),

(12%), (8%), (8%) (42%), (15%), (15%), (8%), (8%), (8%)

BASELINE

MAPPING

Page 15: Phonetic features in ASR

CONCLUSIONS

Acoustic-phonetic mapping helps to address linguistically relevant information in the speech signal, ignoring extra-linguistic sources of variation.

The advantages of mapping are reflected in the two measures which we have presented:

• ACIS shows that mapping leads to better consonant identification rates for all except a few of the language-specific consonants. The improvement can be put down to the system’s ability to map acoustically variable consonant realisations to more homogeneous phonetic feature vectors.

Page 16: Phonetic features in ASR

CONCLUSIONS

Acoustic-phonetic mapping helps to address linguistically relevant information in the speech signal, ignoring extra-linguistic sources of variation.

The advantages of mapping are reflected in the two measures which we have presented:

• APMS shows that the confusions which occur in the mapping experiment are less severe than in the baseline experiment from a phonetic point of view. There are fewer confusions on the phonetic dimensions manner, place and voicing when mapping is applied, because the system focuses on distinctive information in the acoustic signals.

Page 17: Phonetic features in ASR

SUMMARY

Acoustic-phonetic mapping leads to fewer and phonetically less severe consonant confusions.

Page 18: Phonetic features in ASR

THE ENDTHANK YOU FOR YOUR ATTENTION!

http://www.coli.uni-sb.de/~koreman