ph.d. thesis regulatory mechanisms and effects of temperature...

368
Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE DURING SEA BASS (Dicentrarchus labrax) SEX DIFFERENTIATION “Els mecanismes de regulació i els efectes de la temperatura en la diferenciació sexual del llobarro (Dicentrarchus labrax)” Laia Navarro Martín 2008

Upload: others

Post on 23-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Ph.D. Thesis

REGULATORY MECHANISMS AND

EFFECTS OF TEMPERATURE DURING SEA BASS

(Dicentrarchus labrax) SEX DIFFERENTIATION

“Els mecanismes de regulació i els efectes de la temperatura en la diferenciació sexual del llobarro (Dicentrarchus labrax)”

Laia Navarro Martín 2008

Page 2: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 3: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Tesi Doctoral

Universitat de Barcelona

Bieni 2001-2003 del programa de doctorat: Ciències del Mar. DEA obtingut al Departament d’Ecologia de la Facultat de Biologia, UB

Tesi adscrita al Departament de Fisiologia de la Facultat de Biologia, dintre del programa de doctorat de Fisiologia

Tesi desenvolupada al Departament de Recursos Marins Renovables, de l’Institut de

Ciències del Mar (ICM/CMIMA-CSIC)

REGULATORY MECHANISMS AND

EFFECTS OF TEMPERATURE DURING SEA BASS

(Dicentrarchus labrax) SEX DIFFERENTIATION

“Els mecanismes de regulació i els efectes de la temperatura en la diferenciació sexual del llobarro (Dicentrarchus labrax)”

Memòria presentada per Laia Navarro per optar al títol de doctora en Biologia per la Universitat de Barcelona, sota la direcció del Dr. Francesc Piferrer

Laia Navarro Martín Barcelona, Octubre 2008

Director de la Tesi

Dr. Francesc Piferrer i Circuns Investigador Científic de l’Institut de

Ciències del Mar (CSIC)

Tutor de la Tesi

Dra. M. Isabel Navarro Álvarez Professora Titular de la Facultat de

Biologia (UB)

Page 4: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 5: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Contents

-i-

CONTENTS

CONTENTS……………………………………….….…………………………... i ACKNOWLEDGEMENTS/AGRAÏMENTS.……….…………………………… iii ABBREVIATIONS….………………………….………………………………... vii PROLOGUE…….……………………………………………………….............. ix INTRODUCTION…….……………………………………………...……..……. 1 1. Types of sexual reproduction in fish.…….……………………………………. 1 2. The sex ratio.…….…………………………………………………………….. 3 3. Sex determination…….…………………………………………………........ 4 4. Sex differentiation…….……………………………………………………….. 11 5. Epigenetics and DNA methylation…….………………………………………. 33 6. European sea bass. General aspects and importance for aquaculture…………. 40 OBJECTIVES …….……………………………………………………………… 51 RESULTS I…….…………………………………………………………………. 53 Abstract…….……………………………………………………………….…….. 56 1. Introduction…….………………………………………………………………. 56 2. Materials and Methods…….…………………………………………………… 59 3. Results…….…………………………………………………………………… 62 4. Discussion…….………………………………………………………………. 64 Acknowledgments…….………………………………………………………….. 70 References…….…………………………………………………………………. 71 Figures…….……………………………………………………………………… 76 RESULTS II…….……………………………………………………………….. 81 Abstract…….…………………………………………………………………….. 84 1. Introduction…….………………………………………………………………. 84 2. Materials and Methods…….…………………………………………………… 87 3. Results…….……………………………………………………………………. 91 4. Discussion…….………………………………………………………………… 95 Acknowledgements…….…………………………………………………………. 99 References…….…………………………………………………………………... 100 Tables…….……………………………………………………………………...... 105 Figures…….………………………………………………………………............. 106 RESULTS III…….………………………………………………………….......... 111 Abstract…….………………………………………………………………........... 114 1. Introduction…….………………………………………………………………. 114 2. Experimental procedures…….……………………………………………….... 118 3. Results…….………………………………..………………………………….. 124 4. Discussion…….………………………………………………………………... 127 Acknowledgements…….……………………………………………………........ 131 References…….………………………………………………………………….. 133 Figures…….………………………………………………………………........... 137 RESULTS IV…….…………………………………………………………......... 149 Abstract…….……………………………………………………………….......... 150 Main text…….………………………………………………………………....... 150 References…….…………………………………………………………………... 157 Acknowledgements…….……………………………………………………........ 160 Figures…….………………………………………………………………............ 161 Supplementary Information…….………………………………..……………….. 164

Page 6: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

-ii-

RESULTS V…….………………………………………………………………... 173 Abstract…….……………………………………………………………………... 177 1. Introduction…….………………………………………………………………. 178 2. Materials and Methods…….…………………………………………………… 180 3. Results…….………………………………………………………………......... 186 4. Discussion…….………………………………..………………………………. 189 5. Conclusion…….……………………………………………………………...... 194 Acknowledgments…….………………………………………………………....... 194 References…….………………………………………………………………....... 194 Tables…….……………………………….………………………………………. 199 Figures…….……………………………….…………………………………….... 201 SUMMARY OF RESULTS AND DISCUSSION…….…...……………………... 207 Expression profiles of some genes involved in sea bass gonadal differentiation…. 207 Aromatase as a key-determining gene in ovarian differentiation in fish (I)………. 211 Aromatase as a key-determining gene in ovarian differentiation in fish (II)……... 213 Alterations of sea bass sex differentiation (I).Steroids effects…….……………… 216 Alterations of sea bass sex differentiation (II). Influence of temperature………… 219 Estrogen regulation of sex differentiation…….…………………………………... 225 Applications to sea bass aquaculture…….………………………………………... 227 CONCLUSIONS…….…………………………………………………………..... 231 RESUM DE LA TESI EN CATALÀ …….……………………………………….. 235 Pròleg…….………………………………..………………………………………. 235 Introducció…….…………………………………………………………………... 238 Objectius…….…………………………………………………………………….. 254 Resum de resultats i discussió……………….…………………………………….. 256 Conclusions…….………………………………………………………………...... 281 REFERENCES…….……………………………………………………………..... 285 ANNEXES (Informes del director de tesi)……………………………………….. 321

Page 7: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Acknowledgements/Agraïments

-iii-

ACKNOWLEDGEMENTS/AGRAÏMENTS

Finalment, he decidit escriure aquests agraïments en les tres llengües que formen part

de la meva vida: el català, la meva llengua materna i amb la que em sento més còmode en

l’àmbit col·loquial; el castellà, amb el que he compartit quatre intensos anys de carrera i al

que reservo la meva part més bromista (serà pel “salero” Gadità...), i l’anglès, idioma per

excel·lència de la nostra estimada feina: “La Ciència”.

La veritat és que la realització d’aquesta tesi no hagués estat possible sinó fos per la

inestimable ajuda de:

El Dr. Francesc Piferrer, qui en el seu dia, ja fa més de 5 anys, va dipositar la seva

confiança en mi i va donar-me la oportunitat de poder gaudir d’una beca per realitzar la tesi

doctoral dintre del seu grup de recerca. Gràcies per introduir-me en el món de la Ciència i

haver permès desenvolupar-me i créixer com a investigadora. Ha estat una bona experiència.

Gràcies també a la Dra. Isabel N. per haver acceptat ser la meva tutora i donar-me suport.

A tots els components (passats i presents) del Grup de Biologia de la Reproducció amb

qui he compartit molt bons moments de laboratori, mostrejos a tort i a dret, moments d’oci i

hores de dinar. La veritat és que tots plegats hem format part d’un “Dream Team”. Està clar

que sense el vostre companyerisme i esforç aquesta tesi no seria la mateixa. Us trobaré a

faltar.

Gracias Mer por tu apoyo incondicional, tanto a nivel profesional como personal. He

aprendido mucho de ti y de tu entusiasmo y dedicación a la Ciencia. Me has sido de

gran ayuda, tanto en los momentos buenos como en los difíciles. Creo que nos hemos

complementado bien y hemos formado un buen equipo. ¡Ha sido un placer!

Gràcies Silvia per la teva inestimable ajuda al laboratori i a la ZAE. Les hores d’

inacabables mostrejos no haguessin estat el mateix sense tu. Si hi hagués més tècnics

tan eficients com tu, la Ciència avançaria a pas de gegant!

Page 8: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Acknowledgements/Agraïments

-iv-

Gràcies Jordi, “chavalote” para los amigos...ai perdona... que com tu dius, tu no tens

amics! La veritat es que ha estat un plaer treballar al teu costat. “Tu si que vius be i

fas bona feina...” Ara a qui li preguntaré si les PCRs no hem funcionen???

Gracias Alejandro por haber ayudado siempre que ha hecho falta. Que bien que te he

dejado vía libre en el laboratorio, eh??? Ahora estas a tus anchas... anda que no te

podrás quejar... Ánimo que ya te queda menos y pronto te convertirás en un buen

“Bioinformatic man”.

Gràcies Noelia per haver cuidat amb tanta dedicació els meus peixets quan vas estar

de pràctiques al grup. Ara m’agafes el relleu en moltes coses així que disfruta-les al

màxim. El camí no es fàcil, però tu ets molt valenta i t’en sortiràs. Ànims i sort en la

teva tesis.

Gràcies Elvira i Maxi, per la vostra ajuda amb el manteniment de les instal·lacions i els

tancs en els que he realitzat els meus experiments, així com de la cura dels peixos quan ha

estat necessari. Gràcies Joan pels teus consells tècnics i anímics quan jo era nouvinguda a la

ZAE. Gràcies Xavi Mas, per ser tan eficient en la teva feina.

A tots els membres del departament, ja siguin becaris, tècnics, practicants o investigadors

de plantilla. Gràcies Marta per haver compartit despatx i haver tingut tanta paciència amb els

pesats del GBR (jo inclosa). Gràcies a la Isabel i a la Montse D. per estar sempre disposades a

donar un cop de mà. Gràcies Batis, Siscu, Laura, Toni, Amalia,... per compartir hores de cafè.

Gràcies al “Chanclas Team” (Toni, Àngel, Gorka, Silvia de Juan, Jordi, Alejandro, Angele,

David O., Jorge, Miki, Siscu i Jaume) per haver compartit hores de sorra bruta i sol sota la

xarxa amb la satisfacció d’unes merescudes victòries. Vosaltres heu fet que desprès de les

llargues jornades de feina alguns maldecaps es quedessin a la platja. Gracias Elvira por esos

buenos momentos de distracción compartida. Gracias David C. por haber sido un puntal de

apoyo en esta última fase de tesis y por ayudarme siempre a cargar la tesis en el coche cada

vez que me la he llevado de paseo.

Many thanks to Glen S. and Malika G. for give me the opportunity to learn a lot in your

lab. Both you were the firsts to show me how a molecular biology laboratory works. Thanks

for be patient and for teach me all those techniques that were new for me. It was a pleasure to

work with you.

Page 9: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Acknowledgements/Agraïments

-v-

Gracias Luciano y Arantxa por habernos apoyado en el reto de introducir la epigenética en

nuestros estudios. Estoy muy contenta de todo lo que he aprendido en vuestro laboratorio y

agradecida por vuestra ayuda.

La mayoría de experimentos de esta tesis se han llevado a cabo gracias a la generosidad de

la hatchery comercial Conei (St. Pere Pescador, Girona) y de Silvia Z. y Manuel C. del

Instituto de Torre de la Sal (Castellón) que amablemente nos cedieron huevos de lubina.

A tots els companys subaquàtics amb els que he compartit moltes hores d’entrenaments,

sacrificis, diversió, competició, victòries, poques derrotes i moltes alegries. Gràcies per fer-

me disfrutar tant en els meus moments de lleure.

Al meu sol, al meu cel i a totes les estrelles que es troben en el meu particular univers.

Jordik, tenir a prop un sol com tu té l’avantatge de rebre constantment bones energies i això

ha estat part imprescindible de la força que m’ha impulsat a tirar endavant aquest projecte de

tesis, sobretot en la etapa final. La teva ajuda ha fet que hagi arribat al final amb les piles ben

carregades i amb la il·lusió de compartir amb tu una nova aventura.

A tota la meva família pel seu incondicional suport. Gràcies pares per l’esforç que vau fer

en el seu dia per enviar-me a estudiar fora. Suposo que la vostra passió per el mar ha anat

calant en mi des de petita i ha estat el que ha fet que, en el seu moment, decidís tirar endavant

un projecte que va començar amb els meus estudis a la Universitat de Càdis. Gràcies per

haver-me recolzat en totes les meves decisions i per haver estat al meu costat constantment.

Gràcies al meu germà pel seu recolzament durant la realització de la tesi i per ajudar-me, amb

l’ajuda d’en Jordik, a dissenyar la portada de la memòria. Als meus cosins i tiets per fer que la

nostra família sigui per mi tan especial. Vosaltres també sou part important d’aquesta tesi ja

que de forma admirable m’heu alliçonat, tant en els moments bons com en els difícils. Sou un

dels pilars més importants en la meva vida i el vostre suport em dona empenta per dur a terme

qualsevol projecte.

En definitiva gràcies a tots (que sou molts) els que, tan a nivell professional com

personal, heu fet possible que jo hagi finalitzat aquest projecte del que vosaltres també en sou

part. Sempre us estaré enormement agraïda.

Page 10: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 11: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Abbreviations

-vii-

ABBREVIATIONS

11β-HSD: 17β-hydroxysteroid deshydrogenase 11β-OHT: 11β-hydroxytestosterone 11-KT: 11-ketotestosterone 17β-HSD: 17β-hydroxysteroid deshydrogenase AI: aromatase inhibitor Ar: Androgen receptor ARE: androgen response element CDA: canonical discriminant analysis CPA: cyproterone acetate CpG: CG dinucleotide Cyp11b: 11β-hydroxylase gene Cyp19: aromatase gene Cyp19a: gonadal aromatase gene Cyp19b: brain aromatase gene DA: discriminant analysis DMRT1: DM-related transcription factor 1 gene dpf: days post fertilization dph: days post hatch E1: estrone E2: 17β-estradiol Era: estrogen receptor alpha Erb1: estrogen receptor beta 1 Erb2: estrogen receptor beta 2 ERE: estrogen response element ESD: environmental sex determination Foxl2: forkhead transcription factor-2 Fz: fadrozole GSD: genotypic sex determination GSD+TE: genotypic sex determination influenced by temperature MDHT: 17α-Methyldihydrotestosterone mStR: membrane-associated steroid receptor MT: 17α-mehtyltestosterone NR: Nuclear receptor PGC: primordial germ cell SD: Sex determining SF-1: steroidogenic factor-1 gene SPC: steroid producing cell SRY: sex determining region of Y gene St: Steroid StAR: steroidogenic acute regulatory protein StR: Steroid receptor T: testosterone TF: Transcription factor TSD: temperature-dependent sex determination TSP: temperature sensitive period Tx: tamoxifen ∆4: androstenedione

Page 12: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 13: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Prologue

-ix-

PROLOGUE

This Thesis has been carried out in the Group of Biology of the Reproduction (GBR)

of the Department of Renewable Marine Resources at the Institute of Marine Sciences (ICM-

CSIC) of Barcelona and under the tuition of the department of Physiology of the University of

Barcelona during the period 2003-2008. The results obtained in these studies are not only

important in sea bass, but also some of them can be generalized to other fish and vertebrates.

The aim of this Thesis was to study sea bass sex differentiation at different levels: at

endocrine level, analysing the influence of different steroids and agonists and antagonists

compounds of the ovarian and testicular differentiation pathways; at expression level of some

genes that are required for the necessities of the gonads to differentiate towards ovaries or

testes; and also through mechanisms of epigenetic regulation, such as methylation, that may

be responsible for the complex process of developing a bipotential tissue, like the

undifferentiated gonad, into a ovary or testis. In non-mammalian vertebrates like some fishes,

amphibians and reptiles, the mechanism by which the temperature can affect sex

differentiation, and consequently the proportion of sexes, remains unknown. The results

obtained in this thesis allow to propose an hypotheses about how temperature can be

influencing sex differentiation and which mechanism can be responsible for that. In the

present thesis, the sea bass has been used as model specie. However, and although these

studies have broadened our knowledge in this field, the obtained results have posed new

questions that can be resolved in future experiments.

The Thesis presented here is structured into three general blocks, which are divided

into a total of five specific studies o papers.

Block A. Molecular endocrinology of sea bass sex differentiation

Paper I. Masculinization of the European sea bass (Dicentrarchus labrax) by treatment with

androgen or aromatase inhibitor involves different gene expression and has lasting effects on

male maturation.

Paper II. Expression profiles of gonadal differentiation-related genes during ontogenesis in

the European sea bass acclimated to two different temperatures.

Page 14: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Prologue

-x-

Block B: Aromatase as a key-determining gene, responsible for ovarian differentiation in fish.

Studies on its promoter and on the transcription factor Sox17

Paper III. Different Sox17 transcripts during sex differentiation in sea bass, Dicentrarchus

labrax.

Paper IV. An epigenetic mechanism involved in temperature-induced sex ratio shifts in fish

populations.

Block C: Aplications to aquaculture

Paper V. Balancing the effects of rearing at low temperature during early development on sex

ratios, growth and maturation in the European sea bass. Limitations and opportunities for the

production of all-females stocks.

During the realization of this Thesis two papers not included in the main results, but

related with them, were published:

1. Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genetic, endocrine, and

environmental components of sex determination and differentiation in the European sea bass

(Dicentrarchus labrax L.). General and Comparative Endocrinology 142, 102-110.

2. Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S., Sweeney, G.E.,

2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and

identification of single nucleotide polymorphisms. Comparative Biochemistry and

Physiology. Part A, Molecular and Integrative Physiology 145, 47-53.

The results derived form this Thesis have been presented in the following scientific

meetings: 4º Congreso de la Asociación Ibérica de Endocrinología Comparada. Córdoba

(September 2003); Fish growth and Reproduction. Keelung, Taiwan (October 2003); 5th

International Symposium on Fish Endocrinology. Castelló (September 2004); Aquaculture

Europe 2004. Barcelona (October 2004); Tropical Biodiversity Okinawa 2005: Asia-Pacific

studies on coral reefs and islands. Okinawa, Japan (March 2005); IX Jornades de Biología de

la Reproducció. Barcelona (May 2005); 5º Congreso de la Asociación Ibérica de

Endocrinología Comparada. Faro, Portugal (September 2005); Frontiers in Molecular

Endocrinology. Hyderabad, India (December 2005); Genetics in Aquaculture IX. Montpellier,

France (June 2006); 8th International Symposium on Reproductive Physiology of Fish. Saint

Malo, France (June 2007) and the 6º Congreso de la Asociación Ibérica de Endocrinología

Page 15: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Prologue

-xi-

Comparada. Cadiz (September 2007); I Simposi d’Aqüicultura de Catalunya. Barcelona

(February 2008); Sex Determination and Gametogenesis in Fish: Current Status and Future

Directions. Honolulu, Hawaii (June 2008) and 6th International Symposium on Fish

Endocrinology. Calgary, Canada. (June 2008).

Laia Navarro-Martín, Mercedes Blázquez and Francesc Piferrer obtained an award to

the best poster for “Effects of temperature on sea bass sex differentiation”, exposed in the

“Aquaculture Europe 2004 meeting” in October 2004, Barcelona, Spain.

During the PhD training, three fellowships for short stays in foreign research centers,

of nine weeks each one, have been realized in the Dr. Sweeney laboratory of the Biosciences

Department of Cardiff University, in the United Kingdom. Some of the work done during

these stays is presented here, as the sox17 cloning (see results, block 2, paper III) or the study

of sea bass gonadal aromatase promoter polymorphisms (see Anexe).

The different studies presented in this Thesis were carried out within the framework of

three research projects:

“Análisis de los tipos de reproducción en los peces del mundo y estudio de los efectos

de la temperatura sobre la proporción de sexos”. Types of reproduction in the fishes of the

world and study of the temperature effects on sex ratio (January 2003-December 2005).

Funding agency: Spanish Ministry of Science and Technology. Participating entities: Marine

Science Institute of Barcelona, Spain. Principal Investigator: Dr. Francesc Piferrer.

“Manipulation del ciclo reproductor, control de la puesta y control ambiental de la

diferenciación sexual en especies de interés en acuiculture (lubina, lenguado, anguila)”.

Reproductive cycle manipulation, spawning control and environmental control of sex

differentiation in fish with interest in aquaculture (sea bass, sole, eel) (January 2004-

December 2007). Funding agency: Aquaculture Reference Center of the Catalan Government.

Participant entities: Marine Science Institute of Barcelona, University of Barcelona and

Aquaculture Center (IRTA, Tarragona), Spain. Principal Investigator: Dr. Josep Planas.

Page 16: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Prologue

-xii-

“Determinación de la proporción de sexos en los peces: regulación ambiental,

mecanismos moleculares implicados en la diferenciación sexual y pruebas para su control en

acuicultura”. Fish sex ratio determination: environmental regulation, molecular mechanisms

involved in sexual differentiation and evidence for their control in aquaculture (January 2007-

December 2010). Funding agency: Spanish Ministry of Science and Technology. Participating

entities: Marine Science Institute, Barcelona. Principal investigator: Dr. Francesc Piferrer

Laia Navarro Martín was supported by a FPI fellowship (BES-2003-0006) from the

Spanish Ministry of Education and Science.

Page 17: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

Page 18: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 19: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-1-

INTRODUCTION

Among all vertebrates, fish are characterized to posses a large variety of sex

determination and reproduction mechanisms (Godwin et al., 2003). Sexual reproduction is a

process by which organisms create descendants, called also offspring, with genetic

information that is a combination of their parents. Most animals and plants reproduce sexually

(Charlesworth, 2006). Sexually reproducing organisms have two sets of genes (called alleles)

for every trait, one allele from each parent.

1. Types of sexual reproduction in fish.

The types of reproduction in fish can be divided into gonochorism, hermaphroditism and

unisexuality.

Gonochoristic fish are characterized because each sex is separated in different

individuals. Once sex is determined, the gonads differentiate into ovaries or testes, and the sex

of the fish remains invariable throughout life. Is the most abundant type of reproduction in

fish and is present in about 90% of fish species (Sadovy de Mitcheson and Liu, 2008).

Different patterns of early gonadal development are present among gonochoristic species

(Yamamoto, 1969) and are used to classify these species in:

Differentiated species, in which differentiation takes place directly towards testis or

ovaries. Examples: sea bass, Dicentrarchus labrax (Blázquez et al., 1998a), coho

salmon, Oncorhynchus kistuch (Piferrer and Donaldson, 1989).

Undifferentiated species, in which all individuals first differentiate ovarian-like

gonads. Later, approximately half of the fish continue ovarian differentiation and

develop as females, while the other half differentiate into testis. Examples: zebrafish,

Danio rerio (Takahashi, 1997), the barb Barbus tetrazona tetrazona (Takahashi and

Shimizu, 1983).

Contrary, in hermaphroditic fish, sex is not separated into distinct individuals, and

testis and ovaries can be found in the same individual along its life. In turn, hermaphroditism

can be divided into two different types.

Page 20: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-2-

Sequential hermaphroditism: fish differentiate into one sex first and later sex change

into the other and remain as such the rest of their life. In these fishes, gonads can only

function as one sex at a time. Depending upon on which sex is differentiated earlier,

sequential hermaphroditic species can be classified as protandrous or protogynous fish

(Devlin and Nagahama, 2002).

Protandrous fish first develop as males and then they change to females. Some

examples are the gilthead seabream, Sparus auratus (Zohar et al., 1978); the

annular seabream, Diplodus anularis (Buxton and Garratt, 1990); the black porgy,

Acanthopagrus schlegeli (Chang and Lin, 1998) or the clownfish, Amphiprion

ocellaris (Moyer and Nakazono, 1978).

Protogynous fish develop first as females and then change to males. Examples

include some wrasses as Thalassoma pavo (Wernerus and Tessari, 1991), Coris

julis (Reinboth and Bruslé-Sicard, 1997) or the common seabram (Pagrus pagrus)

(Alekseev, 1982).

Bidirectional hermaphroditism. Gonads only function as one sex at a time but sex

change occurs in both directions several times through their life. This type of sex

reproduction is quite rare and appears only in few species as the tropical goby

Trimma okinawae (Sunobe and Nakazono, 1993).

Simultaneous hermaphroditism. In some hermaphroditic fish, ovary and testis tissues

appear and mature at the same time in the same organism. Some examples are the

combers Serranus cabrilla (Reinboth, 1979), Serranus scriba (Abd-el-Aziz and

Ramadan, 1990) and the Rivulus marmoratus (Soto et al., 1992). In those species self-

fertilization is avoided by cross-fertilization.

Finally, in unisexual fish all individuals develop as females, and reproduction is

thorough parthenogenesis. Two types of parthenogenesis mechanisms exist: gynogenesis

and hybridogenesis (Piferrer, 2008). In the first one, parthenogenesis eggs have to be

activated by the male sperm of a proximate species, but no genetic information is

transferred to the progeny. One example of gynogenesis can be found in Poecilia formosa.

In the second type, hybridogenesis, the male sperm of the proximate male is transferred to

the next generation. However, when this new females produce parthenogenesis eggs, the

Page 21: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-3-

paternal homologous chromosomes are lost, and only the maternal genetic information is

transferred to the next generation. This is the case of Poeciliopsis species.

2. The sex ratio.

In several amphibians, reptiles and fish, the phenotypic sex is the result of an

interaction between genetic, environment and/or social factors (Devlin and Nagahama, 2002;

Valenzuela and Lance, 2004).

2.1. Definition

The sex ratio is the relationship between the number of males and females in a

population. Usually it is expressed as the proportion of one sex with respect to the total

number of individuals, but also can be represented as the number or frequency of males and

females (e.g., males: females) (Hardy and Hardy, 2002).

2.2. Types of sex ratios and importance in population ecology

Usually sex ratios can be determined at three levels in relation to the ontogenesis

stage: primary sex ratios are determined after fertilization, secondary sex ratios at the time of

birth and tertiary sex ratios when organisms mature (Coney and Mackey, 1998).

A suitable sea ratio is fundamental to assure the conservation of the populations

because it has important implications in their reproductive potential (Hardy and Hardy, 2002).

The reproductive potential is the capacity to produce new individuals for the following

generation that preserve the population through time (Hardy and Hardy, 2002). In fish, this

potential depends on the weight of the breeders, the sex ratios and the fecundity of the

females (number of eggs for unit of biomass). The majority of fish possesses external

fertilization in which males are capable of producing sperm in excess for fertilizing the eggs

of many females. This means that in a given population, with a determinate biomass of

breeders and fecundity specific for each species, the reproductive potential depends on the

number of females that are involved in egg production (Parker, 1980). Therefore, a suitable

proportion of sexes and, more precisely, the number of females present, are crucial for

population viability and fundamental to assure the conservation of the populations (Parker,

1985).

Page 22: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-4-

2.3. Sex is determined by two processes: sex determination and sex differentiation

The expression of a determined sex (phenotypic sex) depends on two processes: sex

determination and sex differentiation. In general, although fish exhibit conserved sex

differentiation processes, various mechanism of sex determination exist (Devlin and

Nagahama, 2002).

3. Sex determination

3.1. Definition

According to Bull (1983), “sex determination is the process by which the gender of an

individual is established, be it genetically or environmentally”.

3.2. Major types of sex determining mechanisms in vertebrates: genetic and environment sex

determination

Sex determination in vertebrates can be divided in two major types: genetic sex

determination (GSD) and environmental sex determination (ESD). In GSD, the sex of an

individual depends on its genotype, whereas in ESD external factors are the modulators and

responsible of sex determination. Temperature-dependent sex determination mechanism

(TSD) is the most common type of GSD. In mammals, a strong conservation can be found in

the mechanism of sex determination, whereas a high diversity of sex determination systems

can be observed in the cold-blooded vertebrates. Particularly in fish, sex determination is

more labile than in mammals or birds and an amazing variety of sex-determination

mechanisms ranging from ESD to the classical sex chromosomal XX/XY or WZ/ZZ systems

can be observed (Baroiller and D'Cotta, 2001; Volff and Schartl, 2001; Devlin and Nagahama,

2002). Different types of sex determination mechanisms can be summarized in the following

scheme (Penman and Piferrer, 2008):

Page 23: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-5-

Sex determination mechanisms in vertebrates:

Genotypic sex determination

o Chromosomal inheritance

Monofactorial

• Single sex chromosomes

i. Male heterogamety (Oryzias latipes, Oncorhynchus

mykiss)

ii. Female heterogamety (Oreochromis aureus)

• Multiple sex chromosomes

i. Male heterogamety (Eigenmannia sp)

ii. Female heterogamety (Apareiodon affinis)

Multifactorial (Xiphophorus maculatus)

o Polyfactorial: autosomal or minor factors with polygenic inheritance

(Xiphophorus helleri)

Environmental sex determination

o Depending on temperature (Menidia menidia)

o Depending on pH (Apistogramma sp)

3.2.1. Genotypic sex determination (GSD)

3.2.1a. Types of GSD

In genetic sex determination, sex is fixed at fertilization and depends exclusively on

the genetic content that each individual inherits. In vertebrates different strategies have been

used as GSD mechanisms. In mammals (XX/XY) and in birds (ZZ/ZW) sex is universal and

determined at fertilization by sex chromosomes. In fish, no simple model of GSD can be

generalized and different mechanisms of genetic sex determination have been observed:

polygenic systems, dominant sex-determining factors mixed with autosomal factors or sex

chromosomes with heterogametic (XY) males or heterogametic (ZW) females (reviewed by

Bull, 1983; Devlin and Nagahama, 2002). In polygenic systems, sex is determined by a sum

of different genetic factors (found in autosomes) that activate/repress the pathway responsible

to develop one sex. Sex ratios in this system typically differ from 1:1. In contrast, the opposite

Page 24: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-6-

strategies include mechanisms that are managed by a dominant factor, which strongly

influences the direction of sex determination. This is the case of SRY, the male determining

gene found only in mammals, but not present in fish (Nagahama, 2000) (see section 3.2.1b for

more details). Chromosomal mechanism is based on the accumulation of the genes

responsible for sexual development in a pair of chromosomes, heterochromosomes. In those

cases, sex ratios typically do not differ from 1:1. In addition to this widely variety of types of

GSD, sex determination in some fish species that possess GSD can be modulated by

environmental factors, such as temperature. Genotypic sex determination modulated by

temperature effects (GSD+TE) can be observed in some fish species like sea bass, the

medaka, Oryzias latipes, the tilapia Oreochromis niloticus or Limanda yokohamae (Ospina-

Álvarez and Piferrer, 2008) (see section 4.7).

In most fish species, the real genetic sex is not known due to the lack of genetic

markers or discernible sex chromosomes, making it more difficult the study and

comprehension of GSD mechanisms. Nevertheless, genetic markers had been identified in

some fish species. Some examples are Chinook salmon, Oncorhynchus tshawtscha; African

Catfish, Clarias gariepinus; guppy, Poecilia reticulata; three-spined stickleback,

Gasterosteus aculeatus; rainbow trout, Oncorhynchus mykiss and the puffer fish, Takifugu

rubripes (reviewed by Penman and Piferrer, 2008).

However, in all cases sex determination factor/s initiate a developmental cascade of

gene regulatory elements that at the end determine the differentiation of the final phenotypic

sex (Schartl, 2004a). In this developmental pathway are involved variable upstream genes

(depending on the mechanism of sex determination) that are connected with the same or

similar downstream regulatory factors. In this regard, several genes have been identified as

sex-specific (i.e. DMRT1 or aromatase, see section 4.4), but the important point to understand

sex determination systems is to identify if such factors are triggered by master genes

influenced by secondary loci, autosomal genes or by the environment.

3.2.1b. Genes involved in sex determination

In many vertebrates, sex is determined by the presence or absence of a critical genetic

factor. For example, in mammals sex is dependent on the presence/absence of the Y

chromosome, and more particularly of a gene called SRY (the Sex Determining Region on the

Page 25: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-7-

Y chromosome) (Gubbay et al., 1990; Sinclair et al., 1990). SRY belongs to a large family of

related genes, called SOX, that are characterized by the presence of an HMG box DNA

binding domain (Laudet et al., 1993). HMG box domains are known to bind DNA in the

minor groove and to bend the DNA to acute angles (Pevny and Lovell-Badge, 1997). In

humans SRY was discovered by Sinclair et al. (1990) and was indicated to function as an

architectural protein in assembling multiple nucleoprotein complexes essential for correct

gene expression (reviewed by Grosschedl et al., 1994). This gene has been related with the

control of the gene expression linked to the testis-determining pathway (reviewed by Schafer,

1995), including its function of act as an antagonist of repressors of male-development (Swain

et al., 1998a; Jordan et al., 2001; Clarkson and Harley, 2002).

In mouse, Sry is expressed in mouse testes during the critical period of sex

determination (Koopman et al., 1990), in a very brief period just prior to the first signs of

testis formation, suggesting that this gene is responsible for the initiation of Sertoli cell

differentiation (Swain et al., 1998b). Some studies demonstrated that SRY expression initiates

differentiation of Sertoli precursors and is considered the first step of primary sex

determination (Kim and Capel, 2006). However, developmental expression of Sry in sheep

and pig differs from mouse since Sry expression persist after the full differentiation of the

testis (Payen et al., 1996; Parma et al., 1999), suggesting that Sry may be also involved in the

differentiation of other cell types in the gonads, at least in those species (Parma et al., 1999).

In addition, Sry was found to be able to direct male development in an XX transgenic mouse,

demonstrating that can be determined as the master gene in mammalian sex determination

(Koopman et al., 1991). In this regard, it has been demonstrated that Sry is necessary and

sufficient for initiating testis determination and subsequent development of sexual

characteristics in the majority of mammals (Wilhelm et al., 2007). Once Sry is expressed in

the gonads, the activation of male-specific downstream genes, cell migration and cell

proliferation necessary for male development occur (Clarkson and Harley, 2002).

However, Sry is only found in placental mammals and marsupials (Schartl, 2004b),

and appears to be absent in the majority of non-mammalian vertebrates, as fish, and some

rodent species, indicating that this gene cannot have testis-determining role in all vertebrates.

These results suggest that sex determination is a rapidly evolving system that might contribute

to speciation (Clarkson and Harley, 2002). Molecular evolution of Sry was tentatively

Page 26: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-8-

estimated and compared with Sox and other proteins. Contrary to other Sox genes, Sry retain

very little homology outside the HMG box region and in addition posses a high rate of

divergence within the HMG box that could reflect an unusual rapid divergence of the entire

protein (reviewed by Bowles et al., 2000). Also, it has been shown that Sry has evolved more

than ten times more rapidly than X chromosomal Sox3 and other autosomal genes. This rapid

evolution of SRY might agree with the fact that SRY is present in the distal region of the Y-

chromosomal short arm with no recombination (Nagai, 2001). Thus, Sry is a very rapidly

evolving gene that appears to have evolved only in mammals (Graves, 2002).

Although genes that are known to act downstream Sry in the sex-determining (SD)

cascade have been detected in many species and seem to be conserved (Schartl, 2004b), their

interaction is not conserved, reinforcing the idea that a wide variety of SD mechanisms and

master SD genes exist in vertebrates (Koopman and Loffler, 2003). Particularly in fish, a new

candidate SD master gene, equivalent to Sry in mammals, was identified in the medaka,

Oryzias latipes and also in Oryzias curvinotus, species with stable XX/XY genetic sex-

determination mechanism (Matsuda et al., 2002; Nanda et al., 2002). Matsuda et al.

demonstrated that this gene, called DMY, is localized in Y chromosome and was derived from

the DM-related transcription factor 1 (Dmrt1), which shares a high homology (Matsuda et al.,

2003). Also the same authors showed that DMY seems to be generated by a gene duplication

event and, as well as Sry, DMY rate of evolution is higher than his antecessor Dmrt1 (Matsuda

et al., 2003). DMY had been shown to be sufficient to induce testis differentiation, while its

absence cause female development in medaka (Nagahama, 2005). It seems that DMY acts as a

transcription regulator of early gonadal differentiation of male individuals (Nagahama, 2005)

regulating primordial germ cells (PGCs) proliferation and differentiation (Herpin et al., 2007).

However, this gene is absent in very related species (as O. celebensis, O. mekongensis and

Xiphophorus maculatus) and in other species of fish, and therefore this gene cannot be the

master sex-determining gene in fish (Kondo et al., 2003; Veith et al., 2003; Volff et al.,

2003). In addition, a gene homologous to human SRY had been found in the catfish but is not

sex-specific (Tiersch et al., 1991; Tiersch et al., 1992). This also supports the view that sex-

determining mechanisms have evolved independently many times during animal evolution

(Koopman and Loffler, 2003).

Page 27: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-9-

3.2.2. Environmental sex determination (ESD)

In ESD, phenotypic sex is determined by external factors and no consistent genetic

differences are found between sexes. TSD is the prevalent form of ESD in vertebrates and has

been found in reptiles and several fishes. For that reason TSD is one of the most studied SD

mechanisms in many animals. In the case of reptiles, the effect of temperature on resulting

sex ratios can produce extreme changes from 100 % females to 100% males and vice versa

and also some species exhibit changes from intermediate temperatures that produce 100%

males to both low and high that produces 100% females (Valenzuela and Lance, 2004).

Since the first report showing the existence of TSD in a fish species, the Atlantic

silverside, Menidia menidia (Conover and Kynard, 1981), sex ratios response to temperature

had also been discovered in several species of fishes. Temperature had been found to modify

fish sex determination and/or differentiation process in some species. Frequently the

thermosensitive period (TSP) is located around the end of the larval period and prior to the

onset of histological sex differentiation (Conover, 2004). However, generally temperature

influences are more moderate than in reptiles. This allowed to suspect that some fish species

may not possess real TSD mechanism and suggest that may be strong temperature-genotype

interactions exists in this species (Conover, 2004; Ospina-Álvarez and Piferrer, 2008).

Recently, analysis of available data by Ospina-Álvarez and Piferrer (2008) demonstrates that

many of the fishes initially assigned to posses TSD do not posses a true TSD, and instead sex

determination in this fishes follow a GSD mechanism influenced by temperature (GSD+TE).

In GSD+TE species, sex determination remains genotypic and occurs at fertilization, but is

later influenced by temperature during sex differentiation. Those authors used a criterion to

classified fish with GSD, GSD+TE and TSD that is summarized in figure 1A. Also, no close

relationships were found between species classified as having true TSD, supporting the idea

suggested by other authors (Bull, 1983; Valenzuela et al., 2003; Valenzuela and Lance, 2004)

that TSD in vertebrates has evolved separately many times. The new classification of fish

TSD shows that many species belong to families that possess GSD, suggesting that TSD

seems to be the exception in fish sex determination (Ospina-Álvarez and Piferrer, 2008). In

addition, although three forms of sex ratio response to temperature had been initially

identified in fish and summarized by Conover (2004), fish with actual TSD or even fish with

GSD+TE only have one single general response of sex ratio to temperature (Ospina-Álvarez

and Piferrer, 2008), with more males at increasing temperatures (Figure 1B).

Page 28: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-10-

Figure 1. Temperature sex determination in fish (after Ospina-Álvarez and Piferrer, 2008). A, Criteria used to determine the presence of temperature-dependent sex determination (TSD) as opposed to genotypic sex determination (GSD), and to distinguish TSD from thermal effects on GSD (GSD+TE). RTD: range of temperature during development. B, General pattern of response to temperature in fish with temperature-dependent sex determination. Low temperatures produce 1:1 or female-biased sex ratios while high temperatures produce male-biased sex ratios. In some cases the response may be partial as is represented by a dashed line. *Indicates that the evidence for a sex chromosomal system may come from direct karyotyping, banding) or indirect methods (e.g., progeny analysis of sex-linked traits, mating experiments or crosses with sex-reversed fish). **Indicates that the sex ratio shift must occur within the range of developmental temperatures during development that includes the thermosensitive period (RTD) regardless of whether there is response within the range of natural temperatures where the species lives.

Species for which TSD has beenexplicitly or implicitly assumed

Evidence for the presence of sex chromosomes

Yes* No

Incubation at wide rangeof temperatures

Sex rationot 50:50

Sex ratio50:50

GSD + TE or TSD

Sex ratio shiftwhithin the RTD**

YesNo

GSD

GSD + TE

TSD

A

B

Page 29: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-11-

4. Sex differentiation

4.1 Definition

According to Piferrer (2008), “sex differentiation is the process that involves the

transformation of an undifferentiated or bipotential gonad to testes or ovaries. The sex

resulting from sex differentiation is called phenotypic sex or gonadal sex”.

4.2 Major types of sex differentiation in gonochoristic fish

In gonochoristic fish, the gonad develops as testis or ovary, and the sex once

established remains the same throughout life. In these species, sex differentiation can proceed

following two different pathways giving differentiated and undifferentiated species.

4.3 Morphological process.

Although the genetic mechanism responsible for sex determination appear not to be

conserved among fish, a common pathway in morphological development of gonads during

early development seems to be conserved in vertebrates throughout evolution (Western and

Sinclair, 2001). Gonadal development includes two processes: gonadogenesis, which is the

formation of the gonadal primordial and sexual differentiation into testis or ovary; and

gametogenesis, which is the formation of the mature gametes proper (Piferrer, 2008).

The initial event in gonad development in both males and females is the formation of a

bipotential primodium. This structure then differentiates and develops along a male-or

female-specific pathway. Globally, in gonochoristic fish, early gonadal development can be

divided in two stages. In the first one, the gonad remains undifferentiated and occurs the

apparition of PGCs, their migration and concentration to the future gonadal areas. Then the

gonad is created with the formation of the gonadal ridges and the migration of the PGCs

inside them. Sex steroids produced by steroid-producing cells (SPCs) are thought to play an

important role in gonadogenesis and gametogenesis (reviewed by Fostier et al., 1983). In the

second stage, gonadal differentiation occurs, and undifferentiated PGCs are gradually

transformed into oogonia or spermatogonia (in females and males, respectively). Anatomic

and cytological differentiation takes place in the gonad to develop a complete ovary or testis.

In the case of females, oocytes are enveloped with a layer of granulosa supporting cells and

Page 30: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-12-

thecal cells forming a follicle layer. Ovarian somatic cells begin to elongate to form the

ovarian cavity and steroid producing cells (SPCs) appear interstitially.

Like in other vertebrates, fish gonads are characterized by the presence of two major

cell types that determine their function and structure (Devlin and Nagahama, 2002). Germ

cells posses the potential of mitotic division and enter meiosis. Associated somatic cells are

responsible to support gonadal structure (Sertoli cells in the male and granulosa cells in the

females) and to provide endocrine necessities (Leydig cells or theca cells). During gonadal

differentiation, germ cells respond to their (somatic cell) environment and enter meiosis early

in the case of the females, giving oocytes or do not and begin the process of spermatogenesis

in the males. Differentiation of the somatic cells in the testes and ovaries is morphological as

well as functional. The main function of these somatic cells is to permit development of the

germinal tissue and to provide the adequate hormonal environment for the oocytes and

spermatocytes development. In the testis, interstitial cells, particularly Leydig cells, are the

main sites for androgen synthesis, whereas in the ovaries, the two somatic layers of the

follicle seem to play separate roles in the biosynthesis of steroids (Nagahama et al., 1982).

The ovarian layer of theca cells is the responsible of the production of testosterone and

contains all the necessary enzymes. Meanwhile, the granulosa cells do not synthesize steroids

the novo, but they are capable to convert testosterone to oestrogen via the aromatase enzyme,

cyp19 (Nagahama, 1997). Thus, theca cells as well as granulosa cells are implicated in the

synthesis of estradiol and this is an important factor to control steroid production, for example

during sexual maturation in fish (Nagahama and Yamashita, 1989).

As observed in reptiles with TSD (Mittwoch, 1992) as well as in some amphibians

such as bullfrogs (Mayer et al., 2002), asynchronous development seems to occur between

females and males sex differentiation. The same happens in the majority of fish studied,

where the gonadal differentiation of ovaries takes place earlier and at smaller sizes in females,

than differentiation to testis in males (Chang et al., 1995; Patiño et al., 1996; Hendry et al.,

2002; Park et al., 2004).

Page 31: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-13-

4.4 Candidate genes involved in fish sex differentiation: Sox9, Dax1, DMRT1, SF-1,

cytochrome P450aromatase and 11beta-hydroxilase

The development of a bipotential-undifferentiated gonad into testis or ovaries, requires

the participation of many factors, some common, some specific that conform a male- or

female-specific pathway. Sex determination factor/s initiate a developmental cascade of gene

regulatory elements that at the end determine the differentiation of the final phenotypic sex

(Schartl, 2004a). In this developmental pathway, variable upstream genes (depending on the

mechanism of sex determination) are involved and connected with the same or similar

downstream regulatory factors (Schartl, 2004b). The presence of several transcription factors

in the bipotential gonad is sufficient to initiate the differentiation of both male and female

gonads. In mammalian gonadal differentiation, several autosomal genes located downstream

of SRY have been identified including Sox9, Dax1, Dmrt1, SF-1, 11beta-hydroxilase

(Cyp11b) and the cytochrome P450aromatase (Cyp19) (Swain and Lovell-Badge, 1997;

Koopman, 1999; Capel, 2000). Their implication on sex differentiation in several organisms

is analyzed below.

The SRY-related high mobility group containing box (Sox) genes are a large family of

genes that encode several transcription factors involved in different aspects of development

(Bowles et al., 2000). This family of genes are characteristic because possesses a conserved

79 amino acid domain forming a DNA-binding box HMG box (Gubbay et al., 1990). Sox

proteins interact with DNA through the consensus sequence AACAA(A/T)G (Wegner, 1999).

However, this sequence is common in the genome, so other elements must influence the

selection of target sites, including protein interactions with other transcription factors (Pevny

and Lovell-Badge, 1997). Some studies have demonstrated that Sox proteins co-evolved with

their DNA targets to achieve DNA specificity (Mertin et al., 1999). Some Sox proteins can

act as transcriptional activators, others are repressors, and still some others lack the trans-

activation domain (Kiefer, 2007). Fish species in which sox genes have been identified

include the zebrafish (Vriz and Lovell-Badge, 1995; Vriz et al., 1996; Girard et al., 2001; Gao

et al., 2005); medaka (Fukada, 1995; Yokoi et al., 2002; Nakamoto et al., 2005b); rainbow

trout, Oncorhynchus mykiss (Takamatsu et al., 1995; Takamatsu et al., 1997; Kanda et al.,

1998; Yamashita et al., 1998); rice field eel, Monopterus albus (Liu and Zhou, 2001; Zhou,

2002; Zhou et al., 2003); channel catfish, Ictalurus punctatus (Zhou et al., 2001); European

sea bass (Galay-Burgos et al., 2004); puffer fish, Takifugu rubripes (Koopman et al., 2004);

Page 32: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-14-

European Atlantic sturgeon, Acipenser sturio (Hett and Ludwig, 2005); grass carp,

Ctenopharyngodon idella (Zhong, 2006) and orange-spotted grouper, Epinephelus coioides

(Zhang et al., 2008).

In particular, Sox9 is a conserved component of the vertebrate testis differentiation

pathway that posses an important role in sex determination/differentiation immediately

downstream of SRY in mammals (Morais da Silva et al., 1996). Sox9 is expressed in a male-

specific manner in the developing gonads of many species (Kent et al., 1996; Morais da Silva

et al., 1996; Spotila et al., 1998; Western et al., 1999b; Wilhelm et al., 2007), including non-

mammalian species that do not posses SRY (Wilhelm et al., 2007). For example, Sox9 is

expressed at low levels in both XX and XY genital ridges of mouse embryos. Coincident with

SRY appearance, Sox9 levels increase in XY, while the gene is turned off in XX genital

ridges. High level of expression is maintained in testis, specifically in Sertoli cells, while the

gene is never active in follicle cells. This seems to suggest the existence of a repressor that

becomes active only in females (Swain et al., 1998b). Specifically, Sox9 has been pointed as a

critical Sertoli cell differentiation factor (Morais da Silva et al., 1996) and its expression is

specific to Sertoli cell lineage in mouse chicken and reptiles (Kent et al., 1996; Morais da

Silva et al., 1996), being sufficient to trigger Sertoli cell differentiation, for example in mice

embryos (Bishop et al., 2000; Vidal et al., 2001). In addition, gain- and loss-of-function

experiments in humans and mice, have demonstrated that Sox9 is necessary and sufficient for

male development in these species (Wilhelm et al., 2005). The high identity found between

humans, chicken and trout Sox9 gene seemed to suggest that this gene might play similar roles

(Western et al., 1999b). Also, while SRY is a rapidly evolving gene (Graves, 2002), Sox9 is

highly conserved throughout vertebrate evolution and was pointed as a candidate gene

necessary to control the testis-determining mechanisms in mammals and non-mammalian

vertebrates, as birds and reptiles (Foster et al., 1994; Wagner et al., 1994; Kent et al., 1996;

Morais da Silva et al., 1996; Meyer et al., 1997; Western et al., 1999b). However, in species

with TSD, as alligators or turtles, pre-Sertoli differentiation and first signs of gonadal

differentiation has been found to precedes Sox9 expression in the gonads (Spotila et al., 1998;

Western et al., 1999b, a), suggesting that Sox9 is not an initial trigger for sex differentiation in

these species. Nevertheless, this latter expression of Sox9 is also expressed in mammals and

may reflect that other function of Sox9 is conserved throughout vertebrate evolution (Western

and Sinclair, 2001).

Page 33: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-15-

In fish, the exact role of sox9 in sex determination and/or gonadal differentiation is complex

and remains uncertain (Nakamoto et al., 2005a). sox9 was shown to exhibit differential

expression between male and female gonads in the tilapia and pejerrey, Odontesthes

bonariensis (Nagahama, 1999; Fernandino et al., 2003). In tilapia, sox9 was expressed

similarly in male and female gonads before the firsts signs of morphological sex

differentiation, but differentiated males exhibited higher levels than females (Ijiri et al.,

2008). Contrary, in medaka, sox9 was found to be more expressed in ovaries than in testes

(Yokoi et al., 2002). Like other genes in fish, duplication of sox9 (sox9a and sox9b) has been

found in species like zebrafish (Chiang et al., 2001a). These two genes were found expressed

differentially in males and females (Chiang et al., 2001b), being sox9a expressed in

presumptive Sertoli cells, whereas sox9b was expressed in oocytes ooplasm (Rodríguez-Marí

et al., 2005). These results allowed to suggest that may be sox9a retain its function in the

testis, while sox9b possibly acquired a different function in zebrafish ovary during evolution

(Chiang et al., 2001b). To clarify if this duplication and divergence functions are found in

other species of fish, further investigations are required. Other Sox genes have also been

implicated in gonad differentiation and development in fish (see summarized table on Results

III section).

During mammalian testis differentiation, SRY act in a dose-dependent manner

controlling other autosomal genes, as Dax-1, capable to counteract SRY testis-determining

actions (McElreavey et al., 1993; Koopman, 1999). The orphan nuclear hormone receptor

Dax-1 acts as a negative regulatory factor of many genes involved in the steroid pathway

(Lalli et al., 1998) and is known to be involved in sex differentiation of some vertebrates

(Nakamoto et al., 2007).

While gonadal co-expression of Dax-1 and SRY has been found in the developing

genital ridge of both mouse and pig males and females, during gonadal differentiation Dax-1

expression is maintained in mouse ovary, whereas downregulation in the testis at the first

signs of testis-cord formation occurs (Swain et al., 1996; Parma et al., 1998). This suggests

that Dax-1 is important for ovarian differentiation. In addition, Dax-1 is known to indirectly

inhibit SRY action, competing with SRY for similar DNA structures involved in regulation of

male-specific gene expression and directly antagonizing its function. For example, Dax-1

seems to antagonize the function of SRY by binding to another orphan nuclear receptor, SF-1

Page 34: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-16-

(Yu et al., 1998) inhibiting its transcriptional activity (Ito et al., 1997). For that reasons,

DAX1 has been pointed to act as a check during female development to stop the inappropriate

expression of male genes (reviewed by Clarkson and Harley, 2002). Contrary in amphibians,

Dax-1 seems to be closely involved in testicular development (Sugita et al., 2001), suggesting

that the role of Dax-1 in sex differentiation may be not conserved in all vertebrate species.

Although some evidences, suggest the possibility that in fish Dax-1 acts as an

antitestis-determining factor (Devlin and Nagahama, 2002), Dax-1 expression seems to not

be related with fish gonadal differentiation. In medaka, Dax-1 expression was not detected in

both males or females gonads during early sex differentiation (Nakamoto et al., 2007).

Although sea bass Dax-1 was widely expressed in the brain-pituitary-gonadal axis as well as

in the gut, heart, gills, muscle and kidney, no sex differences were found in sea bass, during

the first year of life (Martins et al., 2007). Also, in adult medaka, expression was not detected

in testis and although it was detected in post vitellogenic follicles in the ovaries, no

expression was found in previtellogenic and vitellogenic follicles, suggesting that Dax-1 may

be involved in the ovarian maturation (Nakamoto et al., 2007). In addition, sex-related

differences in tilapia Dax-1 expression were found in several tissues, but not in gonads

(Wang et al., 2002). All these results reinforce the theory that although Dax-1 could be

implicated in gonadal development, is not directly related to fish sex differentiation.

The DM-related transcription factor 1 (Dmrt1) has been pointed out as another gene

involved in both vertebrate as well as invertebrate sex determination (Devlin and Nagahama,

2002). Dmrt1 encodes a transcription factor that belongs to a family of proteins that possess a

conserved zinc finger-like DNA-binding domain termed the DM domain. Two other genes

have been identified in Drosophila melanogaster and Caenorhabditis elegans belonging to

this family: the doublesex (dsx) (Erdman and Burtis, 1993) and the mab-3 (Raymond et al.,

1998), respectively, and both have been shown to be involved in sex-differentiation process.

Nowadays, Dmrt1 gene has been identified in various species of vertebrates, including

fishes, amphibians, reptiles, birds and mammals. Expression of Dmrt1, which is exclusive to

gonads, seems to be involved in early gonadal development, since is expressed in both male

and female gonads of mouse, chicken and alligator (Raymond et al., 1999; Smith et al.,

1999b; Lu et al., 2007). In addition, Dmrt1 has been shown to be up-regulated in a male-

Page 35: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-17-

specific manner during embryonic development in human, mouse, birds and reptiles,

suggesting that Dmrt1 might play an earlier role in testis differentiation (Raymond et al.,

1999; Smith et al., 1999b; Kettlewell et al., 2000; Moniot et al., 2000; Raymond et al., 2000).

Adult male-specific expression pattern of Dmrt1 has been also observed in several

vertebrates, such as some frogs (Shibata et al., 2002; Aoyama et al., 2003), lizards

(Sreenivasulu et al., 2002), turtles (Murdock and Wibbels, 2003), alligator (Smith et al.,

1999b), chicken (Shan et al., 2000), mouse (Raymond et al., 1999) and human (Raymond et

al., 1998), suggesting that Dmrt1 can also play an important role in vertebrate testis

maturation.

In zebrafish Dmrt1 expression can be detected in the developing germ cells in both the

testis and the ovary of zebrafish (Guo et al., 2005). Studies of Dmrt1 expression in rainbow

trout showed, like in mammals, that Dmrt1 is expressed in the differentiating testis, but not in

the differentiating ovary (Marchand et al., 2000). In addition, Dmrt1 is related to sex change

in hermaphroditic fish, being differentially expressed in the gonads of different sexes. For

example, while in a protandrous species, the black porgy, Dmrt1 levels decreased when fish

underwent sex change from male to female (He et al., 2003), in the protogynous rice field eel

they increased gradually during gonadal sex change from ovary to testis (Huang et al., 2005).

In consequence, is feasible to think that Dmrt1 could be a sex-differentiating gene in fish.

However, studies in the puffer fish as well as in medaka, have demonstrated that, at least in

these species, Dmrt1 is more involved in gonadal development rather than in sex

differentiation (Brunner et al., 2001; Winkler et al., 2004; Yamaguchi et al., 2006).

Supporting this, expression of Dmrt1 has been also detected predominantly in adult testis in

several fish species, as the puffer fish, medaka, Xiphophorus, tilapia and pejerrey (Guan et al.,

2000; Marchand et al., 2000; Brunner et al., 2001; Veith et al., 2003; Fernandino et al.,

2006). This specific male expression in adult fish has been found to be related to early

spermatogenesis, since it was found to be differentially expressed in the testis of rainbow

trout and pejerrey at different stages of spermatogenesis (Marchand et al., 2000; Fernandino

et al., 2006), and restricted to spermatogonia, spermatocytes and spermatids, while no

expression was detected in spermatozoa (Guo et al., 2005). All the results presented here

pointed that Dmrt1 in fish may act in a stage- and specie-specific manner. Some fishes have

been found to possess different isoforms of Dmrt1 (Guo et al., 2005; Huang et al., 2005;

Fernandino et al., 2006). For example, Dmrt1a isoform expression had been detected in

Page 36: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-18-

medaka early differentiating oocytes by in situ hybridization, suggesting that Dmrt1 may be

also important for ovarian development in some species (Winkler et al., 2004). All these

results suggest that perhaps be in fish, different isoforms of Dmrt1 may be the responsible of

these differential expression patterns, and that is possible that one of those is related to sex

differentiation.

Another factor known to be related with sex differentiation is the orphan nuclear

receptor steroidogenic factor one (Sf-1), also called adrenal 4-binding protein (Ad4BP), a

gene belonging to the vertebrate FTZ-F1 family. SF-1 is known to interact with a conserved

consensus sequence, AGGTCA, in promoter elements to regulate the coordinate expression of

the steroid hydroxylases within steroidogenic cells (Lala, 1992; Morohashi et al., 1992).

Sf-1 was shown to be essential for both female and male gonadal differentiation

(Parker 1999, Morohashi 1996). In mouse embryos, Sf-1 is expressed in both bipotential

gonads at very early stages of gonadogenesis (Ikeda, 1993, 1994; Shen et al., 1994; Ikeda,

1995). Similarly, Sf-1 expression during early development was detected in both gonads of

some amphibians, including Rana rugosa (Kawano et al., 2001), the American bullfrog Rana

catesbeiana (Mayer et al., 2002) and the urodele Pleurodeles waltl (Kuntz et al., 2006), as

well as in the red-eared slider turtle Trachemys scripta (Fleming et al., 1999), chicken (Smith

et al., 1999a) and in the marsupial Macropus eugenii (Whitworth et al., 2001). During

gonadal development and as sex differentiation progresses, Sf-1 expression is differentially

up- or down-regulated in several vertebrate species exhibiting a sexually dimorphic gonadal

expression. For example, higher expression of Sf-1 was found in male-differentiating gonads

of human (Hanley et al., 2000), mouse (Ikeda, 1994), pig (Pilon et al., 1998), rat (Hatano,

1994), the turtle Trachemys scripta (Wibbels et al., 1998; Fleming et al., 1999) and in Rana

rugosa (Kawano et al., 1998). In mammals, the male-specific expression in the testis was

localized in steroid-producing Leydig cells (Hatano, 1994; Ikeda, 1994). In contrast, female-

differentiating gonads of chicken (Smith et al., 1999a), American alligator (Western et al.,

2000), American bullfrog (Mayer et al., 2002) and urodele (Kuntz et al., 2006) presented

higher expression than their male counterparts, suggesting that the role of Sf-1 is not exclusive

to male-differentiating pathway.

Page 37: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-19-

In this regard, a dual expression in both, ovary and testis can be observed also in the

hermaphroditic gobiid fish Trimma okinawae (Kobayashi et al., 2005). Gonads of this mature

fish can simultaneously contain ovarian and testicular tissues and serial sex change can be

induced by social changes from female to male or viceversa (Kobayashi et al., 2005; Sunobe

et al., 2005). sf-1 expression can be detected in the same fish in ovaries, but not in testis, in

the female phase and, conversely, the expression is higher in the testis of the male-phase than

in the ovaries (Kobayashi et al., 2005). Also, sf-1 was found to be expressed in both ovaries

and testis in the pejerrey (Fernandino et al., 2003). In the case of Nile tilapia, sf-1 levels were

dependent on the developmental stage: with similar expression levels found in XX and XY

gonads during early development, significantly higher expression in XX gonads than in XY

gonads before the first signs of morphological sex differentiation and with higher expression

in testis than in ovaries in older fish (Ijiri et al., 2008). In addition, changes in the expression

profile of sf-1 during the ovarian cycle had been found in Nile tilapia (Yoshiura et al., 2003).

Together, these results suggest that expression of Sf-1 in both gonads, testis and

ovaries, may be due to the involvement of Sf-1 in the steroidogenic pathways leading to

female or male differentiation in vertebrates, since Sf-1 in steroidogenically active gonads is

known to regulate a large number of target genes that are essential for steroidogenesis during

development and reproduction (reviewed by Parker and Schimmer, 1997). For that reason,

this gene may be best understood in the context of steroidogenesis rather than in gonadal

differentiation and may be correlated with the steroidogenic activity necessary to support

sexual development. One example is found in T. scripta where it has been suggested that Sf-1

can be a critical component in sex development regulating Müllerian inhibiting substance

(MIS) expression and testosterone synthesis in the male pathway and cyp19 expression in the

female pathway (Fleming et al., 1999).

One of the important differences between gonadal differentiation in mammals and

other vertebrates is the implication of Cyp19 in this process. Cyp19 enzyme is responsible for

the androgen/estrogen ratio by controlling the conversion of androgens, androstenedione (∆4)

and testosterone (T), into estrogens, estrone (E1) and estradiol (E2). Contrary to mammalian

vertebrates, non-mammalian vertebrates require Cyp19 activity and estrogen synthesis for

normal ovarian differentiation (Devlin and Nagahama, 2002). Gonadal expression of Cyp19

gene, and consequently estrogen presence and accumulation, has been demonstrated to play a

Page 38: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-20-

critical role in ovarian differentiation in a variety of vertebrates such as amphibians, reptiles

and birds (Elbrecht and Smith, 1992; Lance and Bogart, 1992; Crews et al., 1994; Wennstrom

and Crews, 1995; Hayes, 1998; Pieau et al., 2001; Vaillant et al., 2001; Kuntz et al., 2003a;

Kuntz et al., 2003b). For example, dimorphic expression of Cyp19 in favor of females has

been identified in chicken embryos (Abinawanto et al., 1996). It has been demonstrated that

ovarian development requires that genetically female embryos achieve a threshold level of

Cyp19 gene expression in chickens, whereas that the absence of sufficient estrogen provokes

the differentiation of the genetic female embryonic gonads into testes (Abinawanto et al.,

1996). Also, some evidences have shown that in frogs, as Xenopus laevis (Urbatzka et al.,

2007) and Rana rugosa (Kato et al., 2004), Cyp19 expression during ontogenesis is also

involved in fish ovarian differentiation. In addition, some studies in the newt Pleurodeles

waltl and in the frog Xenopus laevis, demonstrated that Cyp19 down regulation is for testis

gonadal development (Kuntz et al., 2003b; Park et al., 2006).

In addition, some studies carried out by Stelee et al. (1987) showed that estrogens

production could be regulated by blocking aromatase activity. In some vertebrates (birds,

reptiles, and amphibians), females treated with aromatase inhibitors (AI) complete functional

sex reversal, reinforcing the Cyp19 implication in sex differentiation process and the

importance of estrogens participation in ovarian differentiation and development (Elbrecht

and Smith, 1992; Yu et al., 1993; Dorizzi et al., 1994; Wibbels and Crews, 1994; Richard-

Mercier et al., 1995; Wennstrom and Crews, 1995; Chardard and Dournon, 1999).

Particularly in fish, aromatase expression and activity in gonads have been well

characterized and several studies have also demonstrated that Cyp19 is a key enzyme

involved in fish sex differentiation (further details in section 4.6).

Finally, other gene involved in steroidogenic pathway, that has been found to be

expressed in a sexually-dimorphic manner during fish gonadal differentiation, is 11beta-

hydroxylase (cyp11β). For example in the rainbow trout, it was found highly expressed (100-

fold) in males than in females and was detectable in male gonads prior to testicular

differentiation, suggesting that rainbow trout cyp11β may play a key role in testicular

differentiation (Liu et al., 2000). However, little is known about the expression of this gene in

different species.

Page 39: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-21-

As a summary, it can be concluded that sex determination and differentiation is

complex and variable among vertebrates. Two fish examples with the implication of several

genes acting at different levels of the sex determination and differentiation pathway are shown

in Figure 2. As it has been pointed out before, upstream genes and particularly the master

gene responsible for sex determination exhibits extensive diversity among vertebrates.

However, its seems clear that downstream genes in the cascade events leading to male and

female sex determination and differentiation are well conserved and in general, their function

remain similar among different species.

Figure 2. A potential mechanism of sex determination and gonadal sex differentiation in medaka and tilapia (Nagahama, 2005).

4.5. Gonadal development dependent of sexual steroids (enzymes and receptors)

In non-mammalian vertebrates, gonadal development, contrary to mammals, is under

the influence of sex steroids, and environmental factors (Scherer, 1999). In mammals, sex

steroids (androgens and estrogens) are considered gonadal products synthesized as a result of

gonadal sex differentiation, and they are believed to act in establishing the secondary sexual

phenotype (Saal, 1989). However, in non-mammalian vertebrates gonadal steroidogenesis is

potentially active before histological differentiation. For example, estrogens in chickens

(Scheib, 1983) and turtles (Dorizzi et al., 1991) are synthesized by morphologically

undifferentiated female gonads.

Particularly in fish, sex steroids are known to be involved in fish gonadal sex

differentiation (Yamamoto, 1969). Even if they are not probably the initial triggers, their

Medaka Tilapia

XY X X XY X X

Testis Ovaries Testis Ovaries

DMY

DMRT1

? ?

DMRT1

Foxl2Cyp19a

Foxl2Cyp19a

Sex determination

Sex differentiation

Medaka Tilapia

XY XY X XX XX XY XY X XX XX

Testis Ovaries Testis Ovaries

DMY

DMRT1

? ?

DMRT1

Foxl2Cyp19a

Foxl2Cyp19a

Foxl2Cyp19a

Sex determination

Sex differentiation

Page 40: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-22-

position in the cascade of events before gonadal sex is irreversibly determined, makes them

key players in the control of gonadal phenotypic differentiation. Independently of genetic sex,

the balance between androgens and estrogens, more that the action of a particular steroid,

seems to be important and can determine that the gonad develop as an ovary or as a testis

(Baroiller and D'Cotta, 2001). In addition, administration of exogenous steroids early in

development can strongly influence sex differentiation in both directions, suggesting that they

play an important role in sex differentiating process (Guiguen et al., 1999). In gonochoristic

fish, endogenous estrogens play an important role in ovarian differentiation (Nakamura et al.,

1998; Guiguen et al., 1999; Nagahama, 2000; Nakamura et al., 2003), whereas at the same

time that the lack of steroids, including androgens, seem to be necessary for testicular

differentiation, as found, for example in tilapia (Nakamura et al., 2003). In addition, in the

case of hermaphroditic fish, a relationship between steroid concentrations and sex change

seems to exist. In protogynous species a decrease in E2 levels is necessary to permit male

development, whereas in protandrous species an increase in E2 levels induce ovarian

development, suggesting that sex change is regulated via activation/deactivation of the

steroidogenic pathway of Cyp19 (Kroon et al., 2003). On the other hand, fish androgens, such

as T or 11-KT (the major androgen in fish (Borg, 1994)), have been recently more associated

with gonadal development, testicular organization, spermatogenic induction and precocious

onset of puberty than in sex differentiation per se (Nagahama, 1994; Miura and Miura, 2003;

Rodriguez et al., 2004; Papadaki et al., 2005).

Steroid metabolic enzymes and typical steroid producing cells appear at specific times

during early development in several teleosts (Nakamura and Nagahama, 1989; Nakamura et

al., 1993). In general, hormones are produced by two types of cells: the steroid-producing

cells localized in the thecal layers but also in granulosa cells surrounding oocytes in the ovary,

and Leydig cells in the interstices among cysts of spermatogenic germ cells in the testis

(Piferrer, 2008). Steroids can affect germ-cell differentiation, for example estrogens typically

result in the differentiation of oogonia. Specific genes involved in steroid biosynthesis are

differentially expressed in somatic cells of testis and/or ovary. Steroidogenic acute regulatory

protein (StAR) is the responsible to mediate the rate-limiting and accurately regulated step of

transfer the cholesterol from the outer to the inner mitochondrial membrane where it is

initiated the synthesis of steroid hormones (Stocco and Clark, 1996). A schematic diagram of

the steroidogenic events in the cascade of estrogen and androgen production is summarized in

Page 41: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-23-

figure 3. The pathway starts with the synthesis of the steroid precursor pregnonolone (P5) via

side-chain-cleavage of cholesterol (Chol) by the enzyme side-chain-cleavage cytochrome

P450 (P450scc), and finalize with the synthesis E1, E2 or 11-KT (Piferrer, 2008). The genes of

the enzymes involved in the primary steps of this pathway, P450scc, 3βHSD and P450c17,

have been found to be expressed in early stages of both sexes in rainbow trout (Govoroun et

al., 2001). Also, Ohta et al. (2003) found that the specific genes involved in steroid

biosynthesis were differentially expressed in somatic cells of testes and ovaries of the

hermaphroditic wrasse Pseudolabrus sieboldi. When differentiation is towards ovary, Cyp19

found in the follicles transforms ∆4 into E1 or T into E2, necessary for ovary development. On

the other hand, if male differentiation takes place, ∆4 is subsequently transformed to T or 11β-

hydroxyandrostenedione, later both are transformed to 11β-hydroxytestosterone and

subsequently to 11-KT.

Sex steroids exert their action by interaction with their receptors. In fish, two different

steroid mechanisms of action had been identified (figure 4). In the classic mechanism of

action, steroids generally act on target cells through specific nuclear steroid receptors (NRs).

NRs are known to posses four characteristic features requiered to exert their actions:

hormone binding, multimeric complex formation, sequence specific DNA binding and

transcriptional modulation (Brandt and Vickery, 1997). Regulation of gene expression by

steroid response mechanisms depends on the ability of specific DNA binding proteins, the

steroid receptors (StR) to bind with high affinity to target sequences of DNA, also called

steroid response elements (StRE) (Bishop et al., 1997). When the NRs are occupied by the

ligand, the proteins adopt various conformations depending on the ligand. Ligand-dependent

activation of transcription by NRs is mediated by interactions with coactivators (Griekspoor et

al., 2007). Steroids reach their target cells via blood and, because of its lipophilic nature, it is

thought that they pass the cell membrane by simple difussion. When the steroid binds to a

specific intracellular receptor this is activated, translocated into the nucleus and dimerized.

Then this complex binds to a StRE of a target gene modifying the transcription of this gene

(reviewed by Griekspoor et al., 2007). For example, E2 exerts its biological function by

binding to estrogen receptors (ERs), transcription factors that regulate gene transcription

dependent on E2. When ER is occupied by the ligand, the proteins adopt various

conformations depending on the ligand (Brzozowski et al., 1997; Grese et al., 1997). This

tandem (ER-ligand) may recruit different proteins into the transcription complexes being

Page 42: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-24-

formed at the promoters of target genes (Shiau et al., 1998). Other steroid that is known to act

via a nuclear receptor is the 11-KT in Japanese eel (Todo et al., 1999). On the other hand,

membrane-associated steroid receptors (mStR) have also been identified and it had been

discovered that non-genomic actions, that are initiated at the cell surface and are mediated

thorough mStR, could influence also steroid production. For example, membrane-associated

receptors for estrogens (mER) and androgens (mAR) have been characterized in testes and

ovaries of Atlantic croaker species and evidences of non-genomic actions mediated by these

receptors exists in these species (Loomis and Thomas, 2000; Braun and Thomas, 2004). Figure 3. Schematic steroidogenic pathway involved in gonadal sex differentiation from cholesterol to the main sexual steroids. Progestagens with 21 carbon atoms (C21), androgens with 19 (C19) and estrogens with 18 (C18) are separated by discontinuous lines. Steroidogenic enzymes are symbolized by ellipses whereas different metabolites are indicated in bold. Abbreviations: P450scc, cytochrome P450 side-chain-cleavage; 3βHSD/4-isomerase, 3β-hydroxteroid dehydrogenese/4-isomerase; 17–OH, 17-hydroxilase; 17-HSD, 17β-hydroxysteroid dehydrogenese; 11 -OH, 11 -hydroxylase; 11-HSD, 11β-hydroxysteroid dehydrogenese (after Piferrer, 2008).

Cholesterol

17α-hydroxyprogesterone

17β-Estradiol

Androstenedione

11β-hydroxyandrostenedione

11-ketotestosterone

11β-hydroxytestosterone

P450sccP450scc

17α-OH17α-OH

17,20 Desmolase17,20 Desmolase

11β-OH11β-OH

Estrone

Cyp19Cyp19

Progesterone

Pregnonolone

3β-HSD/4-Isomerase3β-HSD/4-Isomerase

C21

C19C18

Testosterone

17β-HSD17β-HSD

11β-OH11β-OH 17β-HSD17β-HSD

11β-HSD11β-HSD

Cyp19Cyp19

Page 43: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-25-

Figure 4. Mechanisms of steroid action (modified from Griekspoor et al., 2007). The classical mechanism is represented by which regulation of gene transcription is involved. Steroid (St) that enter to cell by passive diffusion, exert their action by binding to Steroid receptors (StR), which are subsequently released from heat shock proteins (HSP90), forming a ligand-receptor complex that is latter tranlocated to the nucleus. Inside the nucleus the StR homodimerizes and interacts with steroid response elements StREs located in the promoter region of steroid-activated genes, controlling gene expression and triggering a response in the cell. (1) Passive diffusion, (2) hormone binding, (3), nuclear translocation, (4) receptor dimerization and (5) transcription. In grey, non-genomic actions are represented with steroids interacting with membrane-assotiated steroids receptors (StMR). 4.6. Aromatase and fish

A critical role for Cyp19 through estrogen regulation during ontogenesis has been well

established in fish (Baroiller et al., 1999; Guiguen et al., 1999; Baroiller and D'Cotta, 2001;

Devlin and Nagahama, 2002; Crews, 2003; Godwin et al., 2003). Generally in fish, cyp19 in

gonads has been found to be expressed before morphological sex differentiation (reviewed by

Nakamura et al., 1998; Baroiller et al., 1999) with aromatization taking place before sex

differentiation and directing the fate of the gonad (Kwon et al., 2000). Ovarian sex

differentiation has been related to high expression and activity levels of cyp19 that produce an

increase in E2 synthesis (Devlin and Nagahama, 2002). In contrast, testicular differentiation in

males requires the suppression of cyp19 in gonads (Piferrer et al., 1994; Guiguen et al., 1999;

Kwon et al., 2000), suggesting that the expression of this gene is important in fish sex

differentiation pathway. Therefore, the regulation of E2 synthesis by Cyp19 is thought to be

critical in sexual development and differentiation as well as in hermaphroditic sex change.

Experimental manipulation of E2 levels via the Cyp19 pathway was capable to induce adult

sex change in each direction in hermaphroditic fish that naturally exhibits bi-directional sex

Rapid non genomic actionsStMRSt

ResponseSt St StR

StSt

R

StSt

R

Transcription

1 2

3

4

5

Nuclear membrane

Plasma membrane

Classicsteroid action

StR

StRE

Rapid non genomic actionsStMRSt StMRSt

ResponseStSt St StRStSt StRStR

StSt

R

StSt

R

StSt

RStSt

StR

StR

StSt

RStSt

StR

StR

Transcription

11 22

33

44

55

Nuclear membrane

Plasma membrane

Classicsteroid action

StRStR

StREStRE

Page 44: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-26-

change (Kroon et al., 2005). This demonstrated that a single enzymatic pathway could

regulate both female and male sexual differentiation.

4.6.1. Aromatase gene structure and types of aromatase in fish

Human cytochrome P450aromatase (Figure 5) is encoded by a single CYP19 gene that

consists of 10 exons (Means et al., 1989). Interestingly, eight different untranslated exon I

have been identified and form the different promoters of the gene, whereas the coding region

includes exons II-X. Tissue-specific alternative splicing of the different exons I had been

pointed as the regulation system of human aromatase transcription (Clyne et al., 2004).

Figure 5. Structure of the Human CYP19 gene. The coding region comprises nine exons (II-X, open boxes). Untranslated exons are shaded. The major placental promoter I.1 is the most distally located, (approximately 89 Kb), and the ovarian promoter II is the most proximal. The main sites of expression are indicated under the first exons associated with CYP19 transcripts in each tissue. Since only exons II to X are translated, the protein products in each tissue are identical (after Clyne et al., 2004).

In general, mammalian Cyp19 genes also possess tissue-specific promoters and

alternative splicing of 5’-exons regulate the transcription of Cyp19 (Hinshelwood et al.,

2000). The basic structural organization of Cyp19 genes and the regulatory mechanism of

expression are well conserved in vertebrates (Tanaka et al., 1995). However, in fish two

cyp19 genes, cyp19a and cyp19b (also called cyp19a1 and cyp19a2) originated by genome

duplication (Meyer and Schartl, 1999) have been identified in several species (reviewed by

Piferrer and Blázquez, 2005; Barney et al., 2008). Although both genes appeared to be located

on different chromosomes, at least in tilapia (Harvey et al., 2003) and zebrafish (Chiang et al.,

2001c), high identity between mammals and fish peptide sequences (50-90%) has been found

indicating that Cyp19 is highly conserved (Piferrer and Blázquez, 2005). These genes are

known to encode two different proteins Cyp19a and Cyp19b that are preferentially and

differentially expressed in the brain (Cyp19b) and in the gonads (Cyp19a), especially in

ovaries (reviewed by Piferrer and Blázquez, 2005).

placenta brain bone adipose,cancer

adipose,bone

ovary,cancer Heme binding

region

30 kb (coding region)20 kb 30 kb 28 kb 0.5 kb 0.2 kbAATAAA

ATTAAA

I.1 I.4 I.f I.6 I.355’’ 33’’III IV V VI VII VIII IXII X

splice aceptor

120 kb

placenta brain bone adipose,cancer

adipose,bone

ovary,cancer Heme binding

region

30 kb (coding region)20 kb 30 kb 28 kb 0.5 kb 0.2 kbAATAAA

ATTAAA

I.1I.1 I.4I.4 I.fI.f I.6I.6 I.3I.355’’ 33’’III IV V VI VII VIII IXII X

splice aceptor

120 kb

Page 45: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-27-

4.6.2. Gonadal aromatase gene expression during gonadal differentiation

Regarding to fish sex differentiation, some studies have been demonstrated that the

brain form of aromatase, cyp19b, is not involved in this process (Blázquez et al., 2008). In

contrast, cyp19a had been found to be specifically expressed during ovarian differentiation in

rainbow trout (Guiguen et al., 1999), tilapia (D'Cotta et al., 2001; Kwon et al., 2001;

Sudhakumari et al., 2003), zebrafish (Trant et al., 2001) and sea bass (Blázquez et al., 2008).

In addition, cyp19a expression had been detected before the appearance of the first signs of

histological differentiation in the pejerrey at feminizing temperatures whereas remained low

at masculinizing temperatures (Karube et al., 2007). For that reason, recent studies have

proposed that cyp19a can be considered as an early marker of sex differentiation in several

fish species, including the Southern flounder Paralichthys lethostigma (Luckenbach et al.,

2005), the Atlantic halibut, Hippoglossus hippoglossus (Matsuoka et al., 2006), the rainbow

trout (Vizziano et al., 2007) and the European sea bass (Blázquez et al., 2008). It had been

demonstrated in the Japanese flounder, Paralichthys olivaceus (Kitano et al., 1999; Kitano et

al., 2000) and in the tilapia (D'Cotta et al., 2001; Kwon et al., 2001), as well as in some

amphibians (Kuntz et al., 2003b; Park et al., 2006), that cyp19a down regulation is necessary

for testis gonadal development. In addition, it was found in medaka that AI could result in a

prevention of ovarian cavity formation (Suzuki et al., 2004a). Also, administration of

exogenous compounds such as AIs or androgens have been found to interfere in the Cyp19

system (see section 4.7), suppressing gene expression in zebrafish and disrupting normal

gonadal differentiation (Fenske and Segner, 2004). However, some fish species did not

present dimorphic expression of cyp19 during ontogenesis, but clearly higher expression of

cyp19a in adult fish ovaries with respect to testes has been demonstrated. Some examples

include zebrafish (Trant et al., 2001; Sawyer et al., 2006), Atlantic halibut (van Nes et al.,

2005), Halichoeres tenuispinis (Choi et al., 2005), pejerrey (Karube et al., 2007) and

Cyprinus carpio (Barney et al., 2008).

In addition, several studies had demonstrated that cyp19a is localized in the ovarian

follicles. For example, in the Japanese eel, Anguilla japonica, is localized in the innermost

follicle layer (Ijiri et al., 2003). In the hermaphrodite gobiid fish Trimma okinawae, cyp19a

expression was strongly detected in the interstitial, thecal and granulosa cells of the ovary in

the female phase (Sunobe et al., 2005). Also, in the protogynous fish Thalassoma duperrey,

Page 46: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-28-

cyp19a was localized in granulosa cells of vitellogenic ovaries, whereas no expression was

found in transitional gonads and testes (Morrey et al., 1998).

4.6.3. Aromatase gene regulation

The promoter region of both cyp19a and cyp19b genes has been characterized in

several teleost species and different putative regulatory elements has been identified. For

cyp19a, there is a high interest to characterize regulatory elements because this allows

identifying also other upstream genes that could be involved in sex differentiation. Some

factors have been characterized in some fish species that are known to influence directly or

indirectly cyp19a expression.

Thus, higher expression of Sf-1 in ovarian gonadogenesis has been related with a role

of Sf-1, particularly in Cyp19 regulation, that can mediate ovarian differentiation throughout

estrogen production (Western and Sinclair, 2001). In addition, Sf-1-binding sites have been

identified in the promoter region of Cyp19 in chicken (Kudo et al., 1996), Xenopus (Akatsuka

et al., 2005) and in the gonadal form of many teleosts such as the zebrafish, goldfish

Carassius auratus, sea bass, grouper Cromileptes altivelis, barramundi Lates calcarifer, goby

Gobiodon histrio, medaka and tilapia (reviewed by Piferrer and Blázquez, 2005). Because sf-

1 expression pattern of rainbow trout, black porgy and tilapia was found to be similar to

cyp19a, it was suggested that Sf-1 could exert a transcriptional regulatory function of cyp19a

(Yoshiura et al., 2003; Wu et al., 2005; Kanda et al., 2006). In addition, it has been

demonstrated that Sf-1 binds to the aromatase promoter and activates its transcription in rat,

human and fish (Lynch, 1993; Michael et al., 1995; Galay-Burgos et al., 2006; Kanda et al.,

2006). These results reinforce the importance of Sf-1 in cyp19a regulation.

Foxl2 is a member of the helix/forkhead family of transcription factors also known to

be involved in ovarian development in some vertebrates. In birds, Foxl2 had been pointed as

an early regulator of ovarian development by the involved in Cyp19 transcription (Govoroun

et al., 2004). In addition, AI treatments in chicken had been able to reduce Foxl2 expression

in sex-reversed males. (Hudson et al., 2005), suggesting that Foxl2 might act upstream of

cyp19a. Recently, FoxL2 has been shown to bind to the promoter of cyp19a, activating

transcription in medaka (Nakamoto et al., 2006), Japanese flounder (Yamaguchi et al., 2007)

and tilapia (Wang et al., 2007), further evidencing its role in ovarian differentiation. In

Page 47: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-29-

addition, Foxl2 is co-localized with cyp19 in embryonic chicken ovary (Hudson et al., 2005),

as well as with cyp19a in ovarian medaka granulosa cells (Nakamoto et al., 2006). Although

Foxl2 had been demonstrated to be a direct transcriptional activator, some evidences

suggested that Foxl2 might need the involvement of other cofactors (Nakamoto et al., 2006;

Pannetier et al., 2006).

In addition, both Foxl2 and SF-1 have been found to be correlated with cyp19a

expression, both spatially and temporally in tilapia (Wang et al., 2007), and were found to co-

localize in vitellogenic follicles in medaka (Nakamoto et al., 2007). Co-transfection of cyp19a

promoter constructs with SF-1 or Foxl2 separately significantly increased luciferase activity

(Watanabe et al., 1999; Nakamoto et al., 2007). Furthermore, simultaneous co-transfection of

SF-1 and Foxl2 significantly activated cyp19a about 8-fold higher than each one separately,

demonstrating that the combination of SF-1 and Foxl2 synergistically activates cyp19a

(Nakamoto et al., 2007). This indicates that these two factors are acting together in the action

of cyp19a activation.

Dax-1 is another factor that has been identified to regulate cyp19a expression. Dax-1,

negatively regulates cyp19 gene expression by inhibiting SF-1 and Foxl2-mediated

transactivation of cyp19a in medaka ovarian follicles (see figure 6). It has been demonstrated

that Dax-1 can cause a significant decrease in cyp19a transcription, activated by SF-1 and

Foxl2, in a dose-dependent manner (Nakamoto et al., 2007). However, Dax-1 repressed the

activity of tilapia Sf-1 but not of the human SF-1, suggesting that although Dax-1 repressive

functions have been conserved in fish and mammals, they act on different transcriptional

targets and with a different mechanism (Park et al., 2007).

Page 48: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-30-

Figure 6. Proposed mechanism for transcriptional repression of gonadal aromatase (cyp19a) by Dax1 in medaka ovarian follicles (modified from Nakamoto et al., 2007). A, normal transcriptional activation of cyp19a is carried out by binding of Steroidogenic factor 1 (SF-1) and Forkhead transcription factor (Foxl2). Repression of cyp19a expression can be achieved by two different mechanisms: B, Dax1 represses transcription of SF-1 and Foxl2 by binding to their promoters, and without SF-1 and Foxl2, transcription of aromatase can be repressed; C, Dax1 inhibits binding of SF-1 and/or Foxl2 to cyp19a promoter via protein–protein interactions with SF-1 and/or Foxl2.

In addition, Dmrt1 has been suggested to repress SF-1-activated transcription of

cyp19a in Nile tilapia, not by binding to cyp19a promoter directly, but indirectly repressing

cyp19a expression by heterodimerizing with Sf-1 (Nagahama, 2005).

4.7 Alterations of sex differentiation by sex steroids, endocrine disruptors and environmental

factors such as high temperatures

Fish gonadal development is characteristically plastic (Baroiller et al., 1999). During

the period in which gonochoristic fish gonads remain sexually undifferentiated and before and

around the time of sex differentiation, gonads are sensitive to various environmental stimuli,

and often effects are irreversible. The period in which sex differentiation is highly sensitive is

species-specific and is commonly referred to as the sensitive period (Piferrer, 2001).

Sensitivity of sex differentiation to exogenous compounds has been shown to be

dependent on duration and dose of exposure and on developmental stage. In most cases, the

sensitive period for exogenous compounds (Piferrer and Donaldson, 1993) is localized just

before or at the same time as histological differentiation of the primitive gonad (Hunter and

Donaldson, 1983). This period is located and differs from species to species (Yamamoto,

1969; Piferrer et al., 1993; Blázquez et al., 1995; Blázquez et al., 1998a). For example, some

evidences had shown that exogenous compounds interfering with the Cyp19 system are able

to disrupt gonadal sex differentiation of the zebrafish (Fenske and Segner, 2004).

No transcriptioncyp19a

Dax1 Dax1

cyp19a

C. Transcriptional repressionvia protein-protein interaction

Foxl2

Dax1

Sf-1

Dax1

B. Transcriptional repressionby binding to gene promoter

Foxl2Sf-1

cyp19a

A. Transcriptional activation by binding of transcriptionfactors to cyp19a promoter

Sf-1 Foxl2

No transcriptioncyp19a

No transcriptioncyp19a

Dax1 Dax1

cyp19a

C. Transcriptional repressionvia protein-protein interaction

Dax1 Dax1

cyp19a

Dax1 Dax1

cyp19a

C. Transcriptional repressionvia protein-protein interaction

Foxl2

Dax1

Sf-1

Dax1

B. Transcriptional repressionby binding to gene promoter

Foxl2

Dax1

Foxl2

Dax1

Sf-1

Dax1

Sf-1

Dax1

B. Transcriptional repressionby binding to gene promoter

Foxl2Sf-1

cyp19a

A. Transcriptional activation by binding of transcriptionfactors to cyp19a promoter

Sf-1 Foxl2Foxl2Foxl2Sf-1Sf-1

cyp19acyp19a

A. Transcriptional activation by binding of transcriptionfactors to cyp19a promoter

Sf-1Sf-1 Foxl2Foxl2

Page 49: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-31-

Treatments with sex steroids have been a common practice to feminize fish in the last

decades. The most effective method of direct feminization that can be achieved by the use of

the natural estrogens is the administration of E2 (Piferrer, 2001; Devlin and Nagahama, 2002).

Some amphibians had been also found to be susceptible to altered gonadal differentiation and

development when exposed to estrogenic and antiestrogenic compounds in aquatic

environments (Mackenzie et al., 2003). Also, some studies with estrogenic treatments manage

to induce ovarian differentiation at male-producing temperatures in crocodiles, lizards and

turtles (Bull et al., 1988). In addition, treatments with estrogens before or during TSP induce

ovarian differentiation at male-producing temperatures, whereas treatments with AI at female-

producing temperatures result in testis differentiation, reinforcing the role of estrogens in

ovarian differentiation in reptiles (Pieau et al., 1999).

Stelee et al. (1987) demonstrated that fadrozole (Fz), a non-steroidal AI, could be

considered as a reversible specific competitive aromatase inhibitor, where the substrate (T)

and the inhibitor (Fz) compete for the same site on the enzyme. Studies in salmon ovarian

follicles demonstrated that the inhibitory effect of Fz decrease the production of E2 (Afonso et

al., 1997; Afonso et al., 1999). Particularly in fish, several studies have shown that Fz can

affect gonadal differentiation and development in different fish species: Chinook salmon

(Piferrer et al., 1994), Coho salmon (Afonso et al., 1997; Afonso et al., 1999), Nile tilapia

(Kwon et al., 2000; Afonso et al., 2001; Kwon et al., 2002; Kajiura-Kobayashi et al., 2003),

medaka (Suzuki et al., 2004b), fathead minnow, Pimephales promelas (Ankley et al., 2002),

zebrafish (Uchida et al., 2004) and Japanese flounder (Kitano et al., 2000). In addition, it has

been demonstrated that administration of AI was capable to provoke sex change in the

protogynous Thalassoma duperrey and Epinephelus merra (Nakamura et al., 1989; Bhandari

et al., 2003; Bhandari et al., 2004; Bhandari et al., 2005) as well as block ovarian

differentiation and natural sex change in protandrous 3-year-old black porgy (Lee et al., 2002;

Du et al., 2003). All these results reinforce the important role of Cyp19 enzyme, and in

consequence the involvement of estrogens in ovarian differentiation in gonochoristic fish, and

ovarian maintenance or sex change in protogynous and protandrous hermaphroditic fish.

Traditionally, exogenous administration of androgens has been used to produce male

monosex populations in fish (Hunter and Donaldson, 1983), demonstrating that androgens are

also capable to alter gonadal differentiation. However, paradoxical feminization can be

Page 50: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-32-

observed after administration of aromatizable androgens as T, dihydrotestosterone (DHT) or

methyltestosterone (MT) (Piferrer and Donaldson, 1991) at high doses or for prolonged

periods of time. To prevent this phenomenon, the use of non-aromatizable androgens, such as

17α-methyldihydrotestosterone (MHDT) or 11-KT has been used to masculinize fish

populations (Piferrer and Donaldson, 1993). In addition, it has been shown that exogenous

androgens might induce male differentiation in rainbow trout through inhibition of Cyp19a

(Govoroun et al., 2001).

Environmental factors can strongly influence sex differentiation and sex inversion in

gonochoristic and hermaphroditic fish, respectively (Baroiller et al., 1999). In gonochoristic

fish, temperature during early development has been demonstrated to be the main

environmental factor capable to influence sex differentiation. Meanwhile, other factors as pH,

salinity, photoperiod or social interactions have been less studied (Baroiller et al., 1999).

Temperature effects on gonadal differentiation have been found in a variety of TSD and

GSD+TE organisms. It has been suggested that egg incubation temperature is able to control,

directly or indirectly, the expression of genes involved in sex determination and/or sex

differentiation processes in animals exhibiting TSD. It is known that temperature is a key

factor involved in TSD species and Cyp19 activity was found to be inhibited by masculinizing

temperatures in Pleurodeles waltl (Chardard et al., 1995). Also, clear early sex differences in

Cyp19 expression during TSP has been recently found in two species of turtles with TSD

(Ramsey and Crews, 2007; Rhen et al., 2007) with early cyp19 expression localized in

individual gonads cells during the TSP (Ramsey et al., 2007). Together these results support

the evidence of Cyp19 and estrogen production as the possible determinant of sex in species

with TSD (Lance, 2008). In addition, it has been also demonstrated that temperature

influences some major genes involved in sex differentiation cascade and particularly (directly

or indirectly) influences aromatase synthesis and consequently estrogen disponibility. Some

examples (figure 7) can be found in turtles (Pieau et al., 1999) and fishes like tilapia and

Japanese flounder (Kitano et al., 1999; D'Cotta et al., 2001).

Page 51: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-33-

Figure 7. Temperature influence of aromatase expression. A, Gonadal aromatase activity during the TSP in E. orbicularis embryos incubated at 25 °C (male-producing temperature), 28.5 °C (pivotal temperature) and 30 °C (female-producing temperature). Gonadal aromatase activity in 28.5 °C males is slightly higher than in 25 °C males; in 28.5 °C females it is slightly lower than in 30 °C females (modified from Pieau et al 1999). B, Relative aromatase expression levels (aromatase:GAPDH ratio) analyzed by semi-quantitative PCR. Expression levels from two different genetic all-female progenies reared at the standard 27 ºC temperature and at the 35 ºC masculinizating temperature, during the early morphological sex differentiation (D'Cotta et al., 2001).

Nevertheless, and although the high amount of information about the implication of

several genes in gonadal differentiation in TSD species, the exact role of temperature, and

particularly how a few degrees of difference in temperature during egg incubation affects the

initiation of molecular cascade that determines whether a gonad develops as ovary or testis,

remain unknown. In this regard, recently Lance (2008) has been pointed that to resolve this

enigmatic mode of actuation, some new thinking and new experimental approaches are

needed.

5. Epigenetics and DNA methylation

5.1 Definition, occurrence, types and mechanisms

According to Bradbury (2003), “science of epigenetics deals with the chemical

modifications of genes that are hereditable from one cell generation to the next and that affect

gene expression but do not alter DNA sequence”.

General patterns of gene regulation are different among organisms. In unicellular

organisms, most of the genes are active and only a small number of genes are repressed. In

B15000

10000

5000

Females

Arom

atas

eex

pres

sion

27ºC35ºC

0Males

Arom

atas

eac

tivity

(

log

fmol

es/h

our/g

onad

)

Stages

100

10

1

0.1

0.0116 22 23TSP

30ºC females

28.5ºC females

28.5ºC males

25ºC males

A B15000

10000

5000

Females

Arom

atas

eex

pres

sion

27ºC35ºC

0Males

B15000

10000

5000

Females

Arom

atas

eex

pres

sion

27ºC35ºC

0Males Females

Arom

atas

eex

pres

sion

27ºC35ºC

0Males

Arom

atas

eex

pres

sion

27ºC35ºC

0Males

Arom

atas

eac

tivity

(

log

fmol

es/h

our/g

onad

)

Stages

100

10

1

0.1

0.0116 22 23TSP

30ºC females

28.5ºC females

28.5ºC males

25ºC males

A

Arom

atas

eac

tivity

(

log

fmol

es/h

our/g

onad

)

Stages

100

10

1

0.1

0.0116 22 23TSP

30ºC females

28.5ºC females

28.5ºC males

25ºC males

A

Page 52: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-34-

contrast, in pluricellular organisms, repression is the dominant regulation of gene expression

and more than 50% of the genome is silenced (Lande-Diner and Cedar, 2005). Gene long-

term repression can be carried out in two different ways: first, genes of almost all somatic cell

types are active during early embryogenesis and then, during development and adult life,

repression silences them; however, genes that are expressed in a tissue-specific manner

remain silent during embryonic development and is only during development or adult life that

their expression is activated in some specific tissues (Lande-Diner and Cedar, 2005). Three

mechanisms of long-term silencing maintenance have been postulated to ensure correct

developmental expression patterns by generating different layers of repression: sequence-

dependent repression factor, DNA methylation and late replication timing (Lande-Diner and

Cedar, 2005).

The epigenome, the description of the chemical modifications across the whole

genome (Bradbury, 2003), contains information that is not directly found in the DNA

sequence and complementarily collaborates with the genetic information to regulate temporal,

spatial and functional events that occur during different processes. DNA methylation is a

post-replication modification that consists of the addition of a methyl group in a cytosine.

This is mediated by a DNA-cytosine-5-methyltransferase and is predominantly found in CG

dinucleotide (CpGs). DNA methylation is involved in the functional differences that are

found between parental and maternal genomes. This phenomenon is called genomic

imprinting and consists in differential methylation patterns of parental vs. maternal alleles that

produce differences in gene expression of specific genes (Sasaki, 2005). One example is

found in the insuline-like growth factor II receptor gene (Igf2r), where epigenetic

modifications in the promoter region had been pointed out as responsible in maintaining the

monoallelic expression of this gene (Hu et al., 1998). It is also thought that the methylation

pattern is established during gametogenesis (Razin and Riggs, 1980) and changes throughout

mammalian development (Monk et al., 1987). In non-embryonic cells, methylated sites are

distributed globally on about 80% of the CpGs. However, CpG islands (short sequence

domains with high relative densities of CpGs that usually are associated with the 5’ ends of

many genes) have a tissue-restricted expression and remain unmethylated even if the

associated gene is silent (by repressor factors, for example). Nevertheless, a small but

significant proportion of the CpGs islands become methylated during development and the

associated gene becomes silenced in a stable way. Thus, methylation has been postulated as a

Page 53: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-35-

mechanism that acts like a sort of a system of cellular memory and is not directly involved in

initiating gene silencing but instead propagates and maintains the silent state (Bird, 2002).

DNA methyltransferases (Dnmts) are the enzymes responsible for establishing the

methylation pattern and for its maintenance on CpGs (Vassena et al., 2005). DNA

methyltransferases can be classified depending on their function as de novo methylases,

which add new methyl groups to previously unmethylated DNA, or maintenance methylases,

that maintain methylation patterns during cell division, contributing to genome stability. In

mammals, five DNMTs have been identified and characterized: DNMT1, DNMT2, DNMT3a,

DNMT3b and DNMT3l (reviewed by Bestor, 2000). DNMT1 is the predominant enzyme in

somatic tissues and it has been demonstrated to have a preference for hemimethylated DNA

(were only one of the two strands are methylated), being critical for the maintenance of

methylation patterns during replication of DNA (Bestor, 1992; Yoder et al., 1997). In mouse,

sex-specific differences in Dnmt1 expression were found both before and shortly after birth

(La Salle et al., 2004). In contrast, DNMT3a and DNMT3b have been found to function

preferment as de novo methyltransferases (Okano et al., 1999; Chen et al., 2002) and also it

has been observed that both have roles in both methylation and demethylation (Metivier et al.,

2008). However, Dnmt3l do not possess DNA methyltransferase activity, but seems to

cooperate with Dnmt3 family of methyltransferases to carry out de novo methylation of

maternally imprinted genes in mouse oocytes (Hata et al., 2002). Dnmt3 family members

showed gene-specific and germ-line specific patterns of expression, being the interaction

between Dnmt3a and Dnmt3l involved in de novo methylation in the male germ line, whereas

Dnmt3b had been related with maintenance of methylation in spermatogonia (La Salle et al.,

2004). Regarding to DNMT2, and although earlier studies have been suggested that this

enzyme is not essential for de novo methylation (Okano et al., 1998), some studies have

demonstrated that also DNMT2 possess methyltransferase activity (Hermann et al., 2003;

Tang et al., 2003).

Dnmts had also been identified in fish. Eight different Dnmts have been identified and

characterized in zebrafish (Mhanni et al., 2001; Shimoda et al., 2005). Studies in the zebrafish

de novo methyltransferase dnmt7 have shown that this methylase is involved in the gene-

specific methylation of zebrafish no tail (nlt) gene, being the first methylase that have been

demonstrated to induce specific local methylation for one particular gene (Shimoda et al.,

Page 54: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-36-

2005). In addition, other studies in fish showed spatially- and temporally-regulated expression

of Dnmt1 in developing medaka and Xiphophorus embryos, suggesting that this enzyme may

play an important role during development in fish (Altschmied et al., 2000).

In addition to methylases, other enzymes are involved in the methylation status: this is

the case of histone demethylases. In zebrafish embryos, a family of H3K27 demethylases has

been identified and they have been related with animal anterior-posterior development (Lan et

al., 2007). Also, demethylation of the pS2 gene promoter (a gene involved in the

transcriptional clock) has been demonstrated to be necessary to activate transcription

(Metivier et al., 2008). In summary, methylation patterns are the result of the novo

methylation, maintenance of existing methylation and demethylation.

Several studies have shown different levels of methylation in the genomes of

vertebrates, with fish and amphibians exhibiting higher levels than reptiles and, in turn, higher

levels than birds and mammals (Varriale and Bernardi, 2006a,b).

5.2. Methylation regulates gene expression

There are two mechanisms to repress transcription by DNA methylation (Lande-Diner

and Cedar, 2005) (figure 8). In the first one, methylation blocks the binding of transcription

factors necessary for activate gene transcription. One example is found in the fragile X

syndrome observed in humans, in which abnormal promoter methylation of one gene

produces mental retardation (reviewed by Lande-Diner and Cedar, 2005). In the second

mechanism, other specific proteins called methyl-CpG binding domain proteins (MBD) are

also part of the DNA methylation machinery, and are involved in ‘reading’ methylation marks

by binding to methylated CpGs. After binding to methylated CpG dinucleotide, MBD recruits

histone-modification enzymes (histone deacetylase, HDAC and histone methyl transferase,

HMT). These mechanisms alter the accessibility of the transcriptional machinery and

consequently are capable to repress gene transcription.

Page 55: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-37-

Figure 8. Inhibitory mechanisms of transcription by DNA methylation. A. Direct methylation of the promoter: a, Transcription occurs normally with the interaction of a transcription factor (TF) with its corresponding response element (TFRE); b, In some cases, a CG dinucleotide can be found inside the TFRE. If methylation occurs by an addition of a methyl group in a cytosine by a DNA-cytosine-5-methyltransferase, the TF can not bind physically to its TFRE and consequently the gene can not be transcribed; c, Also some methylated CpGs that are located far form the TFRE can block TF binding because of promoter conformation. B. Repression of transcription through the effect of methylation on chromatin structure: a, Unmethylated DNA is accessible for transcription. Acetlylation removes positive charges from side-chain and so weakens the interaction with DNA. DNA associated with acetylated histones is more readily transcribed; b, DNA methylation

occurs in histones; c, Binding of methyl-CpG binding proteins (MDBs) occurs into methyl group; d, Binding of histone deacetlylases (HDA) to MDBs; e, HDA remove acetyl groups and then DNA is not accessible for transcription because the reduced accessibility to transcription factors.

Gene expression is linked to methylation patterns, being hypomethylated DNA

associated to active genes whereas hypermethylated genes remain silent (Klose and Bird,

2006). An example can be found in the Retinoblastoma-family protein gene, where the

downregulation of tumour-suppressor genes is drived by DNA methylation (Ferres-Marco et

al., 2006). Also, DNA methylation mediates the control of Sry gene expression during mouse

gonadal development (Nishino et al., 2004).

Several studies have shown that many CpG islands are differentially methylated in a

tissue-specific manner. Tissue-specific differentially methylated regions (TDMs) can be

found within 5’ promoter CpG islands of some genes. The expression of these genes exhibits

a tissue-specific pattern consistent with the methylation status, being expressed only if the

region is unmethylated (Song et al., 2005). DNA methylation is known to play an important

role in regulating differentiation and tissue- and cell-specific gene expression of some genes

(Kitamura et al., 2007). For example, in human testis some genes were detected to be

unmethylated, showing a high level of expression whereas this not occurred in other tissues.

1. Methylation

B

3. Binding of HDA

2. Binding of MDBs

4. Deacetilation

AcAc Ac Ac

meAcAc Ac Ac

me me

me

meme meme

me

AcAc Ac Acmeme meme

me

AcAc Ac Ac

me

me me

B

3. Binding of HDA

2. Binding of MDBs

4. Deacetilation

AcAc Ac AcAcAc Ac Ac

meAcAc Ac Ac

me me

me

meAcAc Ac AcAcAc Ac Ac

me me

me

meme meme

me

memememe memememe

mememe

AcAc Ac Acmeme meme

me

AcAc Ac AcAcAc Ac Acmemememe memememe

mememe

AcAc Ac Ac

me

me meAcAc Ac Ac

me

me me

Aa

geneA

TF

transcription

TFRE

bme TF

CGTFRE

No transcription

geneA

c

CG

me TF

TFRE

No transcription

geneA

Aa

geneA

TF

transcription

TFRE

aa

geneA

TF

transcription

TFREgeneA

TFTF

transcription

TFRE

bme TF

CGTFRE

No transcription

geneA

bme TF

CGTFRE

No transcription

bbme TFTF

CGTFRE

No transcription

geneA

c

CG

me TF

TFRE

No transcription

geneA

c

CG

me TFTF

TFRE

No transcription

geneA

Page 56: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-38-

In addition, an inverse correlation between promoter methylation and gene expression was

found in some of these genes (Kitamura et al., 2007). Another example can be found in the

mouse Rohx5 gene. This gene had been demonstrated to be regulated by two independently

promoters, Pd and Pp, that are differentially active in ovary and testis, respectively. Some

studies have shown that in ovary Pd promoter was unmethylated, whereas Pp was methylated,

consistent with the fact that Pd was exclusively expressed in ovary. On the contrary, in testis

where testis-specific expression of Pp exists, this promoter was found unmethylated, whereas

Pd was methylated (Rao and Wilkinson, 2006).

5.3 Epigenetic mechanisms during ontogeny

During development, some genes are needed to be expressed in a specific and very

narrow window of time. For this to occur, a long-term silencing of gene expression has to be

involved. In vertebrates, DNA methylation contributes to the coordination of gene regulation

during development and to the control of gene expression in a tissue-specific manner (Sasaki,

2005).

It has been proposed that genes are transcriptionally activated by removing DNA

methylation during development (Jaenisch and Bird, 2003). Some examples are found in the

human maspin gene, where expressing cells had an unmethylated promoter, whereas

expression was silenced in methylated ones (Futscher et al., 2002). In addition, gene

activation by demethylation has been reported in Xenopus laevis (Stancheva and Meehan,

2000; Stancheva et al., 2002). Developing Japanese medaka and zebrafish embryos show

spatially- and temporally-regulated expression patterns on Dnmts, suggesting that these

enzymes may play a role during development in fish (Altschmied et al., 2000; Mhanni and

McGowan, 2002). Experiments with plasmids injected into zebrafish embryos showed that

waves of demethylation and remethylation occur during embryonic development of these

animals (Collas, 1998). In addition, alterations in normal zebrafish development were

observed after artificial induction of DNA-hypomethylation during early development

(Martin et al., 1999).

Page 57: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-39-

5.4. Methylation and aromatase transcription

Similar to what it has been shown for other genes, Cyp19 sex- and tissue-specific gene

expression can be partially explained by different methylation levels in its promoter in some

species. In cattle and sheep Cyp19, the promoter regions P1.1, P1.5 and P2 were found to be

methylated in a gene- and tissue- specific manner (Furbass et al., 2001; Vanselow et al.,

2001; Vanselow et al., 2005). Also, in these animals, tissue-specific differences in DNA

methylation account for tissue-specific differences in aromatase gene expression (Furbass et

al., 2007). Similarly in the medaka cyp19a promoter was observed to be differently

methylated in a gene- and tissue- specific manner (Contractor et al., 2004). These authors

analyzed 5 CpGs found in the medaka cyp19a promoter within a region of ~300 bp and found

that the 5 CpGs were mostly methylated in testis and female brain, while they were

unmethylated in ovary and male brain. These results suggest that methylation may be

involved in the regulation of Cyp19A expression in other species.

5.5. Epigenetics and environment

Intriguingly, an inverse relationship between DNA methylation and fish body

temperature has been observed (Jabbari and Bernardi, 2004; Varriale and Bernardi, 2006a),

indicating that the environment seems to influence in some way the overall methylation

patterns of organisms However, it should be noted that the overall genome methylation

patterns and the DNA methylation levels typically found in imprinting and developmental

regulation are two unrelated phenomena that share the same mechanism (Varriale and

Bernardi, 2006a). However, epigenetic mechanisms, that are very important for proper

development and differentiation, have been suggested to be mechanisms that allow the

organism to respond to environmental changes through changes in gene expression (Jaenisch

and Bird, 2003). Many organisms respond to environmental conditions by showing

phenotypic plasticity, which means producing different phenotypes from the same genotype

(West-Eberhard, 1989). Epigenetic stages are reversible and can be modified by

environmental factors producing different phenotypes (Jaenisch and Bird, 2003). One

example can be found in mammal’s epigenetic alterations (hypo- and hypermethylation) that

have been associated to diet. For example, dietary alterations in mice can produce changes in

DNA methylation and these can affect the phenotype (Waterland and Jirtle, 2003). Also, the

diet is known to be related with methylation levels that can be related with the incidence of

Page 58: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-40-

different cancer types in humans (reviewed by Jaenisch and Bird, 2003). In addition, it has

been demonstrated in honeybees that fertile queens and sterile workers (two alternative forms

of adult females) are generated from genetically identical larvae following differential feeding

with royal jelly. Recently, it has been shown that changes in the nutritional input can change

the expression of DNA methyltransferase Dnmt3 and consequently can change the

reproductive status in honeybees (Kucharski et al., 2008). Other example relating

environmental influences and epigenetics can be observed in plants, where temperature shifts

were found to induce remarkable changes in the methylation state of the transposon Tam3.

This resulted in a hypermethylation of the gene at higher temperatures and, in contrast

reduction of methylation at lower temperatures (Hashida et al., 2003).

6. The European sea bass as a model. General biology and importance for aquaculture

The European sea bass is a differentiated gonochoristic fish belonging to Moronidae

family. Sea bass is commonly found in the Mediterranean Sea, but also in the Black sea and

in the East Atlantic (from Great Britain to Senegal). In the wild, juveniles of this species

usually live in groups, in salty waters of few meters depth and feed on small crustaceans

(shrimps and molluscs) and also on fish. In contrast adults are demersals, and inhabit in

coastal waters down to a maximum of about 100 m depth, although commonly can be found

in shallow waters. They are found in the littoral zone on estuaries, lagoons and occasionally

rivers. In the summer, sea bass enter coastal waters and river mouths and then migrate

offshore in colder weather and appearing at deep water during winter. Females spawn in

batches and eggs are pelagic (Froese and Pauly, Editors. 2008). Under culture conditions, sea

bass males mature earlier than females (Bruslé and Roblin, 1984), with females maturing

normally in the third year of life, in contrast to males that achieve sexual maturity during the

second year. Although there is not much information about the proportion of sexes in natural

populations of bass, data from semi-natural enclosures had been shown that the females are

usually the predominant sex (Arias, 1980), although this may reflect the operational sex

ratios.

Page 59: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-41-

6.1 Sea bass sex determination and gonadal differentiation mechanisms

Sea bass is known to posses 48 chromosomes per nucleus (2n) (Cataudella et al.,

1978) and no morphologically distinct sex chromosomes are evident (Aref'yev, 1989; Vitturi

et al., 1990; Sola et al., 1993). Also, no sex-specific DNA sequences have been identified

(Martinez et al., 1999). Sex in the sea bass is determined by genotype-environmental

interactions (Piferrer et al., 2005; Saillant et al., 2006; Vandeputte et al., 2007) following a

polygenic sex determination mechanism (Vandeputte et al., 2007).

Sea bass gonadal differentiation is summarized in figure 9. In this species, gonadal

development takes place in a caudo-craneal direction (Bruslé and Roblin, 1984). During

development, the gonads remain undifferentiated during the post larval stages, since sexual

differentiation takes place at a minimum size of 8-12 cm, between 7-9 months of age (Bruslé

and Roblin, 1984; Saillant et al., 2003b; Papadaki et al., 2005; Piferrer et al., 2005) and is not

until the end of the first year that a complete histological differentiation of the gonads can be

observed (Blázquez et al., 1995). The first sign of sex differentiation in females is the entry

into meiosis and the proliferation of somatic cells to form the ovarian cavity (Bruslé and

Bruslé, 1983). Sea bass sex differentiation depends more on size than on age (Blázquez et al.,

1999). Female sea bass differentiate early than males and they are the larger fish, while

undifferentiated fish are the smallest. During the period at which gonads remain

undifferentiated, sea bass gonads can be influenced by external factors including sexual

steroids and environmental abiotic influences (Piferrer et al., 2005), but once sex is

determined this remains irreversible (Gorshkov et al., 1999; Zanuy et al., 2001).

Intratesticular oocytes have been observed in natural populations (Bruslé and Bruslé, 1983) as

well as in culture (Blázquez et al., 1998b; Saillant et al., 2003a), indicating a certain degree of

lability in gonadal differentiation. Exogenous administration of several steroids during the

critical period of early ontogenesis can alter the process of sex differentiation, with androgens

giving males and estrogens giving females (reviewed by Zanuy et al., 2001). In addition

environmental factors such as temperature (see section 6.2 below) are able to modify sea bass

sex differentiation and consequently sex ratios.

Page 60: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-42-

Figure 9. Diagram showing the relationship between age, size, and gonadal sex differentiation in the sea bass. Its indicated the relative importance of temperature on modifying this process, the localization of the labile period determined by the effects of exogenous steroids, and the increase in germ cell number and gonadal aromatase expression and activity. Note that while sex differentiation is more dependent on size than age, the age–size relationship is also dependent on rearing temperature. DPH, days post-hatch (from Piferrer et al., 2005).

6.1.1. Genes related to sea bass sex differentiation

Several genes known to be involved in fish sex differentiation have been also

identified and studied in the sea bass. In teleosts, some of these genes appear to possess two

different copies as a result of genome duplications. Galay-Burgos et al. (2004) identified 13

different sea bass sox genes belonging to different families of Sox genes: SoxB (sox1.1,

sox1.2, sox2, sox3, sox14.1, sox14.2, sox31.1, sox31.2), SoxC (sox4.1, sox4.2), SoxE (sox9.1,

sox9.2) and SoxF (sox17). Preliminary analyses have shown that sea bass sox9.2 but not

sox9.1 has sexually dimorphic expression at the end of the first year (Galay-Burgos

unpublished results), suggesting the involvement of sox9.2 in late testis differentiation.

However, the function of the other sea bass sox genes is still unknown.

Two transcripts of dmrt1 (named dmrt1a and dmrt1b) have been identified in sea bass

and found to follow the same expression pattern in gonads (Deloffre et al., 2008 in press).

Both transcripts were first detected at 100 days post hatch and followed similar profiles

increasing with development. Sex dimorphic expression was observed around 250 dpf

Undifferentiatedgonads

Femaledifferentiation

Male differentiation

FEMALES

MALES

Labile period

Age (DPF)0 200 300100

Aromatase

Temperature

Germ cell number

Length (mm)0 80 12010020 60

Page 61: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-43-

(males>females), being highly specific expressed in males at 300 dph. Results also indicated

that dmrt1 is up-regulated in testis while is down-regulated in ovaries during gonadal

development, suggesting that its expression may be regulated by other transcription factors.

Together, these results suggest that dmrt1 is not implicated in early sea bass sex

differentiation but it is involved in latter gonadal development and in spermatogenesis, as it

happens in other species.

The cyp11b gene has been recently identified in sea bass (Socorro et al., 2007). This

gene encodes the 11beta-hydroxylase enzyme (Cyp11b), responsible for the production of 11-

oxygenated androgens. Northern blot analysis as well as RT-PCR showed that cyp11b could

be detected and high expressed in testis and head kidney (Socorro et al., 2007). Although high

temperature is known to modify sea bass sex differentiation during early development (see 6.2

below), no differences in cyp11b expression levels were found between fish reared at high and

low temperatures during the first 60 dph. However, although a highly dimorphic pattern of

cyp11b expression was detected through gonadogenesis (60-300 dpf), no significant

differences were found until 200 dph (Socorro et al., 2007), demonstrating that this gene is

involved in sea bass testis differentiation.

6.1.2. Sea bass cyp19 gene

As well as in other teleosts sea bass has two copies of cytochrome P450aromatase

gene (cyp19), one predominantly expressed in ovary (cyp19a) and the other predominantly

expressed in the brain (cyp19b). Those genes had been identified and well characterized by

Dalla Valle et al. (2002) and Blázquez and Piferrer (2004), respectively. Gonadal and brain

sea bass aromatase gene structure is summarized in figure 10. cyp19a gene contains nine

exons and eight introns inserted at exactly the same positions as those found in Oryzias

latipes and the human CYP19 gene (Dalla Valle et al., 2002). Instead, sea bass cyp19b has ten

exons and nine introns (Blázquez and Piferrer, 2004).

Page 62: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-44-

Figure 10. Gene and promoter structure of sea bass cyp19a and cyp19b. Exons are symbolized by boxes and numbered by Roman numerals. Little boxes inside the exons are the protein domains of both genes. Start sites for transcription and translation as well as the stop codon are indicated by arrows. A, Sea bass cyp19a gene. Conserved binding sites for steroidogenic factor 1 (SF-1), Sox-family proteins (Sox), androgen response element (ARE), forkhead transcription factors (Fox), cyclic AMP response element (CRE) and peroxisome proliferator response element (PPARE) half site were identified and they were pointed as putative regulatory elements of sea bass cyp19a expression. B, Sea bass cyp19b gene. Conserved binding sites for Fox; Wilm’s tumor suppressor 1, Wt1; Meis; peroxisome proliferator-activated receptor/retinoid X receptor heterodimer, Ppar/Rxr; POU domain brain factor5, Brn5; Myt1; Ere; Cone-rod homeobox-containing transcription factor/neural retinal basic leucine zipper factor heterodimer, Crx/Nrl; Are; Arylhydrocarbon receptor/Arylhydrocarbon receptor nuclear translocator heterodimer, Ahr/Arnt; PAR-type chicken vitellogenin promoter binding protein, Par/Vbp and Crx were identified in promoter1. Those elements were assigned as putative regulatory elements of sea bass brain aromatase.

In addition, sea bass cyp19a and cyp19b have been well characterized and analyzed

(figure 10). Regarding to the promoter region of the cyp19a gene, conserved binding sites for

SF-1, Sox, androgen receptor element (ARE), Fox, cyclic AMP response element (CRE) half

site and peroxisome proliferator response element (PPARE) were identified (Galay-Burgos et

al., 2006), suggesting the putative implication of these factors in sea bass cyp19a expression

regulation. Among all putative binding sites found, only SF-1 was checked to confirm its

authenticity by gel retardation assay. Results showed that SF-1 bound specifically to the

consensus sequence identified in the gonadal aromatase promoter, indicating that SF-1 can

directly regulate cyp19a transcription (Galay-Burgos et al., 2006). In addition, cyp19a

promoter analysis revealed also the presence of three single nucleotide polymorphisms in wild

1164

I II III IV V VI VII IX

StopTranslationpromoter

Transcription

VIII

promoterTranslation

I

II III IV V VI VII VIII IX X

996

Stop

Transcription

846

A. cyp19a (gonadal isoform)

1164

I II III IV V VI VII IX

Translationpromoter

VIII

promoterTranslation

B. cyp19b (brain isoform)

I

II III IV V VI VII VIII IX X

996

Stop

Transcription

846

SoxTataPparSoxSf1AreSoxSoxFoxFoxFoxFoxFox SoxTataPparSoxSf1AreSoxSoxFoxFoxFoxFoxFox

AreAreEreMyt1MeisFox Fox FoxPparRxr

PparRxr

PparRxr

Par/Vbp

TataWt1 Brn Meis Sox Myt1 AhR/Arnt

Crx/Nrl

CrxCrxAreAreEreMyt1MeisFox Fox FoxPparRxr

PparRxr

PparRxr

Par/Vbp

TataWt1 Brn Meis Sox Myt1 AhR/Arnt

Crx/Nrl

CrxCrx

Ozol´s peptide Heme-bindingTransmembrane helix I-helix Aromatase-specificOzol´s peptide Heme-bindingTransmembrane helix I-helix Aromatase-specific

Page 63: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-45-

and farmed individuals, opening the possibility that polymorphisms may somehow represent a

novel level of cyp19a expression regulation. No simple correlation with aromatase alleles and

sex of fish was found in the fish studied. Since temperature can modify phenotypic sex,

aditional analysis may be needed to determine if there is a relationship between this

polymorphism and cyp19a expression, as well as between temperature and sex differentiation

and phenotypic sex (Galay-Burgos et al., 2006).

Cloning and identification of brain promoter/s had been also carried out (Blázquez,

Navarro-Martin & Piferrer, unpublished results). Results suggest the possibility of the

existence of a second promoter localized in intron I, but this needs further investigation.

Nevertheless, the promoter localized upstream of exon I was shown to posses a large number

of putative transcription factors, some of them related to sex differentiation and others to

neurogenesis. It can be emphasized the location of an estrogen receptor element (ERE) that as

in other fishes was not found in the ovarian form (Piferrer and Blázquez, 2005), suggesting

the importance of estrogens in sea bass brain aromatase regulation.

Analysis of cyp19a expression revealed that in adult sea bass, cyp19a expression was

higher in ovaries compared to testis, and also higher in gonads when compared to brain (Dalla

Valle et al., 2002). In addition, recent studies (Blázquez et al., 2008) have shown that

significant differences in cyp19a expression between males and females can be found already

at 150 days post hatch (dph), coinciding with the first signs of sex differentiation, and are

maximum when sex differentiation is completed (figure 11A). These results allow to establish

cyp19a expression levels in the sea bass as an earlier marker of ovarian differentiation

(Blázquez et al., 2008). The differences in cyp19a gene expression were followed by

differences in Cyp19a activity, with the first signs of significant differences between sexes at

200 dph (figure 11B).

On the other hand, expression of cyp19b was preferentially expressed in brain of both

males and females but also present at much lower levels in testis, ovary and head kidney, an

organ known for its steroidogenic capabilities in fish. Regarding to cyp19b expression during

development (figure 11C), higher levels were detected at early ontogenesis (50 dph), but no

clear sex related differences were found through most of the first year of life (Blázquez et al.,

2008). These results remarks that in the sea bass the brain can be the first site of aromatization

Page 64: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-46-

(Blázquez et al., 2008) and that due to the continuous growth of the teleost brain throughout

life, cyp19b may be involved in neurogenesis (Blázquez and Piferrer, 2004). Regarding to

aromatase activity (AA), sex-related differences in brain between sea bass males and females

were found in spawning adults (Gonzalez and Piferrer, 2003). However, at 250 dph (figure

11D) no sex related differences were found between males and females (Blázquez et al.,

2008).

Figure 11. Aromatase gene expression and enzymatic activity (AA) in sea bass gonads and brain during the first year of life. Gene expression levels and AA in sea bass gonads and brain from the male and female groups (solid circles and open circles, respectively) at different times during the first year of life: A, Cyp19a gene expression levels in gonads as mean normalized expression (± SEM); B, AA of Cyp19A measured in gonads; C, Cyp19b gene expression levels in brain as mean normalized expression (± SEM); D, AA of Cyp19b measured in brains. The insert plots in AA measurements represents AA vs length. Statistical analysis was represented with different letters (P<0.05) after a Tukey test. The bars at the bottom of the plots represent the period of sex differentiation. DPH, days post hatching (from Blázquez et al., 2008).

D

Age (DPH)0 50 100 150 200 250 300

Brai

n A

A (p

mol

/mg

prot

/h)

0.0

0.5

1.0

1.5

2.0

2.5

Length 0 50 100 150 200 250

AA (p

mol

/mg

prot

/h)

0.0

0.5

1.0

1.5

2.0

2.5

a ab

bb

c

B

Age (DPH)0 50 100 150 200 250 300

Gon

adal

AA

(pm

ol/m

g pr

ot/h

)

0.0

0.5

1.0

1.5

2.0

2.5

Length0 50 100 150 200 250

AA

(pm

ol/m

g pr

ot/h

)

0.0

0.5

1.0

1.5

2.0

2.5

a aa

a

a

bb

c

c

Enzyme activity

C

Age (DPH)0 50 100 150 200 250 300cy

p19b

mea

n no

rmal

ized

exp

ress

ion

x 10

-3

0.0

0.1

0.2

0.3

0.4

0.5

a

b

bb bb

a

Brai

n

Gene expression

Gon

ads

A

Age (DPH)0 50 100 150 200 250 300cy

p19a

mea

n no

rmal

ized

exp

ress

ion

x 10

-3

0.0

0.1

0.2

0.3

0.4

0.5

a a a a a a

b

dd

c

D

Age (DPH)0 50 100 150 200 250 300

Brai

n A

A (p

mol

/mg

prot

/h)

0.0

0.5

1.0

1.5

2.0

2.5

Length 0 50 100 150 200 250

AA (p

mol

/mg

prot

/h)

0.0

0.5

1.0

1.5

2.0

2.5

a ab

bb

c

D

Age (DPH)0 50 100 150 200 250 300

Brai

n A

A (p

mol

/mg

prot

/h)

0.0

0.5

1.0

1.5

2.0

2.5

Length 0 50 100 150 200 250

AA (p

mol

/mg

prot

/h)

0.0

0.5

1.0

1.5

2.0

2.5

a ab

bb

c

B

Age (DPH)0 50 100 150 200 250 300

Gon

adal

AA

(pm

ol/m

g pr

ot/h

)

0.0

0.5

1.0

1.5

2.0

2.5

Length0 50 100 150 200 250

AA

(pm

ol/m

g pr

ot/h

)

0.0

0.5

1.0

1.5

2.0

2.5

a aa

a

a

bb

c

c

Enzyme activity

B

Age (DPH)0 50 100 150 200 250 300

Gon

adal

AA

(pm

ol/m

g pr

ot/h

)

0.0

0.5

1.0

1.5

2.0

2.5

Length0 50 100 150 200 250

AA

(pm

ol/m

g pr

ot/h

)

0.0

0.5

1.0

1.5

2.0

2.5

a aa

a

a

bb

c

c

Enzyme activity

C

Age (DPH)0 50 100 150 200 250 300cy

p19b

mea

n no

rmal

ized

exp

ress

ion

x 10

-3

0.0

0.1

0.2

0.3

0.4

0.5

a

b

bb bb

a

Brai

n

C

Age (DPH)0 50 100 150 200 250 300cy

p19b

mea

n no

rmal

ized

exp

ress

ion

x 10

-3

0.0

0.1

0.2

0.3

0.4

0.5

a

b

bb bb

a

Brai

n

Gene expression

Gon

ads

A

Age (DPH)0 50 100 150 200 250 300cy

p19a

mea

n no

rmal

ized

exp

ress

ion

x 10

-3

0.0

0.1

0.2

0.3

0.4

0.5

a a a a a a

b

dd

c

Gene expression

Gon

ads

A

Age (DPH)0 50 100 150 200 250 300cy

p19a

mea

n no

rmal

ized

exp

ress

ion

x 10

-3

0.0

0.1

0.2

0.3

0.4

0.5

a a a a a a

b

dd

c

Page 65: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-47-

6.1.3. Steroid and receptors related to sea bass sex differentiation

The involvement of steroids in fish sex differentiation is well known (see section 4.5).

Particularly, estrogens have been found to have a pivotal role in sea bass ovarian

differentiation (Blázquez et al., 1998a). Also, the abundant presence of estrogens, in plasma

and gonads, prior to the appearance of primary oocytes in differentiating ovaries, reinforces

the important role of estrogens in sea bass ovarian differentiation and development (Papadaki

et al., 2005). However, androgens may not be related to male sex differentiation in sea bass,

because T appears to be involved in testis formation once differentiation is triggered

(Rodriguez et al., 2004; Papadaki et al., 2005). This suggests that, as observed in other

species of fishes, E2 can be related with ovarian differentiation, whereas T seems to be a

product of male sex differentiation (Papadaki et al., 2005). In addition, 11-KT levels, have

been found to be more related to spermatogenesis also in the sea bass (Papadaki et al., 2005)

As in other fish species, three estrogen receptors (era, erb1 and erb2) have been

characterized in the sea bass (Halm et al., 2004). Expression levels of estrogen receptors (ers)

in adult sea bass showed that era was predominantly expressed in liver and pituitary, while

erb1 and erb2 and were more ubiquitously expressed, with highest expression levels in

pituitary (Halm et al., 2004). Previous studies in juvenile sea bass showed that era expression

was significantly elevated in gonads at 200 days post hatch (dph), while for erb1 and erb2

highest expression levels were observed in gonads at 250 dph (Halm et al., 2004). Later

studies determined that erb1 and erb2 showed clear sex differences in gonads, especially in

erb1, at 200 dph, being males with higher levels than females (Blázquez et al., 2008). In

addition, and since erb1 and erb2 have been detected in all germ cell types, with highest

values in spermatogonies and spermatocytes (Viñas and Piferrer, 2008), its has been

suggested that erb in the sea bass may be involved in testicular maturation and

spermatogenesis (Blázquez et al., 2008).

In addition, Blázquez and Piferrer (2005) isolated and characterized the androgen

receptor (ar) in sea bass. ar expression was found preferentially in testis, ovaries, and brain,

but low expression was also detected in head kidney, liver and spleen. Analysis of ar gene

expression during development (from 50 to 300 dph) showed very low expression in the

gonads during early development. Although the first significant differences between sexes

were found at 150 dph, they became especially marked at 250 dph, with much higher levels in

Page 66: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-48-

males. These results suggest that ar may be involved in latter sea bass sex differentiation

(Blázquez and Piferrer, 2005).

6.2. Aquaculture problems related to skewed sex ratios

Sea bass is one of the most important marine species cultured around the

Mediterranean basin, with a total productivity of 106.014 tons in 2007 (APROMAR, 2008).

For that reason, high efforts have been made to understand its physiology (larval

development, sex differentiation, reproduction, etc) to be able to control these processes for

aquaculture. In cultured sea bass, there is a predominance of males (Carrillo et al., 1995;

Colombo et al., 1996), with about 30% of them maturing precociously during the first year of

life (Carrillo et al., 1995). The high number of males consistently found in sea bass cultures

results in a reduction of the final biomass since females grow larger than males (Carrillo et

al., 1995; Blázquez et al., 1999; Pavlidis et al., 2000; Saillant et al., 2001; Koumoundouros et

al., 2002; Saillant et al., 2003b). In addition, it had been hypothesized that male precocity

maturation can be related to high growth rates in sea bass (Papadaki et al., 2005). In this

regard, immature males were found to be smaller than mature males, which in turn were

smaller than females at one year old (Gorshkov et al., 1999; Saillant et al., 2003a; Begtashi et

al., 2004; Papadaki et al., 2005) and also during the second year of life (Felip et al., 2006). In

the sea bass, females and feminized fish treated with E2 during early development are bigger

than males, suggesting that in the sea bass growth may be related with phenotypic sex

(Saillant et al., 2001). For these reasons there is an interest of the private sector to obtain all-

female stocks due to their advantages. Several approaches can be used to modify final sex

ratios in the sea bass among which genetic, hormonal and environmental procedures can be

found (Zanuy et al., 2001; Piferrer et al., 2005).

Temperature is important for sea bass growth and exerts its effects via feeding and

metabolism rates (Person-Le Ruyet et al., 2004). Although optimal temperature for early sea

bass larvae was found to be close to 15ºC (Koumoundouros et al., 2001), it was shown that

maximum growth in juveniles was obtained at 26ºC, while a reduction of 65% in growth was

observed when juveniles were reared at 13ºC (Person-Le Ruyet et al., 2004). For that reason,

culture performance in industry is commonly carried out at high temperatures. However,

several studies suggested that elevated male proportions found in cultures seems to be the

consequence of the elevated temperatures commonly used during the hatchery and nursery

Page 67: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-49-

stages of production (Pavlidis et al., 2000; Saillant et al., 2002; Piferrer et al., 2005) (see

below). This practice benefits hatcheries and nurseries since it shortens their production

cycles (temperatures accelerates growth). Paradoxically, however, these rearing protocols

using high temperatures are harmful for the grow-out companies since they result in a high

number of males in culture, the sex that grows less.

To obtain a feminizing protocol based on temperature manipulation, experiments in

the lasts years have been focused in thermal protocols capable to maximize female

proportions. The first study that showed temperature influences on the sea bass sex ratio was

carried out by Blázquez et al. (1998). Those authors found that temperature treatments during

the alevin stage (57-137 dpf) had effects on sex ratios. It was found that exposures to high

temperatures resulted in a decrease proportion of males (from 100% to 87%), suggesting that

high temperature could be exerting a feminizing effect. With those previous results, Pavlidis

et al. (2000) investigated the effects of temperature at the first stages of ontogenesis. They

found that treatments from day 0 until middle of metamorphosis (17-18 mm TL) at low

temperatures (13°C) resulted in 72-74% females (Pavlidis et al., 2000), the highest proportion

of females obtained so far only with temperature manipulation. Since results suggested that

rearing fish at low temperatures for increasing durations during early development increase

the proportion of females in culture, Saillant et al (2002) carried out experiments rearing fish

at 13 ºC from 0 to 346 dpf, trying to achieve complete feminization. Results showed that

although high temperatures regimens resulted in an excess of males, masculinization was

even higher if fish were maintained at low temperature during a long period of time (aprox.

350 dpf). In this context, Koumoundouros et al. (2002) carried out experiments in which low

temperatures (15ºC) were applied, at early development (0-64 dpf), during increasing times.

They concluded that the thermolabile sex differentiation period is located from the stage of

half-epiboly to the middle of metamorphosis. Their studies demonstrated that the end of yolk-

sac larval stage is relatively more sensitive than the following feeding larval stage, underling

the importance of reared fish at low temperature from the beginning of larval development.

For that reason, we suggest that the apparently conflicting results founded by Blázquez et al.

can be easily explained by the fact that fish were reared at high temperature at the beginning

of development. Finally, Mylonas et al. (2005) studied the effects of different rearing

temperatures in two different strains. Results showed differences in sex ratios between fish

reared at 15ºC for 15 or 100 days (from 30 to 65% and from 8 to 40% in the two different

Page 68: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Introduction

-50-

strains, respectively). Also differences between both strains were observed when the same

thermal treatments were applied (from 8 to 30% of females in the 15-day treatment and from

40 to 65% in the 100 day treatment), suggesting a genetic influence on sex ratios. These

authors in the context of all results obtained concluded that although decreasing temperatures

from 21ºC to 15ºC reduces the male percentage, it appear that maybe it not be possible to

produce 100% females by reducing temperature more than 15ºC or extending exposure

duration. Taking into account all results exposed above, we can summarize that the number of

females can be increased by increasing rearing time at low temperatures from early

development to nursery stages (Pavlidis et al., 2000; Koumoundouros et al., 2001).

Nevertheless, the number of males also increases by rearing at either high temperatures or at

low temperatures for long periods from early development to growing stages (Blázquez et al.,

1998b; Saillant et al., 2002). Thus, although several intents had been carried out, the

maximum female percent obtained so far in the sea bass was about 73% by Pavlidis et al.

(2000).

Thus, despite of the studies carried out so far, the mechanism by which temperature

affect s fish sex differentiation in general, and particularly in the sea bass, is still not known.

However, results from the epigenetic research field made us to hypothesize that temperature

might alter the epigenetic state of developing animals and thus the sex ratios by the modifying

methylation patterns of the gonadal aromatase promoter.

Page 69: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Objectives

Page 70: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 71: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Objectives

-51-

OBJECTIVES

General objective:

The overall objective of this thesis dissertation was to contribute to our understanding

of sex differentiation in a gonochoristic teleost. To that end, we used European sea bass, a

consolidated research model, and also a valuable species for aquaculture. In particular, we

were interested in understanding the effect of temperature on aromatase expression, the

regulation of this key enzyme and to explore the possibility of epigenetic regulation. Finally, a

method for maximizing the number of females in sea bass aquaculture was assayed.

Specific objectives:

A combination of physiological, molecular, bioinformatic and genomic tools were used to

address the following objectives:

To try to gain a better understanding on how sea bass sex differentiation works and to

study the mechanism implicated in sea bass ovarian development by modifying the

process of gonadal differentiation at two levels:

Stimulating and inhibiting the male and/or female pathway with administration

of different compounds.

Using temperature to study the differentially expression of different genes

known to be involved in gonadal sex differentiation.

To develop a predictive model in order to assign sex before the first histological signs

of sex differentiation in sea bass.

To elucidate the molecular mechanism by which high temperature during early

development in sea bass provokes the masculinization of genetic females.

To characterize sea bass sox17, a poorly studied gene in fish sex differentiation, and to

asses which is its role in sea bass gonadal differentiation.

To determine the most adequate sea bass rearing protocol to produce female biased

sex ratios, that can be useful for aquaculture production.

Page 72: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 73: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results Block A

Molecular endocrinology of sea bass sex differentiation

Page 74: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 75: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-53-

RESULTS I

La masculinització del llobarro (Dicentrarchus labrax), mitjançant

tractaments amb un androgen o un inhibidor de l’aromatasa

implica diferències en l’expressió gènica i té differents efectes

persistents en la maduració dels mascles

Laia Navarro-Martín, Mercedes Blázquez i Francesc Piferrer

L'objectiu d'aquest estudi fou contribuir a la comprensió de la funció dels esteroides sexuals

en la diferenciació sexual de peixos i en la maduració dels mascles. Llobarros sexualment

indiferenciats foren tractats a través de l’alimentació amb 17α-metildihidrotestosterona

(MDHT), estradiol-17β (E2), fadrozole (Fz), acetat de ciproterona (CPA) o tamoxifè (Tx). El

MDHT va produí un 100% de mascles mentre que tant l’E2 com el Tx van produir un 100%

de femelles. El Fz va aconseguir produir un 95% de mascles, mentre el CPA no va canviar

significativament les proporcions de sexes obtingudes. Els nivells d'expressió d’aromatasa

gonadal (cyp19a) van resultar insensibles al tractament amb E2, suggerint que l’E2 exogen

feminitza de forma independent a la regulació directa de cyp19a. Per altra banda, tant el

MDHT com el Fz van disminuir l’expressió de cyp19a. A més, els nivells d’expressió del

receptor d'andrògens (ar) van augmentar durant el desenvolupament en tots els grups, excepte

en del MDHT, suggerint que en els mascles l’exposició primarenca a un androgen regula

l’expressió d'ar. Totes aquestes observacions indiquen que encara que MDHT i Fz provoquen

l’aparició d’un fenotip similar, les vies moleculars implicades són diferents i mostra que la

masculinització per Fz és conseqüència d’una inhibició en la diferenciació ovàrica més que

d’un efecte androgènic directe. A més, el CPA administrat durant el període de major

sensibilitat als andrògens, no va influir en la proporció de sexes, suggerint que, en el llobarro,

els andrògens no són necessaris per a l’inici de la diferenciació testicular. Els tractaments de

MDHT i Fz no van ser capaços de canviar el número de mascles precoços, sinó que van

provocar una reducció i augment del seu índex gonadosomatic (IGS), respectivament. A més,

el Fz va provocar efectes persitents sobre l’IGS de mascles precoços i no precoços,

probablement degut a alteracions en la funció dels estrogens en els testicles.

Page 76: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 77: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-55-

Masculinization of the European sea bass (Dicentrarchus labrax)

by treatment with an androgen or aromatase inhibitor involves

different gene expression and has distinct lasting effects on male

maturation

Laia Navarro-Martín, Mercedes Blázquez and Francesc Piferrer1

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig

Marítim, 37-49, 08003 Barcelona, Spain.

Accepted in: General and Comparative Endocrinology (in press)

1 Correspondence to: Dr. Francesc Piferrer. Institut de Ciències del Mar, Consejo Superior de

Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain. e-mail:

[email protected]; Tel. +34-932309567; Fax: +34-93-2309555.

Page 78: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-56-

Abstract

The objective of this study was to contribute to our understanding of the role of sex

steroids in fish sex differentiation and male maturation. Sexually undifferentiated sea bass

were administered 17α-methyldihydrotestosterone (MDHT), estradiol-17β (E2), fadrozole

(Fz), cyproterone acetate (CPA) or tamoxifen (Tx). MDHT produced 100% males whereas E2

and Tx resulted in 100% females. Fz produced 95% males while CPA did not alter sex ratios.

Gonadal aromatase (cyp19a) expression levels were unaffected by E2 treatment, supporting

the possibility that the feminizing effect of exogenous E2 are not directly related to cyp19a

regulation. Both MDHT and Fz decreased cyp19a expression. Moreover, androgen receptor

(ar) expression levels increased during development in all but the MDHT group, suggesting

that early exposure to an androgen down-regulates subsequent ar expression in males and that

Fz does not interact with ar. Together, these observations indicate that although MDHT and

Fz result in a similar phenotype, the molecular pathways involved are likely different and

show that Fz masculinization is the consequence of inhibited ovarian differentiation rather

than of a direct androgenic effect. Further, since CPA did not alter sex ratios when

administered during the period of highest androgen sensitivity, it is suggested that in the sea

bass androgens are not required for initial testicular differentiation. MDHT and Fz did not

alter the number of precocious males but reduced and increased, respectively, their

gonadosomatic index (GSI). In addition, Fz had lasting effects on the GSI of precocious and

non-precocious males, probably due to alterations of estrogen function in the testis.

Keywords: Estrogen, Estradiol-17β, Aromatase, cyp19a, Aromatase inhibitor, Fadrozole

Androgen, 17α-methyldihydrotestosterone, Cyproterone acetate, Tamoxifen, Sex

differentiation, Androgen receptor, Teleost, Sea bass, Dicentrarchus labrax

1. Introduction

The process of sex differentiation is conserved across vertebrates, with identical or

similar factors and signaling pathways in the different groups (Devlin and Nagahama, 2002;

Piferrer and Guiguen, 2008, for reviews). Among the several factors involved, the sex

steroids, particularly androgens and estrogens, occupy a preeminent position in the regulation

of the process.

Page 79: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-57-

In fish and other vertebrates, one of the most important factors in sex differentiation is

the steroidogenic enzyme cytochrome P450 aromatase, product of the cyp19a gene.

Aromatase irreversibly converts androgens into estrogens and its activity determines the

androgen-to-estrogen ratio in developing gonads. Consequently, aromatase function has been

shown to be crucial for establishing the final sex phenotype, with high and low expression

levels of cyp19a associated with ovarian and testicular differentiation, respectively

(Nakamura et al., 2003; Blázquez et al., 2008).

The involvement of estrogens for ovarian differentiation is now firmly established in

most vertebrates, including birds (Smith and Sinclair, 2004), reptiles (Pieau and Dorizzi,

2004), amphibians (Hayes, 1998; Miyata and Kubo, 2000) and fish (Devlin and Nagahama,

2002). In fish, evidence comes from different types of data: the presence of steroidogenic

enzymes or of estrogen produced around the time of sex differentiation (Nakamura et al.,

2003; Bhandari et al., 2006), and the observations that treatment with exogenous estrogen

feminizes sexually undifferentiated fish in different species (Piferrer, 2001). Furthermore,

blockade of estrogen synthesis via administration of an aromatase inhibitor (AI) has resulted

in complete functional masculinization in birds (Elbrecht and Smith, 1992), reptiles (Dorizzi

et al., 1994; Wennstrom and Crews, 1995), amphibians (Yu et al., 1993) and fish. Examples

among the latter include the chinook salmon, Oncorhynchus tshawytscha (Piferrer et al.,

1994), the rainbow trout, Oncorhynchus mykiss (Guiguen et al., 1999), the Nile tilapia,

Oreochromis niloticus (Kwon et al., 2000; Kajiura-Kobayashi et al., 2003), the medaka,

Oryzias latipes (Suzuki et al., 2004), the fathead minnow, Pimephales promelas (Ankley et

al., 2002), the zebrafish, Danio rerio (Uchida et al., 2004) and the Japanese flounder,

Paralichthys olivaceus (Kitano et al., 2000). Recent studies involving the analysis of gene

sets have also shown that cyp19a and the transcription factor foxl2 are essential for female sex

differentiation, whereas other genes, notably the transcription factor dmrt1, are involved in

testicular differentiation (Ijiri et al., 2007; Vizziano et al., 2007). It has been shown that foxl2

is upregulated by estrogen and that it acts as a potent stimulator of cyp19 transcription, (Wang

et al., 2007). Together, these observations demonstrate the key role of aromatase and

estrogens in ovarian differentiation.

Page 80: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-58-

On the other hand, male development involves the expression of many genes,

including dmrt1 and dax1 which, similarly to the effects of exogenous androgen treatment,

down-regulate genes such as cyp19a and foxl2 (Ijiri et al., 2007; Vizziano et al., 2007; 2008).

This has led to the idea that the role of androgens during fish sex differentiation is to suppress

the expression of genes essential for ovarian development (Bhandari et al., 2006; Vizziano et

al., 2008). Thus, whether masculinization after treatment with an androgen is due to inhibition

of estrogen synthesis or to an interaction with the androgen receptor deserves further

attention. Likewise, whether androgens are essential for, or a product of, testicular

differentiation has been addressed only in a limited number of species (Nakamura et al., 2003;

Bhandari et al., 2004; 2006; Vizziano et al., 2007; 2008). A similar question could apply to

the effects of AIs, since, to the best of our knowledge, evidence showing that AIs do not

affect androgen receptor (ar) expression in fish is lacking. In any case, sex steroids elicit their

effect by binding to specific receptors. Recently, it has been shown that ar is associated with

fish testicular development (Blázquez and Piferrer, 2005; Jørgensen et al., 2008). Other

studies have shown that both types of receptors are already present even before sex

differentiation (Sudhakumari et al., 2005; Blázquez et al., 2008; Ijiri et al., 2007).

The European sea bass is a differentiated gonochoristic teleost that has become an

established research model. Sex determination is thought to be polyfactorial (Vandeputte et

al., 2007), with sex ratios resulting from the interaction between genetic (parental influences)

and environmental factors (Saillant et al., 2002). Under standard culture conditions, sex

differentiation first becomes histologically discernible in fish ~8 cm (~150 dpf) or larger and

usually lasts until when fish are ~10 months old (Saillant et al., 2003; Piferrer and Blázquez,

2005). The period of highest sensitivity to the effects of exogenous steroids is located before

sex differentiation, around 100 dpf (Blázquez et al., 2001). The most important genes

involved in sex steroid synthesis, transport and action have been characterized. These include

cyp19a (Dalla Valle et al., 2002), cyp19b (Blázquez and Piferrer, 2004); estrogen receptors,

ers (Halm et al., 2004); ar (Blázquez and Piferrer, 2005); sex hormone binding globulin, shbg

(Miguel-Queralt et al., 2005) and 11β-hydroxylase (cyp11b) (Socorro et al., 2007). The first

significant sex-related differences in cyp19a expression in favor of females could be found at

150 days post hatching, indicating its involvement ovarian differentiation (Blázquez et al.,

2008). Conversely, higher ar expression levels in males versus females suggested the

involvement of ar in sea bass testicular development (Blázquez and Piferrer, 2005). Thus, in

Page 81: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-59-

the sea bass, cyp19a and ar can be used as molecular markers for female and male

differentiation, respectively.

The overall objective of this study was to increase our understanding of the regulation

of sex differentiation in fish using the sea bass as a model. To achieve this, the natural

estrogen estradiol (E2), the synthetic non-aromatizable androgen 17α-

methyldihydrotestosterone (MDHT), the non-steroidal aromatase inhibitor fadrozole (Fz), the

estrogen receptor blocker tamoxifen (Tx) and the androgen receptor blocker cyproterone

acetate (CPA) were administered to sexually undifferentiated sea bass and their effects on sex

differentiation and subsequent gonad development and maturation were compared. The last

three compounds had never been tested in the sea bass. We were interested in finding out

whether the absence of estrogen synthesis due to aromatase inhibition is sufficient for

masculinization and whether androgen is necessary for testicular differentiation.

2. Materials and methods

2.1. Animals and rearing conditions

Freshly fertilized sea bass eggs were obtained from a commercial hatchery (St. Pere

Pescador, Girona, NE Spain) and immediately transported to our facilities at the Institute of

Marine Sciences in Barcelona (41º23’N; 2º11’E). Egg incubation and fish rearing was

performed following standard procedures for this species (Moretti et al. 1999). Fish were

reared at 15ºC from 0-60 days post-fertilization (dpf) in an attempt to minimize the

masculinizing effects of high temperatures previously reported for this species (Piferrer et al.,

2005). Temperature was subsequently increased at ~0.5ºC day-1 until it reached 21°C at 75

dpf, and left constant thereafter. At 75 dpf, fish were randomly distributed into six 650 l

fiberglass tanks with approximately 200 fish per tank and acclimated to the new tanks for

fifteen days.

2.2. Experimental groups

The different experimental diets were administered to sexually undifferentiated sea

bass from 90-150 dpf, which includes the period of maximum sensitivity of the gonads to the

effect of exogenous sex steroids, as previously described (Blázquez et al., 2001; Piferrer et

al., 2005). The experimental diets were prepared following the alcohol evaporation method

Page 82: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-60-

(Guerrero, 1975). The control diet (Ctrl) was treated with ethanol only. Alcohol was left to

evaporate and the different diets were stored at 4ºC. Fish were fed ad libitum twice a day with

one of the following compounds (doses in mg kg-1 food): E2 (10), MDTH (10), Fz (100), Tx

(100) or CPA (100).

2.3. Sampling, gonadal histology and sex ratios

Standard length (SL, precision 0.1 mm) and body weight (BW, precision 0.01 g) were

assessed at 90 and 150 dpf, coinciding with the start and the end of the hormonal treatment

period, respectively. In addition, growth was periodically monitored at 200, 250, 270 and 320

dpf. Survival was calculated by comparing the number of fish alive at 320 dpf with the initial

number of fish at 75 dpf. By the end of the first year (320 dpf), coinciding with the onset of

the spawning season in our latitude, 40 fish per group were sacrificed with an overdose of 2-

phenoxyethanol. Gonads were removed, weighed and fixed in 2% paraformaldehyde in PBS.

The gonadosomatic index (GSI) was determined for each fish according to the formula:

GSI = (Gonad weight (g)/Body weight (g)) * 100.

Paraffin sections were cut at 7 µm and stained with haematoxylin-eosin following

conventional histological procedures to determine phenotypic sex (n = 40 fish per group),

since at this age (320 dpf), after the sex differentiation period, sex becomes irreversibly fixed

in the sea bass (Saillant et al., 2003; Piferrer et al., 2005). The percentage of precocious and

non-precocious males was calculated following the classification of Begtashi et al. (2004).

Briefly, males with testis in developmental stages I-III were considered as non-precocious

males, whereas males with testis in stage IV-V were considered as precocious males.

2.4. RNA isolation, cDNA synthesis and semiquantitative PCR for P450aromA and AR

At 150 and 200 dpf, five animals per treatment were sacrificed, their gonads were

removed under sterile conditions, frozen in liquid nitrogen and stored at -80ºC. Total RNA

was isolated with TRIZOL (Invitrogen, Paisley, UK) following the manufacturer’s

instructions. The quality and concentration of the RNA was assessed by spectrophotometry

and gel electrophoresis. Total RNA (5 µg) was reverse transcribed to cDNA with Superscript

II (200 units; Invitrogen) and random hexamer primer (250 ng) following the manufacturer’s

Page 83: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-61-

instructions. The resulting cDNAs were used as a template to amplify and quantify the

expression levels of cyp19a, ar and 18s rRNA using a previously validated semiquantitative

polymerase chain reaction (PCR) assay (Blázquez and Piferrer, 2004; 2005). To measure

relative gene expression, the 18s rRNA was used as the reference gene since it remains

constant in many physiological conditions. Primers for cyp19a and 18s rRNA amplification

were taken from Blázquez and Piferrer (2004), yielding a 493 and a 485 bp fragment,

respectively, whereas primers used for ar mRNA amplification were taken from Blázquez and

Piferrer (2005), yielding a 395 bp fragment. In this manner, cyp19a and ar expression levels

were individually determined for each fish. To date, no sex-specific marker has been found in

the sea bass (Piferrer et al., 2005). However, cyp19a can be used to detect the presence of

phenotypic females in a population since is a suitable molecular marker for ovarian

differentiation (Blázquez et al., 2008). For that reason, and because statistical differences in

cyp19a gene expression levels between developing sea bass females and males can be

detected by the onset of sex differentiation (150 dpf) (Blázquez et al., 2008), cyp19a levels

were used to assign sex to individual fish at both 150 and 200 dpf. This allowed the study of

cyp19a and ar gene expression levels according to sex and treatment on an individual fish

basis.

2.5. Statistical analysis of data

Analysis for alterations in sex ratios of the treated groups with respect to the control

was performed using the Chi-square test. Mean ± SEM was calculated for SL, BW at the

different sampling times, and also for GSI. Data were log-transformed to ensure normality

and homocedasticity of variances was verified with Levene’s test (Sokal and Rohlf, 1997).

One-way ANOVA was used to determine significant differences between treatments in SL

and BW from the beginning of the treatment to the end of the first year (90-320 dpf). Two-

way ANOVA was performed with treatment and sex as independent factors and GSI as the

dependent variable. Bilateral Dunnett (comparing all treatments with the control group) and

Tukey’s post hoc (multiple comparisons) tests were used to check for statistical differences

between treatments and sex phenotypes (females, non-precocious males and precocious

males). Significant differences in cyp19a expression levels were used to sex animals. All

statistical analyses were performed using the SPSS 15.0 package. Differences were accepted

as significant when P < 0.05.

Page 84: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-62-

3. Results

3.1. Growth and survival

At the start of the experimental treatments (90 dpf), all groups had similar sizes

(Figure 1). At 200 dpf, fifty days after the end of the hormonal administration period, growth

retardation in BW and SL was observed only in the Tx and MDHT groups, with significant

differences with the control group. These differences persisted until 270 dpf but were no

longer evident by the time of final sampling at 320 dpf (Figure 1). The other groups were not

affected by treatment at any time during the course of the study. On the other hand, absolute

values of survival fell within those typical for cultured sea bass during the 75-320 dpf period

considered (Saillant et al., 2002). Survival relative to that of the control group (set at 100%)

oscillated ± 30% in the treated groups, with some with higher survival and other with lower

(data not shown). Thus, no consistent effects of treatments could be detected in survival.

3.2. Gonadal development and sex ratios

Histological analysis of gonadal cross-sections at 320 dpf revealed the presence of two major

phenotypes: males and females. Intersexes were not observed in this study. In all

experimental groups, females had immature ovaries containing oocytes in the perinucleolar

stage (Figure 2A). Two different types of males could be readily observed: i) non-

precocious males, usually with testis containing only spermatogonia located in testicular

lobules (Figure 2B), although some animals also had primary and secondary

spermatocytes, and ii) precocious males, with testis containing germ cells in all stages of

development, from spermatogonia to spermatozoa and in some cases even sperm filling the

seminiferous duct (Figure 2C).

Regarding sex ratios, the control group consisted of 67.5% females and 32.5% males.

The Chi-square test denoted significant differences as a consequence of hormone treatment in

all but one group with respect to the control (Figure 2D). Administration of MDHT resulted in

100% males, whereas E2 and Tx induced 100% females (P < 0.001). Treatment with Fz

increased the number of males to 95% (P < 0.001), whereas no significant differences in sex

ratios were found after CPA administration.

Page 85: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-63-

3.3. cyp19a and ar gene expression at 150 and 200 dpf

The expression levels of cyp19a in individual fish from each treatment at 150 and 200

dpf are shown in Figures 3A and 3B, respectively. cyp19a levels in the MDHT group (100%

males at 320 dpf) and Fz group (95% males at 320 dpf) showed that only one fish from the Fz

group was an outlier, since it exhibited significantly (P < 0.05) higher levels than those of the

remaining nine fish. Likewise, one out of five fish each in the Ctrl and CPA groups had

significantly lower cyp19a levels than the rest, reflecting the presence of males in these

groups at 320 dpf (32.5 and 22.5% males, respectively). Since cyp19a levels in the sea bass

can be used as a molecular marker to discriminate sex at this age (Blázquez et al., 2008), the

outlier in the Fz group with a higher cyp19a value than the rest was classified as a female,

whereas the outliers with lower cyp19a levels in both the Ctrl and CPA group were classified

as males. All fish from the E2 and Tx groups (no outliers detected) were classified as females,

in accordance with the observation that all fish from these two groups differentiated as

females at 320 dpf (Figure 2D). The information on the sex of each individual fish based on

cyp19a levels was used to determine sex-related ar gene expression levels at 150 dpf (Figure

3C) and at 200 dpf (Figure 3D), and mean cyp19a and ar expression levels (see below).

Mean cyp19a expression at 150 and 200 dpf was clearly bimodal, with significantly (P

< 0.001) higher values in females than in males (Figure 4A). No significant differences in

cyp19a expression were found among females of the Ctrl, E2, Tx and CPA groups at any

sampling time. However, cyp19a levels in the MDHT and Fz groups were significantly (P <

0.001) lower than those in the other groups. No sex-related differences in ar expression were

found at 150 dpf in any treatment (Figure 4B). ar mRNA levels significantly (P < 0.01)

increased from 150 to 200 dpf in all but the MDHT group, in which they were the lowest

recorded with respect to those of the other groups. In the male dominant groups, both cyp19a

and ar expression levels at 200 dpf were significantly lower (P < 0.001) in the MDHT than in

the Fz group. Thus, Fz also significantly (P < 0.001) decreased cyp19a expression but, unlike

MDHT, it did not affect ar gene expression at 150 or 200 dpf.

3.4. Gonadosomatic index and precocious male maturation

At 320 dpf, in the Ctrl group, 25% of the total males were precocious males. This

proportion decreased to 11% in the CPA group and increased to 32% in both the MDHT and

Page 86: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-64-

Fz groups (Figure 2D), but without statistical differences in any case. A two-way ANOVA

with treatment and phenotypic sex as independent factors showed that both factors interacted

to significantly affect the GSI of fish at 320 dpf (treatment: P < 0.001; sex, P < 0.001;

interaction P < 0.001). Overall, and regardless of treatment, the GSI was significantly (P <

0.001) higher in precocious males and females than in non-precocious males (Figure 5). Fz

significantly (P < 0.05) increased the GSI of non-precocious males with respect to control

males. In contrast, MDHT administration significantly (P < 0.001) reduced the GSI of

precocious males. In the Fz group, the GSI of precocious males doubled with respect to the

control values but differences were not statistically significant. No significant differences

were found between the GSI of females of any of the treated groups with respect to those in

the control.

4. Discussion

Sex determination in the sea bass is thought to be polyfactorial and thus sex ratios are

very variable among broods (Vandeputte et al., 2007). In this study, the sex ratio in the

control group was 1:2 (male:female). For the goal of this study, this is favorable, better than

the typical sex ratio of 3:1 or higher usually found in cultured sea bass (Piferrer et al., 2005),

since it increases the number of putative genotypic females that can be differentiated as

phenotypic males as a consequence of MDHT or Fz treatment. Thus, by maintaining the fish

< 18°C during early development sex-reversal of genotypic females into phenotypic males

was avoided. Therefore, it can be safely assumed that sex ratio shifts in the experimental

groups are due to treatment and not to temperature effects. Further, in this study the hormonal

treatments finished after the molecular events of sex differentiation had started, and sex-

reversal does not occur in the sea bass once sex differentiation is completed, it can be safely

concluded that gene expression at 150 and 200 dpf reflect future gonadal sex. Treatments

were thus intended to target the period immediately preceding and covering the firsts events

of sex differentiation but treatments were not extended after this period because of the risk of

unwanted site effects. Likewise, some of the tested compounds have been shown to have

effects on growth, e.g., growth retardation after E2 treatment in the chinook salmon (Goetz et

al., 1979) or growth enhancement after Tx administration in bagrid catfish, Chrysichthys

nigrodigitatus (Park et al., 2003). However, and although in this study growth differences

were detected between 200 and 270 dpf only in the Tx and MDHT groups, no growth

differences were found at the end of the first year in any of the experimental groups. Further,

Page 87: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-65-

no consistent differences in survival were found between the control and the experimental

groups. Therefore, changes in cyp19a and ar expression at 150 or 200 dpf are not confounded

by differential survival and/or growth. In principle, the only exception, could be in the MDHT

group because at 200 dpf fish were significantly smaller than those of the control. However,

these growth differences were not of a sufficient magnitude to account for the observed

differences in gene expression in the MDHT group, since observations in our laboratory show

that cyp19a values in fish of 114.6 and 107.3 mm SL or 29.5 and 24.5 g─the two mean values

of the Ctrl and MDHT groups, respectively─are similar (Blázquez, Navarro-Martín and

Piferrer, unpublished results).

Testing five different compounds in the same study allows placing the effects of one

compound in light of the effects of the others. The observed complete feminization after

treatment with E2 confirms the ability of the natural estrogen to induce ovarian development

in sexually undifferentiated animals in large number of fish species (Piferrer, 2001), and

agrees with previous observations in the sea bass using similar treatments (Saillant et al.,

2001; Gorshkov et al., 2004). Since cyp19a gene expression and aromatase activity are

essential for ovarian differentiation in fish (Piferrer and Guiguen, 2008) and no significant

differences in cyp19a gene expression levels between control and E2-treated females were

observed, it can be suggested that the estrogenic effect of exogenous E2 does not involve

direct cyp19a regulation. Further, the cyp19a promoter does not possess estrogen response

elements (ERE) in the fish species examined so far (Piferrer and Blázquez, 2005). Thus, E2

must exert its feminizing effects by regulating other genes involved in ovarian differentiation.

In this regard, the transcription factor foxl2 has been proposed as a key element in a positive

feed back loop to maintain high cyp19a expression (Vizziano et al., 2008). Another

possibility could be that E2 treatment involves the upregulation of cyp19b expression in the

gonads, since in many fish species this isoform is known to possess an ERE in its promoter

region (Piferrer and Blázquez, 2005). However, cyp19b was expressed in the gonads at much

lower levels than cyp19a (cyp19a:cyp19b ratio ~100:1) (Blázquez et al., 2008), and thus it is

very unlikely that cyp19b can account for the feminizing effects of E2 treatment, although this

possibility cannot be completely excluded. In any case, it has been reported that E2-induced

feminization in the sea bass results in functionally normal neofemales (Saillant et al., 2001;

Gorshkov et al., 2004). Thus, it is possible that the E2-induced feminization overrides and

resets the molecular as well as the physiological program irrespective of its genetic sex.

Page 88: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-66-

For sex steroids to exert their effects during sex differentiation, their receptors must

also be present (Sudhakumari et al., 2005). In the sea bass, three estrogen receptors have been

identified (Halm et al., 2004). Moreover, estrogen receptors, particularly erb1, exhibited sex-

dependent changes in their expression levels by the time of sex differentiation, between 150

and 200 dpf (Blázquez et al., 2008). This would account for the ability of estrogen to exert its

feminizing effect as observed in the present study.

Our results show that in the sea bass cyp19a and E2 are essential for ovarian

differentiation, since Fz treatment inhibited cyp19a expression and resulted in nearly

complete masculinization. Inhibition of E2 synthesis after AI treatment and subsequent

masculinization or protogynous sex change has been shown in a large number of

gonochoristic and hermaphroditic fish, respectively. For example, in the protogynous

honeycomb grouper, Epinephelus merra, Fz treatment stimulated female-to-male sex change

(Bhandari et al., 2004) induced by a decrease of E2 below a threshold level and not by a direct

androgenic effect (Nakamura et al., 2003). Fadrozole is a non-steroidal aromatase inhibitor

that was designed not to interact with ar (Steele et al., 1987). In rats, such lack of interaction

has been demonstrated (Vagell and McGinnis, 1997) but to the best of our knowledge, similar

data in fish were not available. In the present study, no effects on ar gene expression were

observed in the Fz group, excluding the possibility that masculinization by Fz could be due at

least in part to interaction with the ar.

The observed effects of Fz in this study also contribute to illustrate the importance of

E2 for proper testicular function in fish. Previous studies on the resulting testicular structure

and function after AI treatment in fish can be grouped into two major categories: those in

which AI was administered to sexually undifferentiated fish (or hermaphroditic fish prior to

sex change), and those in which AI was administered to adult males. Regarding the first

category, no morphological differences were found between the testis of control and AI-

treated chinook salmon (Piferrer et al., 1994), medaka (Suzuki et al., 2004) and honeycomb

grouper (Bhandari et al., 2004). In addition, males of AI-treated salmon or groupers were

capable to complete spermatogenesis (Piferrer et al., 1994; Bhandari et al., 2004). Together,

these results indicate that AI treatment not only masculinizes by inhibiting estrogen synthesis,

but also that the resulting males have a normal testis in terms of structure and function.

Page 89: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-67-

Regarding the second category, AI treatment of adult males significantly increased the

GSI in several species including the black porgy, Acanthopagrus schlegeli (Lee et al., 2002),

the honeycomb grouper (Bhandari et al., 2004) and the fathead minnow (Ankley et al., 2002).

In addition, AI treatments in black porgy (Lee et al., 2002) and adult male fathead minnow

(Ankley et al., 2002) showed a marked sperm production along with a significant increase in

11-ketotestosterone (11-KT) plasma levels, the major fish androgen, known to be implicated

in the onset of spermatogenesis (Amer et al., 2001; Miura and Miura, 2001). Thus, treatment

of adult males with AI implies changes in steroidogenesis (Afonso et al., 2000) which are

reflected in increases in the GSI and eventual sperm production. In this study, Fz did not alter

the number of precocious males, suggesting that the incidence of male precocity is regulated

at another level, but doubled the GSI value of males with respect to the controls, although

differences were not statistically significant. Nevertheless, this is interesting taking into

account that Fz was not administered to adult fish but instead to sexually undifferentiated fish.

Thus, treatment with Fz not only affected sex differentiation but also had lasting effects on the

subsequent testicular function in one-year-old males. How these long-term effects of Fz are

elicited is worth further investigating. Recently, with the aid of laser capture microdissection

and PCR, several genes involved in androgen and estrogen synthesis and action were

examined during sea bass spermatogenesis (Viñas and Piferrer, 2008). The study suggested

that estrogens are required throughout the process. Thus, it is possible then that early

inhibition of E2 synthesis by Fz interferes with subsequent estrogen function in the testis.

How this is reflected other than in the observed increase of the GSI is at present unknown

since no other endpoints such as sperm volume or quality were measured.

In contrast to the widely used 17α-methyltestosterone, which sometimes results in

paradoxical feminization, the non-aromatizable androgen MDHT elicits pure androgenic

effects in fish sex differentiation (Piferrer et al., 1993). Androgen treatment in the rainbow

trout altered the expression of several steroidogenic enzymes such as 3βHSD, P450scc,

P450c17, P450c11 (Baron et al., 2005), downregulated female-specific genes but did not

enhance the expression of male-specific genes (Baron et al., 2007). Further, gene ontology

analysis revealed that the transcriptome of male differentiating gonads of rainbow trout after

androgen treatment was quite different from that observed during natural testicular

differentiation (Baron et al., 2007). AI administration also represses the expression of some

Page 90: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-68-

early female specific genes such as cyp19a in the rainbow trout, tilapia and Japanese flounder

(Kitano et al., 1999; Govoroun et al., 2001; Bhandari et al., 2006; Vizziano et al., 2008). This

suggests that the inhibition of cyp19a is necessary to induce male differentiation. Recent

studies have shown that gene expression patterns after AI treatment are more similar to the

specific testicular pattern of gene expression than those observed after androgen-induced

masculinization, suggesting that masculiniztion by AI is more physiological than with

androgen treatment (Vizziano et al., 2008). Our results show that treatments with MDHT not

only decreased cyp19a, but also ar expression levels at 200 dpf, whereas Fz did not affect ar

expression, supporting the view that androgen and AI use different pathways to induce

masculinization. Furthermore, the 5’-flanking region of sea bass cyp19a contains one

androgen responsive element (ARE) (Galay–Burgos et al., 2006). This would allow the

inhibition of cyp19a expression observed after androgen treatment. Likewise, the regulatory

elements present in the 5’-flanking region of ar expression in fish are not known. In rats,

however, it possesses a half-ARE (Song et al., 1993). If that applied also to fish it would

explain the observed inhibition of ar after androgen treatment. Together, the results of the

present study indicate that of the two options considered so far to explain masculinization

brought by androgen treatment, i.e., a direct effect of androgens or the absence of estrogen,

the second one is likely to occur in the sea bass (Figure 6). Further, they indicate that different

mechanisms are involved in Fz and MDHT masculinization and that these compounds exert

different effects on testicular development and maturation.

Tx is a nonsteroidal type I anti-estrogen (Macgregor and Jordan, 1998) because it

binds competitively to the Er. However, even with the Tx-Er complex formed, the receptor

may remain partially active and therefore capable of conveying both anti-estrogenic and

estrogenic effects (Jordan, 1984). In the Japanese flounder, Tx masculinized sexually

undifferentiated fish and suppressed cyp19a (Kitano et al., 2007). Conversely, in all-female

populations of rainbow trout and tilapia, Tx was unable to induce masculinization (Guiguen et

al., 1999). In the present study, Tx resulted in 100% females. These results indicate that rather

than behaving as an antiestrogen, Tx elicited pure estrogenic effects in the sea bass, at least

when administered during the period of highest sensitivity to exogenous steroids (90-150

dpf). Theoretically, the same effects could be explained as the result of a potent anti-androgen

action of Tx but to the best of our knowledge such action has never been documented. In

alligators with temperature-dependent sex determination, Tx acted as an antiestrogen at

Page 91: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-69-

female-producing temperatures but feminized embryos at male-producing temperatures

(Lance and Bogart, 1991). Gene array analysis in humans showed that E2 and Tx regulate the

transcription of two different sets of genes (Wu et al., 2005). Thus, it has been suggested that

Tx competes with endogenous E2 to bind Er, recruiting alternative transcription factors that

hence modulate the expression of different ligand-specific genes (Pole et al., 2005). However,

in this study Tx did not alter cyp19a and ar expression, suggesting that other genes and

signaling pathways might be responsible for the observed feminization. During the

preliminary trials carried out before the present study, Tx administration at the same dose but

later in development (130-190 dpf) had no effects on sex ratios (data not shown). Together,

with the results obtained in different species, the present study demonstrate that Tx is capable

to induce both anti-estrogenic and estrogenic effects in fish, and that effects can be dependent

of developmental stage.

In the medaka, CPA effectively binds Ar in brain, testes and ovary (Wells and Van der

Kraak, 2000) and inhibits spermatogenesis (Kiparissis et al., 2003). In fathead minnow adult

males, administration of flutamide, another antiandrogen, down regulated the expression of ar

and up regulated cyp19a (Filby et al., 2007). These results illustrate that in some cases

antiandrogens inhibit transcriptional events and prevent androgen effects in target tissues, as

expected (Kiparissis et al., 2003). However, paradoxical actions have also been observed; for

example, the masculinization of Bufo bufo (Petrini and Zaccanti, 1998). In the present study,

CPA treatment had no effect in any of the variables measured including cyp19a and ar gene

expression and sex ratios when administrated at the dose and developmental period tested

(90-150 dpf). Conversely, in the preliminary trials previously mentioned, CPA administration

at the same dose but later in development (130-190 dpf) significantly reduced the number of

males, thus presumably eliciting the expected antiandrogenic effect. In an independent study

in sea bass, it was found that androgen synthesis occurred only once testis development was

underway (Papadaki et al., 2005). Together, these observations are consistent with the view

that androgens are not needed for testicular differentiation (Nakamura et al., 2003). More

specifically, they suggest that they are not required during the initial stages of testicular

differentiation (thus no effect of CPA in sex ratios when administered at 90-150 dpf), but that

they must be present for proper testicular development at later stages (reduction of males

when CPA was administered 130-190 dpf). However, this affirmation cannot be

experimentally supported since neither cyp19a or ar expression were measured during the

Page 92: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-70-

preliminary trials. Conversely, stage-dependent Tx and CPA effects could reflect the fact that

in the sea bass the period of highest sensitivity to estrogens (Blázquez et al., 1998) appears to

occur earlier than the corresponding period for androgens (Blázquez et al., 2001).

Nevertheless, additional studies involving a carefully selected set of genes and endpoints are

needed to clarify the role of sex steroid receptors and the effects of sex steroid receptor

blockers on fish sex differentiation.

In conclusion, the present study shows that the feminizing effects of exogenous

estrogen are not directly related with the regulation of cyp19a. It also shows that androgen

supplementation and inhibition of cyp19a induce testicular differentiation, but the molecular

pathways involved are not the same because although MDHT and Fz inhibited cyp19a, Fz did

not alter ar expression. Also, since sex ratios were not affected by treatment with an anti-

androgen, our results suggest that, like in tilapia, testicular development in the sea bass is

independent of androgens, at least during the early stages of differentiation. Together, these

observations strongly suggest that masculinization is the result of inhibition of estrogen

synthesis rather than the outcome of direct androgen effects. A diagram showing some of the

elements involved in testicular and ovarian differentiation in fish according to this and past

studies is shown in Fig. 6. Finally, it is suggested that the long-term effects of Fz on

precocious and non-precocious males are likely due to changes in estrogen function in the

testis.

Acknowledgments

Thanks are due to Elvira Martinez for fish rearing assistance and to Silvia Joly for technical

assistance. Supported by MEC grant “SEXRATIO AGL-2002-02636” and a grant from the

Government of Catalonia to FP. L.N. was supported by a fellowship from MEC, BES-

2003-0006 and M.B. was supported by a “Ramón y Cajal” contract from the Spanish

ministry of Science and Technology.

Page 93: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-71-

References

Afonso, L. O. B., Iwama, G. K., Smith, J. and Donaldson, E. M., 2000. Effects of the aromatase inhibitor fadrozole on reproductive steroids and spermiation in male coho salmon (Oncorhynchus kisutch) during sexual maturation. Aquaculture 188, 175-187.

Amer, M. A., Miura, T., Miura, C. and Yamauchi, K., 2001. Involvement of sex steroid hormones in the early stages of spermatogenesis in Japanese Huchen (Hucho perryi). Biol. Reprod. 65, 1057-1066.

Ankley, G. T., Kahl, M. D., Jensen, K. M., Hornung, M. W., Korte, J. J., Makynen, E. A. and Leino, R. L., 2002. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicol. Sci. 67, 121-130.

Baron, D., Houlgatte, R., Fostier, A. and Guiguen, Y., 2005. Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol. Reprod. 73, 959-966.

Baron, D., Montfort, J., Houlgatte, R., Fostier, A. and Guiguen, Y., 2007. Androgen-induced masculinization in rainbow trout results in a marked dysregulation of early gonadal gene expression profiles. BMC Genomics 8, 357. (DOI: 10.1186/1471-2164-8-357).

Begtashi, I., Rodriguez, L., Moles, G., Zanuy, S. and Carrillo, M., 2004. Long-term exposure to continuous light inhibits precocity in juvenile male European sea bass (Dicentrarchus labrax, L.). I. Morphological aspects. Aquaculture 241, 539-559.

Bhandari, R. K., Higa, M., Nakamura, S. and Nakamura, M., 2004. Aromatase inhibitor induces complete sex change in the protogynous honeycomb grouper (Epinephelus merra). Mol. Reprod. Dev. 67, 303-307.

Bhandari, R. K., Nakamura, M., Kobayashi, T. and Nagahama, Y., 2006. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). Gen. Comp. Endocrinol. 145, 20-24.

Blázquez, M., Zanuy, S., Carrillo, M., Piferrer, F. 1998. Structural and functional effects of early exposure to estradiol-17β and 17α-ethynylestradiol on the gonads of the gonochoristic teleost Dicentrarchus labrax. Fish Physiol. Biochem. 18: 37-47.

Blázquez, M., Felip, A., Zanuy, S., Carrillo, M. and Piferrer, F., 2001. Critical period of androgen-inducible sex differentiation in a teleost fish, the European sea bass. J. Fish Biol. 58, 342-358.

Blázquez, M. and Piferrer, F., 2004. Cloning, sequence analysis, tissue distribution, and sex-specific expression of the neural form of P450 aromatase in juvenile sea bass (Dicentrarchus labrax). Mol. Cell. Endocrinol. 219, 83-94.

Blázquez, M. and Piferrer, F., 2005. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Mol. Cell. Endocrinol. 237, 37-48.

Blázquez, M., González, A., Papadaki, M., Mylonas, C. and Piferrer, F., 2008. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 158, 95-101.

Dalla Valle, L., Lunardi, L., Colombo, L. and Belvedere, P., 2002. European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. J. Steroid Biochem. Mol. Biol. 80, 25-34.

Devlin, R. H. and Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-364.

Page 94: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-72-

Dorizzi, M., Richard-Mercier, N., Desvages, G., Girondot, M. and Pieau, C., 1994. Masculinization of gonads by aromatase inhibitors in a turtle with temperature-dependent sex determination. Differentiation 58, 1-8.

Elbrecht, A. and Smith, R. G., 1992. Aromatase enzyme activity and sex determination in chickens. Science 255, 467-70.

Filby, A. L., Thorpe, K. L., Maack, G. and Tyler, C. R., 2007. Gene expression profiles revealing the mechanisms of anti-androgen-and estrogen-induced feminization in fish. Aquat. Toxicol. 81, 219-231.

Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S. and Sweeney, G. E., 2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and identification of single nucleotide polymorphisms. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 145, 47-53.

Goetz, F. W., Donaldson, E. M., Hunter, G. A. and Dye, H. M., 1979. Effects of estradiol-17ß and 17α-methyltestosterone on gonadal differentiation in the coho salmon (Oncorhynchus kisutch). Aquaculture 17, 267-278.

Gorshkov, S., Gorshkova, G., Colorni, B. and Gordin, H., 2004. Effects of natural estradiol-17β and synthetic 17α-ethynylestradiol on direct feminization of European sea bass Dicentrarchus labrax. J. World Aquacult. Soc. 35, 167-177.

Govoroun, M., McMeel, O., D'Cotta, H., Ricordel, M. J., Smith, T., Fostier, A. and Guiguen, Y., 2001. Steroid enzyme gene expressions during natural and androgen-induced gonadal differentiation in the rainbow trout, Oncorhynchus mykiss. J. Exp. Zool. 290, 558.

Guerrero, R. D., 1975. Use of androgens for the production of all-male Tilapia aurea (Steindachner). Trans. Am. Fish. Soc. 104, 342-348.

Guiguen, Y., Baroiller, J. F., Ricordel, M. J., Iseki, K., McMeel, O. M., Martin, S. A. M. and Fostier, A., 1999. Involvement of estrogens in the process of sex differentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a Tilapia (Oreochromis niloticus). Mol. Reprod. Dev. 54, 154-162.

Halm, S., Martínez-Rodríguez, G., Rodríguez, L., Prat, F., Mylonas, C. C., Carrillo, M. and Zanuy, S., 2004. Cloning, characterisation, and expression of three oestrogen receptors (ERα, ERß1 and ERß2) in the European sea bass, Dicentrarchus labrax. Mol. Cell. Endocrinol. 223, 63-75.

Hayes, T. B., 1998. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms. J. Exp. Zool. 281, 373-399.

Ijiri, S., Kaneko, H., Kobayashi, T., Wang, D., Sakai, F., Paul-Prasanth, B., Nakamura, M. and Nagahama, Y., 2007. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol. Reprod., DOI: 10.1095/biolreprod.107.064246.

Jordan, V. C., 1984. Biochemical pharmacology of antiestrogen action. Pharmacol. Rev. 36, 245-76.

Jørgensen, A., Morthorst, J. E., Andersen, O., Rasmussen, L. J. and Bjerregaard, P., 2008. Expression profiles for six zebrafish genes during gonadal sex differentiation. Reprod. Biol. Endocrinol. 6: 25, doi:10.1186/1477-7827-6-25.

Kajiura-Kobayashi, H., Kobayashi, T. and Nagahama, Y., 2003. Estrogen-induced and suppressed gene expression during XY sex reversal in a teleost fish, tilapia. Fish Physiol. Biochem. 28, 153-153.

Kiparissis, Y., Metcalfe, T. L., Balch, G. C. and Metcalfe, C. D., 2003. Effects of the antiandrogens, vinclozolin and cyproterone acetate on gonadal development in the Japanese medaka (Oryzias latipes). Aquat. Toxicol. 63, 391-403.

Page 95: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-73-

Kitano, T., Takamune, K., Kobayashi, T., Nagahama, Y. and Abe, S. I., 1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). J. Mol. Endocrinol. 23, 167-176.

Kitano, T., Takamune, K., Nagahama, Y. and Abe, S. I., 2000. Aromatase inhibitor and 17α-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Mol. Reprod. Dev. 56, 1-5.

Kitano, T., Yoshinaga, N., Shiraishi, E., Koyanagi, T. and Abe, S., 2007. Tamoxifen induces masculinization of genetic females and regulates P450 aromatase and mullerian inhibiting substance mRNA expression in Japanese flounder (Paralichthys olivaceus). Mol. Reprod. Dev. 74, 1171-7.

Kwon, J. Y., Haghpanah, V., Kogson-Hurtado, L. M., McAndrew, B. J. and Penman, D. J., 2000. Masculinization of genetic female Nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation. J. Exp. Zool. 287, 46-53.

Lance, V.A. and Bogart, M.H., 1991. Tamoxifen “sex reverses” alligator embryos at male producing temperature, but is an antiestrogen in female hatchlings. Cell. Mol. Life Sci. 47, 263-266.

Lee, Y. H., Yueh, W. S., Du, J. L., Sun, L. T. and Chang, C. F., 2002. Aromatase inhibitors block natural sex change and induce male function in the protandrous black porgy, Acanthopagrus schlegeli Bleeker: possible mechanism of natural sex change. Biol. Reprod. 66, 1749-54.

Macgregor, J. I. and Jordan, V. C., 1998. Basic guide to the mechanisms of antiestrogen action. Pharmacol. Rev. 50, 151-196.

Miguel-Queralt, S., Avvakumov, G. V., Blázquez, M., Piferrer, F. and Hammond, G. L., 2005. Sea bass (Dicentrarchus labrax) sex hormone binding globulin: molecular and biochemical properties and phylogenetic comparison of its orthologues in multiple fish species. Mol. Cell. Endocrinol. 229, 21-9.

Miura, T. and Miura, C., 2001. Japanese eel: a model for analysis of spermatogenesis. Zoolog. Sci. 18, 1055-1063.

Miyata, S. and Kubo, T., 2000. In vitro effects of estradiol and aromatase inhibitor treatment on sex differentiation in Xenopus laevis gonads. Gen. Comp. Endocrinol. 119, 105-110.

Moretti, A., Pedini Fernandez-Criado, M., Cittolin, G., Guidastri, R., 1999. Manual on Hatchery Production of Seabass and Gilthead Seabream. Vol. 1 FAO. Rome, 194 p.

Nakamura, M., Bhandari, R. K. and Higa, M., 2003. The role estrogens play in sex differentiation and sex changes of fish. Fish Physiol. Biochem. 28, 113-117.

Papadaki, M., Piferrer, F., Zanuy, S., Maingot, E., Divanach, P., and Mylonas, C.C., 2005. Growth, sex differentiation and gonad plasma levels of sex steroids in male- and female-dominant populations of Dicentrarchus labrax obtained through repeated size grading, J. Fish Biol., 66, 938–956

Park, I. S., Oh, H. S. and Koo, J. G., 2003. Effect of oral tamoxifen on growth and survival in the bagrid catfish Pseudobagrus fulvidraco. Aquac. Res. 34, 1471.

Petrini, S. and Zaccanti, F., 1998. The effects of aromatase and 5α-reductase inhibitors, antiandrogen, and sex steroids on Bidder's organs development and gonadal differentiation in Bufo bufo tadpoles. J. Exp. Zool. 280, 245-259.

Page 96: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-74-

Pieau, C. and Dorizzi, M., 2004. Oestrogens and temperature-dependent sex determination in reptiles: all is in the gonads. J. Endocrinol. 181, 367-377.

Piferrer, F., Baker, I. J. and Donaldson, E. M., 1993. Effects of natural, synthetic, aromatizable, and nonaromatizable androgens in inducing male sex differentiation in genotypic female chinook salmon (Oncorhynchus tshawytscha). Gen. Comp. Endocrinol. 91, 59-65.

Piferrer, F., Zanuy, S., Carrillo, M., Solar, II, Devlin, R. H. and Donaldson, E. M., 1994. Brief treatment with an aromatase inhibitor during sex-differentiation causes chromosomally female salmon to develop as normal, functional males. J. Exp. Zool. 270, 255-262.

Piferrer, F., 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197, 229-281.

Piferrer, F. and Blázquez, M., 2005. Aromatase distribution and regulation in fish. Fish Physiol. Biochem. 31, 215-226.

Piferrer, F., Blázquez, M., Navarro, L. and González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comp. Endocrinol. 142, 102-110.

Piferrer, F. and Guiguen, Y., 2008. Fish gonadogenesis. Part 2. Molecular biology and genomics of fish sex differentiation. Rev. Fish. Sci. (in press).

Pole, M. J. C., Gold, L. I., Orton, T., Huby, R. and Carmichael, P. L., 2005. Gene expression changes induced by estrogen and selective estrogen receptor modulators in primary-cultured human endometrial cells: signals that distinguish the human carcinogen tamoxifen. Toxicology 206, 91-109.

Saillant, E., Fostier, A., Menu, B., Haffray, P. and Chatain, B., 2001. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202, 371-387.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Thimonier, J. and Chatain, B., 2002. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 292, 494-505.

Saillant, E., Chatain, B., Menu, B., Fauvel, C., Vidal, M. O. and Fostier, A., 2003. Sexual differentiation and juvenile intersexuality in the European sea bass (Dicentrarchus labrax). J. Zool. 260, 53-63.

Smith, C. A. and Sinclair, A. H., 2004. Sex determination: insights from the chicken. BioEssays 26, 120-132.

Socorro, S., Martins, R. S., Deloffre, L., Mylonas, C. C. and Canario, A. V. M., 2007. A cDNA for European sea bass (Dicentrachus labrax) 11ß-hydroxylase: Gene expression during the thermosensitive period and gonadogenesis. Gen. Comp. Endocrinol. 150, 164-173.

Sokal, R. R. and Rohlf, F. J., 1997. Biometry, 2nd ed. New York, 887 pp. Song, C. S., Her, S., Slomczynska, M., Choi, S. J., Jung, M. H., Roy, A. K. and Chatterjee, B.,

1993. A distal activation domain is critical in the regulation of the rat androgen receptor gene promoter. Biochem. J. 294, 779-784.

Steele, R. E., Mellor, L. B., Sawyer, W. K., Wasvary, J. M. and Browne, L. J., 1987. In vitro and in vivo studies demonstrating potent and selective estrogen inhibition with the nonsteroidal aromatase inhibitor CGS 16949A. Steroids 50, 147-61.

Sudhakumari, C. C., Kobayashi, T., Kajiura-Kobayashi, H., Wang, D. S., Yoshikuni, M., Nagahama, Y. and Senthilkumaran, B., 2005. Ontogenic expression patterns of several nuclear receptors and cytochrome P450 aromatases in brain and gonads of the Nile tilapia Oreochromis niloticus suggests their involvement in sex differentiation. Fish Physiol. Biochem. 31, 129-135.

Page 97: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-75-

Suzuki, A., Tanaka, M. and Shibata, N., 2004. Expression of Aromatase mRNA and effects of aromatase inhibitor during ovarian development in the medaka, Oryzias latipes. J. Exp. Zoolog. A Comp. Exp. Biol. 301A, 266-273.

Uchida, D., Yamashita, M., Kitano, T. and Iguchi, T., 2004. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 137, 11-20.

Vagell, M. E. and McGinnis, M. Y., 1997. The role of aromatization in the restoration of male rat reproductive behavior. J. Neuroendocrinol. 9, 415-421.

Vandeputte, M., Dupont-Nivet, M., Chavanne, H. and Chatain, B., 2007. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176, 1049-1057.

Viñas, J. and Piferrer, F., 2008. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biol. Reprod., 79 (in press). DOI:10.1095/biolreprod.108.069708.

Vizziano, D., Randuineau, G., Baron, D., Cauty, C. and Guiguen, Y., 2007. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev. Dyn. 236, 2198-2206.

Vizziano, D., Baron, D., Randuineau, G., Mahe, S., Cauty, C. and Guiguen, Y., 2008. Rainbow trout gonadal masculinization induced by inhibition of estrogen synthesis is more physiological than masculinization induced by androgen supplementation. Biol. Reprod., DOI: 10.1095/biolreprod.107.065961.

Wells, K. and Van der Kraak, G., 2000. Differential binding of endogenous steroids and chemicals to androgen receptors in rainbow trout and goldfish. Environ. Toxicol. Chem. 19, 2059-2065.

Wennstrom, K. A. and Crews, D., 1995. Making males from females: the effects of aromatase inhibitors on a parthenogenetic species of Whiptail lizard. Gen. Comp. Endocrinol. 99, 316-322.

Wang, D. S., Kobayashi, T., Zhou, L.Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K., Morohashi, K.I., and Nagahama, Y., 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol., 21: 712-725.

Wu, H., Chen, Y., Liang, J., Shi, B., Wu, G., Zhang, Y., Wang, D., Li, R., Yi, X., Zhang, H., Sun, L. and Shang, Y., 2005. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438, 981-987.

Yu, N. W., Hsu, C. Y., Ku, H. H., Chang, L. T. and Liu, H. W., 1993. Gonadal differentiation and secretions of estradiol and testosterone of the ovaries of Rana catesbeiana tadpoles treated with 4-hydroxyandrostenedione. J. Exp. Zool. 265, 252-257.

Page 98: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-76-

Treatment

Ctrl E2 Tx CPA MDHT Fz

BW

(g)

0

20

4060

80100

SL

(mm

)

04080

120160200240

90 dpf 150 dpf 200 dpf 250 dpf 270 dpf 320 dpf A 90 dpf 150 dpf 200 dpf 250 dpf 270 dpf 320 dpf A

*

* *******

****

* *******

***

*

**

***

***

***

*

**

***

***

***

B

E2

Figures

Figure 1. Growth of sea bass exposed to different compounds at different ages, indicated in days post-fertilization (dpf). A, Standard length (SL). B, Body weight (BW). Abbreviations: Ctrl, control; E2, estradiol-17β; Tx, tamoxifen; CPA, cyproterone acetate; MDHT, 17α-methyldihydrotestosterone; Fz, fadrozole. The sample size was n = 100 fish per group during the period 90-270 dpf and 40 fish per group at 320 dpf. Data as mean + SEM. Asterisks indicate significant differences with respect to the control group (ANOVA; * = P < 0.05; *** = P < 0.001).

Page 99: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-77-

Figure 2. Gonadal histology of one-year-old sea bass after hormonal treatment. A, ovary of an immature female with oocytes at the perinucleolar stage. The asterisk indicates the ovarian cavity; B, testis of an immature male containing only spermatogonia, organized in testicular lobules; C, testis of a precocious male containing all germ cell types (from spermatogonia to spermatozoa). Bar equals 50 µm in all photomicrographs. Abbreviations: L, ovarian lamellae; Spg, spermatogonia; Spc I, primary spermatocytes; Spc II, secondary spermatocytes; Spd, spermatids, Spz, spermatozoa. D, Effects of different compounds on sea bass sex ratios. The sample size was n = 40 fish per group. Asterisks indicate significant differences with respect to the control group (Chi-square test; *** = P < 0.001). Treatment group abbreviations as in Figure 1.

TreatmentCtrl E2 Tx CPA MDHT Fz

Per

cent

0

20

40

60

80

100

D

Spg

B

Spg

BB

*

L

A

*

L

AA

*** *** *** ***

E2

Precocious males FemalesNon-precocious males

Spc IISpg

Spz

SpdSpc I

CC

Page 100: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-78-

cyp1

9a/1

8S

0

1

2

3

4 150 dpf200 dpf

Treatment

Ctrl E2 Tx CPA MDHT Fz

ar/1

8S

0

2

4

6

AA

AA

AAB

AAB

BC

A

B

a aa a

bb

E2

B

A

a a a aa a

Females Males

0

2

4

6

P45

0aro

mA/

18S

0

1

2

3

4

5ar

/18S

0

1

2

3

4

cyp1

9a/1

8S

0,0

0,5

1,0

1,5

2,0

2,5A B

C D

E2E2

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

2.5

2.0

1.5

1.0

0.5

0.0

Ctrl Tx CPA MDHT FzCtrl Tx CPA MDHT Fz E2

cyp1

9a/1

8Sar

/18S

Females

Males

150 dpf

150 dpf 200 dpf

200 dpf

Figure 3. Individual gene expression levels in sea bass exposed to different compounds. Gonadal aromatase (cyp19a) and androgen receptor (ar) gene expression levels were determined at 150 (A, C) and 200 dpf (B, D), respectively. Each bar indicates the value of each individual fish (n = 5 fish per group at each age). The dotted line in A and B indicates the highest cyp19a value recorded in males (first fish shown in the Fz group at 200 dpf). Treatment group abbreviations as in Figure 1.

Figure 4. Gene expression levels in sea bass exposed to different compounds. A, gonadal aromatase (cyp19a) and B, androgen receptor (ar) of females and males at 150 and 200 dpf. Data are expressed as mean + SEM. Different letters indicate statistical differences (ANOVA; P < 0.05) between groups at 150 (lowercase) and 200 (uppercase) days post-fertilization (dpf). At 150 dpf, the only male fish in the Ctrl and CPA groups and the only female in the Fz group was not included; otherwise the sample size was n = 5 fish per group. Treatment group abbreviations as in Figure 1.

Page 101: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results I

-79-

Treatment

Ctrl E2 Tx CPA MDHT Fz

GS

I (%

)

0,00

0,05

0,10

0,15

0,20

0,25

0,30Non-precocious malesPrecocious malesFemales

0.00

0.05

0.10

0.15

0.20

0.25

0.30

****

E2

Figure 5. Effects of different compounds on sea bass gonadosomatic index (GSI) of non-precocious males, precocious males, and females at 320 dpf. The sample size was n = 40 fish per group. Data as mean + SEM. Asterisks indicate significant differences with respect to the control group (ANOVA; * = P < 0.05; *** = P < 0.001). Treatment group abbreviations as in Figure 1.

Page 102: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-80-

Figure 6. Simplified diagram showing some of the elements involved in testicular vs. ovarian differentiation in fish. Androgen is catalyzed to estrogen (E2) which through transcription factors (TFs) such as Foxl2 upregulates the expression of the gonadal aromatase gene (cyp19a) by binding to regulatory sites in its promoter (5’). Abbreviations: ar/AR, androgen receptor gene/androgen receptor; AI, aromatase inhibitor; ER, estrogen receptor; AA, anti-androgen; AE, anti-estrogen; ARE, androgen responsive element; The symbols “+” and “-“ indicate positive and negative regulation, respectively. Circled symbols denote effects observed in the present study. Dashed arrows indicate that the pathway has been deliberately simplified. The crossed arrow next to AI means no interaction. Option A indicates that masculinization is due to direct effect of androgen; Option B indicates that the masculinization is due to inhibition of cyp19a resulting in absence of E2 required for ovarian differentiation. The results obtained with the present study along with those from other studies favor option B.

Aromataseenzyme

cyp19aARE Foxl2

TFs

E2Androgen

AR ERar AI

BB

AA

Testiculardifferentiation

Ovariandifferentiation

_

+

+Positiveloop

5’

AA AE_

5’

_

½ ARE?

_

+

X

_

Page 103: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 104: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 105: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-81-

RESULTS II

Perfils d’expresió de gens relacionats amb la diferenciació gonadal

del llobarro Europeu aclimatat a dues temperatures diferents

Mercedes Blázquez, Laia Navarro-Martín, i Francesc Piferrer

Les proporcions sexuals en el llobarro Europeu estan influïdes per la temperatura de cria, la

qual cosa permet l'estudi de les interaccions mediambientals sobre la diferenciació sexual. Es

va utilitzar la RT-PCR per avaluar el temps d’expressió i la influència de la temperatura en

uns quants gens clau relacionats amb el desenvolupament gonadal, incloent l’aromatasa

gonadal (cyp19a), la 11beta-hidroxilasa (cyp11b), el receptor d'andrògens (arb) i els tres

receptors d'estrògens (era, erb1 i erb2). Un anàlisi canònic discriminant, amb la longitud i

l’expressió de cyp19a com a factors independents, s'utilitzà per assignar el sexe gonadal a

peixos indiferenciats histològicament. Les diferències en l'expressió de cyp19a van ser

detectades abans de la diferenciació sexual a nivell histològic, sent significativament més alta

en futures femelles, mentre que l'expressió de cyp11b fou més alta en els mascles que

presentaven els primers signes histològics de diferenciació testicular. No es va poder trobar

cap associació clara entre sexe i expressió gènica d'arb o cap dels receptors d'estrogen,

suggerint que encara que aquests gens són necessaris per al desenvolupament gonadal, no

contribueixen a la diferenciació d'un sexe en particular. Les altes temperatures disminueren el

nombre de peixos (d'un 60% a un 20%) amb nivells alts de cyp19a i el nombre de femelles

d'un 90% fins a un 56%, reforçant la importància de l'expressió de cyp19a pel

desenvolupament ovàric. En conclusió, l'estudi mostra que el cyp19a i el cyp11b es poden

utilitzar com primers marcadors moleculars fiables de diferenciació ovàrica i testicular,

respectivament. Això es podria utilitzar per assignar el sexe a peixos indiferenciats

histològicament, en espècies en les quals el sexe genètic no es pot establir en el moment de la

fertilització a causa de la manca de sistemes simples de determinació sexual, com és el cas de

molts peixos i rèptils amb TSD.

Page 106: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 107: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-83-

Expression profiles of sex differentiation-related genes during

ontogenesis in the European sea bass acclimated to two different

temperatures

Mercedes Blázquez, Laia Navarro-Martín and Francesc Piferrer*

1Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC),

Passeig Marítim, 37-49, 08003 Barcelona, Spain

Submitted to: The Journal of Experimental Zoology: Part B

1 Correspondence to: Dr. Francesc Piferrer. Institut de Ciències del Mar, Consejo Superior de

Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain. e-mail:

[email protected]; Tel. +34-932309567; Fax: +34-93-2309555.

Page 108: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-84-

Abstract

Sex ratios in the European sea bass are influenced by the rearing temperature that

allows for the study of environmental interactions on sex differentiation. RT-PCR was used to

assess the timing of expression and the influence of temperature on several key genes related

to gonadal development, including gonadal aromatase (cyp19a), 11beta-hydroxylase

(cyp11b), androgen receptor (arb) and the three estrogen receptors (era, erb1 and erb2). A

canonical discriminant analysis, with fish length and cyp19a expression as independent

factors, was used to assign gonadal sex to histologically undifferentiated fish. Differences in

cyp19a expression were first detected before histological sex differentiation, being

significantly higher in future females whereas cyp11b expression was higher in males by the

first histological signs of testicular differentiation. No clear association between sex and gene

expression of arb or any of the estrogen receptors could be found, suggesting that although

these genes are necessary for gonadal development, they do not contribute to the

differentiation of a particular sex. High temperatures decreased the number of fish (from 60%

to 20%) with increased cyp19a levels and the number of females from 90% to 56% by the

time of sex differentiation, reinforcing the importance of cyp19a expression for ovarian

development. In conclusion, the study shows that cyp19a and cyp11b can be used as reliable

early molecular markers of ovarian and testicular differentiation, respectively. This could be

used to assign sex to histologically undifferentiated fish, in species in which the genetic sex

cannot be established at fertilization due to the lack of simple sex determining systems as it is

the case of many fish and reptiles with TSD.

Keywords: Temperature, Sex differentiation, Sea bass, Fish, Dicentrarchus labrax, Gonad,

Aromatase, cyp19a, 11-beta hydroxylase, cyp11b, Androgen receptor, Estrogen receptors,

Canonical discrininant analysis, CDA, Gene expresion.

1. Introduction

Sex differentiation is relatively well conserved across vertebrates, and essentially

involves the same or similar genes and pathways in different organisms, from fish to

mammals (Place and Lance, '04). Sex-steroid hormones, specifically the ratio of androgens to

estrogens, are known to play a crucial role in vertebrate sex differentiation (Bogart, '87). In

this regard, several studies, particularly in reptiles and fish, have established that aromatase,

Page 109: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-85-

the key enzyme that converts androgens into estrogens, plays a critical role in sex

differentiation (Lance, '08; Guiguen et al., '99; Baroiller and D'Cotta, '01; Piferrer et al., '94).

Teleost fish have two different genes encoding for aromatase, one preferably expressed in

gonads (cyp19a) and the other one in brain (cyp19b), but so far only cyp19a appears clearly

implicated in ovarian differentiation (Piferrer and Guigen, '08). On the other hand, cyp11b,

codes for 11-beta hydroxylase, the enzyme responsible for the synthesis of the androgen 11-

ketotestosterone, the major fish androgen. Several studies in fish have reported high cyp11b

expression in testis, whereas expression in ovaries was much lower in zebrafish, Danio rerio

(Wang and Orban, '07), sea bass, Dicentrarchus labrax (Socorro et al., '07) and tilapia,

Oreochromis niloticus (Ijiri et al., '08).

Other genes involved in mammalian sex differentiation include Sox9, Dax1, Dmrt, SF-

1 and Foxl2 (Brennan and Capel, '04). Likewise, these and other genes apear to have an

important role in fish sex differentiation including those involved in ovarian differentiation

such as foxl2 (Baron et al., '04; Yamaguchi et al., '07), er (Blázquez et al., '08) and fst

(Vizziano et al., '08); and those involved in testicular differentiation such as dmrt1

(Kobayashi et al., '08; Marchand et al., '00), sox9 (Yokoi et al., '02), dax1 (Martins et al., '07),

amh (Rodriguez-Mari et al., '05; Wang and Orban, '07) and arb (Blázquez and Piferrer, '05).

However, to the best of our knowledge the combined study of their global and temporal

expression profiles during early development has been limited to the tilapia (Ijiri et al., '08;

Sudhakumari et al., '05), the zebrafish, (Jørgensen et al., '08) and the rainbow trout,

Oncorhynchus mykiss (Baron et al., '05; Vizziano et al., '07).

A growing body of experimental evidences indicate that sex differentiation, and

therefore sex ratios, in lower vertebrates—particularly reptiles and fish—are sensitive to the

environmental temperature (Valenzuela and Lance, '04). According to the effects of

temperature on sex ratios, lower vertebrates can be classified into two different groups, i.e.,

those exhibiting TSD (temperature sex determination) and those exhibiting GSD+TE

(genotypic sex determination with thermal influences; (Valenzuela et al., '03) although in the

particular case of fish, GSD + TE is the prevalent situation (Ospina-Álvarez and Piferrer, '08).

Temperature is able to influence the expression of genes involved in sex differentiation and

cyp19 seems to be central for this process (Lance, '08). Thus, in this regard, in several fish

Page 110: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-86-

species including the Japanese flounder, Paralichthys olivaceus (Kitano et al., '99) and the

tilapia (D'Cotta et al., '01), high water temperatures during early development decreased

cyp19a expression resulting in suppression of ovarian development. Likewise, in the medaka,

Oryzias latipes, high water temperatures induced the expression of dmrt1, a key gene for

testicular development, in genotypic females resulting in the differentiation of phenotypic

males (Hattori et al., '07).

Paramount importance should be given to the discovery of early sex markers,

particularly in species for which genetic monosex populations are not available since the

genetic sex cannot be established at fertilization as it is the case for the majority of fish and

reptiles. In this regard cyp19a, due to its central role in sex differentiation, has been recently

established as an early marker of ovarian differentiation in the rainbow trout, Oncorhynchus

mykiss, (Vizziano et al., '07), the Southern flounder, Paralichthys lethostigma, (Luckenbach

et al., '05), and the Atlantic halibut, Hippoglossus hippoglossus (Matsuoka et al., '06). These

sex-specific molecular markers will be very useful not only for basic but also for applied

research since they could be used for the prediction of sex ratios in natural and farmed

populations (Piferrer and Guigen, '08).

The European sea bass is a consolidated model for both basic and applied research. Sex

determination in this species follows a polygenic system (Vandeputte et al., '07) and sex

differentiation is the result of genetic and environmental (temperature) interactions (Piferrer et

al., '05; Vandeputte et al., '07). The first histological signs of sex differentiation appear when

fish reach about 79-90 mm in females and 83-95 mm in males (around 150-200 dpf) (Saillant

et al., '03). Sex differentiation is more dependent on length than on age (Blázquez et al., '99;

Saillant et al., '01; Vandeputte et al., '07) and thus, depending on growth rates some fish can

remain sexually undifferentiated until they reach 120 mm (Saillant et al., '03; Piferrer et al.,

'05). Several genes related with sex differentiation have been characterized and their

expression profiles studied including cyp19a (Blázquez et al., '08; Dalla Valle et al., '02),

cyp19b (Blázquez et al., '08; Blázquez and Piferrer, '04), amh (Halm et al., '07), dax1

(Martins et al., '07), ers (Halm et al., '04; Blázquez et al., '08), arb (Blázquez and Piferrer,

'05), cyp11b (Socorro et al., '07). Moreover, high temperatures decrease the number of

females in cultured sea bass (Koumoundouros et al., '02; Pavlidis et al., '00) and affect

aromatase catalytic activity (González and Piferrer, '02). However, information on the effects

Page 111: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-87-

of temperature on sea bass cyp19a expression is restricted to a short and early period (from 0

to 60 dpf) with no apparent effects on cyp19a levels (Socorro et al., '07).

The present work is aimed to determine the ontogenic expression of six genes

including cyp19a, cyp11b, androgen receptor beta (arb), estrogen receptor alpha (era),

estrogen receptor beta 1 (erb1) and estrogen receptor beta 2 (erb2), previously suggested to be

involved in vertebrate sex differentiation. The study provides the implementation of a

canonical discriminant analysis (CDA) using length and cyp19a as a simple and

straightforward approach to predict phenotypic sex in histologically undifferentiated sea bass.

The analysis reveals that cyp19a and cyp11b can be used as early molecular markers of

ovarian and testicular differentiation, respectively in this species. In addition, the effects of

temperature, low (15 ºC) versus high (21ºC), during early development on the expression of

these genes were also studied.

2. Materials and methods

2.1. Animals, searing conditions and sampling procedures

Freshly fertilized sea bass eggs were obtained from the Institute of Aquaculture

(Castellón, Spain) and transported to our laboratory in sealed plastic containers filled with a

1:3 mixture of water and oxygen. Egg incubation, larval and juvenile rearing were performed

according to standard procedures for sea bass aquaculture (Moretti et al., '99). Briefly, eggs

were incubated at 14–15°C until hatching at ~3 days-post fertilization (dpf). After mid-

metamorphosis (standard length; SL > 18mm), juveniles were transferred to 650 l fiberglass

tanks and reared under simulated natural photoperiod. Juveniles were fed ad libitum with

pelleted dried food of the appropriate size. Animals were treated in agreement with the

European Convention for the Protection of Animals used for Experimental and Scientific

Purposes (ETS Nº 123, 01/01/91).

Newly hatched larvae were reared at 15 ± 1ºC for five different periods of increasing

duration: 10 (Group 10 or G10), 30 (G30), 60 (G60), 90 (G90) or 120 (G120) days. Each

temperature treatment was done in duplicate. The temperature of 15°C is similar to the one

experienced sea bass in the wild during the larval stage and considered not to have distorting

Page 112: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-88-

influences on sex ratios, provided is applied for a sufficient amount of time (Piferrer et al.,

'05).

After 120 dpf, coinciding with summer, fish were reared at ≥ 21ºC under natural

temperature until the end of autumn (fish age ~285 dph). Thereafter, fish were reared at 18 ±

1ºC until the end of the study. The change from 15 to 21°C was gradual and never exceeded

0.5ºC·day-1. Because the G10 was reared at high temperature as soon as it was advisable (after

yolk-sac was absorbed), fish in this group are referred to as the high temperature (HT) fish,

which were subjected to a thermal regime that induced male development (Piferrer et al., '05)

Fish from the remaining groups were collectively referred to as the low temperature (LT) fish,

because they were reared at 15°C until 30, 60, 90 or 120 dpf (G30, G60, G90, G120).

Fish were sacrificed with an overdose of phenoxyethanol and samples were collected at

30, 60, 90, 120, 150, 195 and 330 dpf. In the sea bass, the formation of the gonadal ridges

occurs around 30 dph (Roblin and Bruslé, '83), the earliest histological signs of ovarian and

testicular differentiation become visible at 150 dpf (~80 mm SL), and by 330 dpf all fish (>

120 mm SL) are sexually differentiated (Saillant et al., '03; Piferrer et al., '05). Thus, with

these samplings the whole process of sex differentiation was covered. At each sampling time,

fish were measured (SL to the nearest 0.1 mm) and gonads excised. Tissue samples were

snap-frozen in liquid nitrogen and kept at -80ºC until further analysis. Due to the difficulty to

accurately dissect gonads from small fish, bodies in fish < 18 mm SL (30–60 dpf) and body

trunks in fish 18–60 mm SL (60–120 dpf) were used for the study, whereas only gonads were

used from fish higher than 60 mm SL (150–330 dpf) following a previously validated

procedure (Blázquez et al., '08) that showed that chances of underestimating gene expression

when using bodies or body trunks were negligible. At 330 dpf all fish were sacrificed and the

gonads examined histologically to determine sex.

2.2. RNA extraction and cDNA synthesis

Total RNA was extracted from tissue samples by homogenization in TRIZOLTM

(Invitrogen, Paisley, Scotland, UK) following the manufacturer’s procedure. Concentration

was assessed by spectrophotometry, estimated from absorbance at 260 nm and RNA quality

(possible degradation or DNA contamination) was checked by electrophoresis on a 1%

agarose/formaldehyde ethidium bromide-stained gel and by A260 nm/A280 nm ratios > 1.8. Total

Page 113: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-89-

RNA (5 µg) was reverse transcribed to cDNA with Superscript II (Invitrogen) and random

hexamers (pdN6) following the manufacturer’s instructions. The efficiency of the reverse

transcription and the absence of DNA contamination were checked in a PCR for 18S using

both the resulting cDNAs and 0.5 µg of non-reverse transcribed RNAs as templates,

respectively. The amplification of 18S when using the cDNAs as a template verified the

efficiency of the transcription, whereas the absence of amplification when the non-reverse

transcribed samples were used as a template ensured the absence of genomic DNA in the

original RNA samples.

2.3. Quantitative gene expression analysis by real time RT-PCR

Real-time RT-PCR reactions were performed with an ABI Prism 7900 Sequence

Detection System® (Applied Biosystems, Foster City, CA, USA) using the SYBR® Green

chemistry (Power SYBR® Green PCR Master Mix; Applied Biosystems). Primers for cyp19a,

erb1, erb2 and rRNA 18S (used as a reference gene for standardisation of expression levels)

were taken from Blázquez et al ('08), whereas primers for cyp11b, era and ar were taken from

Viñas and Piferrer ('08). PCR reactions contained 10 µl of Power SYBR® Green mix, 10 pmol

of each primer and 1 µl of diluted cDNA (1:5). Replicates were run in optically clear 384-well

plates in a final volume of 20 µl. Cycling parameters were: 50ºC for 2 min, 95ºC for 10 min,

followed by 40 cycles of amplification at 95ºC for 15 s and 60ºC for 1 min. Finally, a

temperature-determining dissociation step was performed at the end of the amplification

phase to ensure the presence of just one amplified product. Expression of all genes was

measured from cDNAs belonging to the same fish, allowing for comparisons among genes in

the same individual. Real-time PCR data were collected by SDS 2.3 and RQ Manager 1.2

software (Applied Biosystems). The cycle threshold (Ct) was calculated for each replicate and

final values were obtained from the average of two or three replicates per sample. Subsequent

analyses were conducted using the Q-Gene core module (Muller et al., '02). Briefly, for each

primer set/gene the amplification efficiency (E) was calculated from the slope of the linear

correlation between Ct values and the logarithm of the amount of RNA added in a serial

dilution scheme according to the equation E = 10(-1/slope). Calculated efficiency values were

always within the range of 90 to 110% and final Ct values were adjusted for differences in E

of each primer set. Relative amounts of specific target genes were expressed as normalized

mean expression (NE) using r18S RNA as the reference gene and calculated according to the

following equation: NEtarget= (Ereference)Ct reference /(Etarget)Ct target

Page 114: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-90-

2.4. Statistical analysis

Several studies have demonstrated that cyp19a expression is sexually dimorphic in

differentiated and adult fish. In addition, other genes also exhibit sex-related differences,

suggesting that their expression levels could be indicative of the phenotypic sex. For that

reason we analysed the expression of cyp19a, cyp11b, era, erb1, erb2 and ar in one-year old

differentiated sea bass (30 females and 9 males), for which their phenotypic sex was

histologically assessed, to determine if any of these genes could be used as a molecular sex

marker. Discriminant analysis (DA) was used to analyse the dataset, and to determine which

genes (predictors) could be used as a marker of sex (categorical variable). DA is a statistical

procedure that groups a series of observations into two or more categories (the values of a

categorical, dependent discriminant variable, also called the grouping variable) based on the

values of independent, continuous categorical variables or predictors (Legendre and

Legendre, '98). The analysis provides a linear discriminant function that assigns values of the

grouping variable according to the values of the predictors.

To check for sex-related differences in gene expression during the first year of life,

when many fish are sexually undifferentiated, the sex of each individual fish was determined

following a two-step procedure. This was based on two well established observations: 1) the

study of the relationship between size, age and the process of sex differentiation in the sea

bass, showing that this process is more dependent on length than on age (Blázquez et al., '99;

Saillant et al., '01; Vandeputte et al., '07), and 2) cyp19a expression is a suitable marker of

ovarian differentiation, with higher levels in developing females (Blázquez et al., '08). In the

first step, and to ensure that the whole process of sex differentiation was entirely represented,

fish ranging between 8–225 mm SL were classified as either sexually undifferentiated, males

or females based on their age, SL and cyp19a expression levels. In the second step, canonical

discriminant analysis (CDA), also known as multiple discriminant analysis, was used to group

the fish into three categories: undifferentiated, females and males. From the previous DA

results, the variables that were statistically significant determined as good predictors of

phenotypic sex in one-year old sea bass were latter used in the CDA. The probability of a

given fish of being in each of the three sex categories was expected to be similar because of

the variability of the samples used in this study, and for that reason equal prior probabilities

were assumed at the beginning of the analysis. Finally, a cross-validation method (split-halves

Page 115: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-91-

test) with the CDA results was used to calculate the average of correctly classified samples

(“hit rate”) during the first step of the procedure.

Differences in mean gene expression among sexually undifferentiated fish, males and

females were analyzed by one-way Analysis of Variance (ANOVA I) at 120 and 150 dpf; and

differences between sexes at 195 and 330 dpf by Student’s t-test. This test was also used to

detect differences in gene expression during early development (30–120 dpf) in LT and HT

fish. Prior to the analysis, data were tested for normality (Shapiro-Wilk test) and gene

expression levels log transformed to ensure the homocedasticity of variances (Sokal and

Rohlf, '97). Statistical analyses were performed with SPSS 15.0 package. Differences were

accepted as statistically significant when P < 0.05.

3. Results

3.1. Determination of sex predictors by CDA

First we checked in a DA which variable, including SL and the expression of all the 6

studied genes, best defined the groups (males and females) using only fish at 330 dpf since

sex in these fish was histologically determined. The DA revealed that cyp19a, as well as

cyp11b, era and erb1 significantly (P < 0.001) contributed to discriminate sex (table 1).

However, cyp19a alone was the variable that best contributed to discriminate between sexes

(P < 0.001; F-ratio = 146.74 and Wilks’ lambda test λ = 0.18) and was capable to correctly

classify 100% of the fish (table 1). Wilks’ lambda values range from 0 to 1.0, the smaller the

lambda value, the more the predictor contributes to discriminate between groups. In addition,

when cyp19a was used in combination with any other variables, it always resulted in the

correct classification of 100% of the fish.

Following the two-step procedure described in materials and methods the phenotypic sex

was assigned to all the fish of the study, ranging from 30 to 330 dpf and therefore including

all the period of sex differentiation, according to their SL and cyp19a expression levels and

also considering their age. Information on age, SL and cyp19a expression levels as

determined by real time RT-PCR on samplings taken at 30–330 dpf could be obtained for a

total of 152 fish (102 LT and 50 HT fish), of which 39 had their sex determined histologically

(9 males, 30 females). The remaining 113 fish of unknown sex were classified as either

Page 116: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-92-

undifferentiated (73 fish), males (18 fish) or females (20 fish) based on their age, SL and

cyp19a levels. Using the variables determined by the DA, i.e., cyp19a, cyp11b, era and erb1,

and to check which of those variables or group of variables could be better used as a

predictor(s) of sex, all the dataset was used to perform a CDA. The analysis showed that

among of all the variables, cyp19a alone was able to correctly classify 91.6% of the fish

included in the analysis (table 2). When cyp19a was used in combination with other variables,

the best outcome was with SL, resulting in 93.7% of the cases correctly classified and with SL

and cyp11b resulting in 95.1% of the cases correctly classified (table 2). Although cyp11b can

also be used as a sex predictor, we decided not to consider it for the analysis since it only

improved the level of classification in a 1.4% (from 93.7% to 95.1%) and on the other hand it

added the complexity of having to measure the expression of another gene. Correlation

between SL and age was found to be 0.774, meaning that both variables are closely related.

However, and due to the demonstrated fact that in the sea bass sex differentiation depends

more on length than on age, only SL and not age was included in the final CDA. Therefore,

SL and cyp19a were used as sex predictors since both significantly (P < 0.001) contributed to

discriminate sex: F = 227.0 and 505.4; Wilks’ lambda test was λ = 0.23 and 0.12, for SL and

cyp19a, respectively (table 2). On the other hand, correlation between SL and cyp19a

expression was 0.553, indicating that although both variables are related, e.g. gene expression

levels increase with development and therefore with growth and length, they are sufficiently

independent to be used as sex predictors. Most fish < 50 mm SL were classified as sexually

undifferentiated based on cyp19a levels. The female with the smallest SL was discriminated

at 47 mm (at 120 dpf), and the first male at 50 mm (at 120 dpf). All fish > 50 mm SL were

either males or females based on cyp19a levels and SL values, forming two groups that

essentially were mutually exclusive (Fig. 1A).

3.2. Sex-related differences in expression of key genes according to size as assessed by CDA

The deduced phenotypic sex of each individual fish according to cyp19a expression

levels and SL was used to check for possible sex-related differences in the expression of

cyp19a, cyp11b, arb, era, erb1 and erb2. Although sex-related differences in cyp19a values

were first found at 50 mm SL, a complete segregation in cyp19a could not be observed until

fish attained 60 mm SL, with fish with high and low cyp19a expression levels classified as

females and males, respectively (Fig.1 A). When the sex assigned to each fish based on

cyp19a was used to construct a sex-related distribution of cyp11b values according to SL, the

Page 117: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-93-

result was also a clear grouping, although in this case males had higher levels than females,

with similar values for undifferentiated fish and the smallest males and females. Regarding to

cyp11b levels, the first complete segregation between males and females, appeared in fish 87

mm (Fig. 1B). In contrast, there were no sex-related differences in the levels of arb, era, erb1

or erb2 which impeded grouping (Fig. 1C-F), indicating that sex-related differences in their

expression are not apparent at least within the studied size range.

3.3. Sex-related differences in growth and expression profiles of key genes during ontogenesis

Based on the CDA results, the sex of individual fish could be assigned as early as 120

dpf. With this information, sex-related differences in growth and expression profiles of some

key genes during ontogenesis from 120-330 dpf could then be further explored, in the last

sampling also with the certainty of the histological verification of gonadal sex. Regarding

growth, females were larger than males already at 120 dpf but differences did not become

statistically significant until 195 dpf, with females showing larger SL than males (112.9 ±

5.53 mm versus 101.6 ± 8.99 mm), and reached maximum values at 330 dpf (170.4 ± 4.73

mm versus 156.6 ± 6.98 mm).

Regarding the expression profiles of key genes, significant (P < 0.05) sex-related

differences in cyp19a expression could be detected as early as 120 dpf and females

consistently had higher cyp19a values than males (Fig. 2A). However, the first significant (P

< 0.05) difference in cyp11b expression in favor of males was not found until 195 dpf (Fig.

2B); although an increase in cyp11b levels could already be observed at 150 dpf in future

males. Sex steroid receptors (arb, era, erb1 and erb2) showed higher (P < 0.05) values in

females than in males at 150 dpf (Fig. 2C, D, E, F). Moreover, significantly higher (P < 0.05)

era values were found in females than in males at 300 dpf (Fig. 2D), whereas higher (P <

0.05) erb1 expression levels were found in males than in females at 195 and 330 dpf (Fig.

2E).

3.4. Effects of temperature on gene expression during sex differentiation

The expression levels of cyp19a in the HT and LT fish at two different times, 120 and

195 dpf, were assessed to determine the effects of temperature on sex differentiation and also

in an attempt to associate gene expression at those particular times of ontogenesis with the

Page 118: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-94-

subsequent sex ratios. The first time (120 dpf) coincided with the stage of development when

the earliest differences in cyp19a between future males and females can be detected, as shown

above. The second time (195 dpf) corresponds with the first sampling after the initial signs of

ovarian differentiation become histologically visible at 150 dpf. Since size has an influence on

gene expression, as also shown above, results are given taking into account the influence of

temperature on growth. In addition, the shift from LT to HT at 60 dph represents a

compromise. On one hand, it avoids the masculinization of some genetic females that is

observed with earlier shifts. On the other hand, avoids the slower growth resulting from

longer exposures at LT (thus delaying development and influencing gene expression) (L.

Navarro-Martín, M. Blázquez, J. Viñas and F. Piferer, unpublished observations). Thus, for

this particular experiment only samples from G60 were used in the LT fish. At 120 dpf all

examined LT fish had low levels of cyp19a (low expressers), whereas 12.5% of the HT fish

had higher levels (high expressers). High and low expressers were defined as those animals in

which cyp19a expression levels were between -2 and -4, and below -4, respectively, in the

mean normalized expression scale (Fig. 1A). Low expressers correspond with undifferentiated

fish or future males and high expressers with developing females. At 195 dpf, 60% of the LT

fish were high cyp19a expressers, while this proportion was reduced to 20% in HT fish (Fig.

3). Thus, exposure to high temperature until 120 dpf reduced the number of fish exhibiting

high cyp19a gene expression levels. This was later reflected in a significant (P < 0.05)

decrease in the number of females from 82.5% in the HT fish to 56.2% in the LT fish at 330

dpf after sex differentiation was completed.

3.5. Effects of temperature on growth and gene expression during early development

Since the LT and HT regimes were applied up to 120 dpf, i.e., before sex differentiation

started, the effects of temperature on gene expression during that period of early development

were also studied. No statistical differences between LT and HT fish were found for cyp19a

(Fig. 4A), erb1 (Fig. 4E) and erb2 (Fig. 4F) at any sampling time. In contrast, significantly

higher levels of arb (Fig. 4C) and era (Fig. 4D) were detected at 60 and 90 dpf in the HT

group when compared with the LT group although these differences were no longer present at

120 dpf. Regarding cyp11b, differences (P < 0.05) between the HT and the LT group were

found at 60 and 120 dpf, with the highest levels in the HT group at 60 dpf and the opposite

pattern at 120 dpf (Fig. 4B). Finally, significant (P < 0.001) growth differences in favour of

the HT when compared to the LT fish during early development were only evident at the last

Page 119: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-95-

two samplings: SL = 30.4 ± 0.69 mm versus 15.8 ± 0.21 mm at 90 dpf, and 46.1±1.12 mm

versus 22.7 ± 0.88 mm at 120 dpf.

4. Discussion

In this study, CDA was used to assign phenotypic sex to sea bass ranging from 8 to

225 mm SL based on cyp19a values and the input of cyp19a reference values obtained in fish

of 125–225 mm SL, whose sex were histologically verified at 330 dpf. CDA is being used in

many areas, including numerical ecology applied to fisheries management to categorize the

exploitation of a given ecosystem, (Tudela et al., '05), in microbiology, to discriminate

between human and animal sources of contamination in surface waters (Kaneene et al., '07),

in forensics to estimate the sex of unknown skeletal remains (Kemkes-Grottenthaler, '05), and

also in medical research to discriminate between different types of anemia (Ahluwalia et al.,

'95). However, to the best of our knowledge, this is the first time that it is used for the study of

sex differentiation. Among all the variables considered in the DA, cyp19a alone was found to

be the best predictor, since it showed the lower Wilks’ λ and P values (λ = 0.18, P <0.01), and

was able to correctly determine the sex in 100% of one-year old fish. Later on, when samples

covering al the period of sex differentiation (30-330 dpf) were used in the CDA, the strong

capability of cyp19a as sex predictor was further demonstrated (λ = 0.12, P < 0.01, F =

505.44). Moreover, when cyp19a was used in combination with other variables, the best

outcome was with SL (λ = 0.23, P < 0.01, F= 227.02), resulting in 93.7% of the fish correctly

sexed, also demonstrating the statistical robustness of the method.

When viewed globally, mRNA levels of four (cyp19a, cyp11b, arb and erb1) of the six

studied genes experienced a sudden increase after fish reached >50 mm SL. Moreover, in the

case of cyp19a and cyp11b, from 50 mm SL and onwards fish could be readily grouped into

two major categories based on their expression levels, males and females. The observation

that for most of sizes studied gene expression levels did not significantly change adds

relevance to the CDA as a tool to assign phenotypic sex to sexually undifferentiated fish.

Changes in cyp19a expression provide evidence that the control of the initial stages of sex

differentiation at the molecular level start once fish reach 50 mm SL, i.e., well before the first

histological signs become evident in the sea bass (at 80 mm SL). However, sex dimorphic

changes were evident only for cyp19a and cyp11b, with higher levels in presumptive females

Page 120: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-96-

and males, respectively, whereas no sex-related dimorphism was evident in any of the other

studied genes. Our results show that cyp19 and cyp11b exhibit a clear association with the

female and male phenotype and thus they can be used as molecular markers to predict

phenotypic sex in histologically undifferentiated sea bass. In previous studies, cyp19a has

been used as a molecular marker for ovarian differentiation in other fish species including the

rainbow trout, (Vizziano et al., '07), the Southern flounder, Paralichthys lethostigma,

(Luckenbach et al., '05) and the Atlantic halibut, Hippoglossus hippoglossus, (Matsuoka et

al., '06), whereas cyp11b has been implicated in testicular differentiation in the rainbow trout

(Liu et al., '00) and the zebrafish (Wang and Orban, '07; Sreenivasan et al., '08). In addition,

highest cyp11b expression levels were found in sea bass males by the onset of testicular

differentiation (Socorro et al., '07).

Of these two markers, cyp19a seems the most robust and allows for the determination of

sex in fish ~30 mm smaller and one month earlier (50 mm SL and 120 dpf) than it would have

been required based on the first signs of histological differentiation (80 mm SL and 150 dpf).

Furthermore, if a sex-related consistent pattern of gene expression is defined as the

maintenance of similar statistical differences between phenotypes (undifferentiated, females

and males) in more than two consecutive samplings, then cyp19a is the only gene that exhibits

such a consistent pattern of expression between 120 and 330 dpf, with differences (females >

males) before the first signs of histological sex differentiation at 150 dph. In addition,

consistent patterns of expression were observed for cyp11b and erb1 between 195 and 330

dph, although for the former gene the ordinal arrangement (males > females) was already

evident at 150 dph. It is interesting to notice that cyp19a expression levels in males during the

period comprised between 150 and 330 dph are roughly similar to those of females at 120

dph. This suggests that the cyp19a levels that are typical of males at 150-330 dph in fish 50-

225 mm SL are sufficient to drive female sex differentiation in fish around 50 mm SL at 120

dph. The expression levels of all the sex-steroid receptors were higher in females than in

males at 150 dpf (about 70mm SL), suggesting that they may play an important role in

females at this stage of development. However, at 195 and 330 dpf erb1 levels were higher in

males than in females, in agreement with their presumed role in testicular development and

function (Blázquez et al., '08).

Page 121: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-97-

Differences in cyp19a expression were first found at 120 dpf, coinciding with the period

of rapid proliferation of primordial germ cells in the undifferentiated gonad of the sea bass

(Roblin and Bruslé, '83). A polygenic system of sex determination with environmental

(temperature) influences (Vandeputte et al., '07) operates in the sea bass. Therefore, the

inheritance of sex depends on the combination of several genes distributed throughout the

genome and temperature can affect these or other downstream genes, thus explaining the

observed variation in sex ratios according to family and temperature (Saillant et al., '02;

Saillant et al., '06). The first difference in male versus female sex differentiation relies in the

number, shape and replication pattern of primordial germ cells (Herpin et al., '07). Thereafter,

female differentiation proceeds and one of the first molecular signs is the increase of cyp19a

in genetic females, as shown in species for which the genetic sex is known such as the

medaka (Suzuki et al., '04), the tilapia or the rainbow trout (Guiguen et al., '99). In the Nile

tilapia, a Perciform like the sea bass, proliferation of germ cells in females takes place

between 19-27 dph (Nakamura and Nagahama, '85), whereas the first differences in cyp19a

expression are observed between 11-27 dph (Kwon et al., '01). Likewise, our observations

together with the histomorphometric analysis provided by Roblin and Bruslé ('83) suggest that

genes involved in sex determination are likely expressed around 40–50 dph since the period

of differential proliferation of germ cells takes place during 57-137 dpf (20-40 mm SL). This

coincides with the first sex-related differences in cyp19a expression with females exhibiting

higher levels than males at 120 dpf, as observed in the present study.

A relevant issue in the study of sex differentiation is the predictive value of molecular

markers. From our results it can be concluded that 100% of sea bass can be reliably sexed at

195 dpf exclusively based on cyp19a values. Thus, the present results evidence which genes

are good markers of the process of sex differentiation in fish, emphasizing the key role of

cyp19 in this process (Piferrer and Guigen, '08). This procedure would provide a valuable tool

for the assessment and prediction of sex ratios in natural or farmed populations of other fish

species based solely on the sacrifice of a sample of 0-age-class (i.e., at 195 dpf in the sea

bass). Whether the same predictive value would hold in samplings of younger sea bass, i.e.,

whether the percent of females and males at 120 dpf could be used to predict adult sex ratios

is premature to say without additional data. Arguments in support of the above, however, can

be drawn from the observed relationship between the percentage of cyp19a high versus low

Page 122: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-98-

expressers at 120 and 195 dpf according to temperature and the subsequent relation with sex

ratios at 330 dpf.

Abnormally high temperatures inhibit female sex differentiation in the sea bass (Saillant

et al., '02) (Piferrer et al., '05) and other fish species (Ospina-Álvarez and Piferrer, '08).

Likewise, the present study reports a decrease in the number of females after rearing at high

temperature. Among the different candidate genes known to be affected by temperature,

cyp19a has been widely studied, particularly in fish. In this regard, high temperatures during

early development resulted in low cyp19a expression and/or enzymatic activity, inducing

testicular differentiation in the pejerrey, Odonthestes bonariensis (Karube et al., '07), the

Japanese flounder (Kitano et al., '99), the tilapia, (D'Cotta et al., '01) and the Atlantic halibut

(van Nes and Andersen, '06). It is interesting to notice that in this study some cyp19a high

expressers in the HT group were already observed at 120 dpf, whereas none could be found in

the LT group at the same age. This, at first, runs countercurrent with the expected effect of

temperature on cyp19a expression but makes sense when viewed in the context of

temperature-dependent growth since fish of the HT group were bigger than those of the LT

group at 120 dpf. This is in agreement with the increased growth rates found in the sea bass

after rearing at high temperatures during larval and post larval stages (Ayala et al., '01;

Koumoundouros et al., '01). In the present study, growth enhancement was apparent after

rearing at high temperatures for 90 and 120 days starting after fertilization. These growth

differences may also account for differences in the timing of expression of the other genes

studied known to be involved in sex differentiation since in the sea bass, this process is

dependent on a minimum size threshold (Blázquez et al., '99; Vandeputte et al., '07).

The present study shows that fish exposed to HT had a downward trend regarding cyp19a

levels in both males and females similar to what has been reported for the Nile tilapia and

common carp (Barney et al., '08). In contrast to the relationship observed between

temperature, growth and cyp19a expression after 120 dpf, no clear relationship between

temperature and cyp19a was found during the period from 30-120 dpf (fig. 4). In fact,

although differences were not statistically significant, in the period of 60-120 dph cyp19a

gene expression levels were higher in the HT group. This further evidenced that size is more

important than temperature or age in determining cyp19a gene expression levels (the lowest

recorded in this study) during early development. No consistent relationship between water

Page 123: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-99-

temperature and gene expression could be found for any of the studied genes during larval

development and metamorphosis (between 30-120 dpf), in agreement with the scenario

relating growth and changes in gene expression outlined above. However, all genes could be

detected during larval rearing (30 dpf), indicating that the machinery involved in sex steroid

production and action is present at early developmental stages in the sea bass. The effects of

temperature during early development on the expression of some of the other genes included

in this study are limited to cyp11b in the sea bass (Socorro et al., '07) and ers in the Atlantic

halibut (van Nes and Andersen, '06) and showed no clear differences between the different

temperatures. To the best of our knowledge, the present study is the first to report the effects

of temperature on arb expression in fish with higher levels after 60 and 90 days at 21ºC.

However, whether these differences in gene expression are related to the higher number of

males found at high temperatures or to differential growth needs to be further explored.

In conclusion, in this study we applied a CDA to aid in the establishment of expression

profiles of sex differentiation genes during sea bass ontogenesis, and found that cyp19a and

cyp11b can be used as reliable molecular markers of ovarian and testicular differentiation,

respectively. Furthermore, levels of the two genes can be used to assign sex to histologically

undifferentiated fish, which can the aid to better understand changes and thus the possible role

of other gonadal-related genes. In this regard, no clear association between sex and expression

of arb or any of the three ers was found, suggesting that although these genes are needed for

gonadal differentiation, their expression levels do not contribute to the development of a

particular sex. Finally, changes in cyp19a and cyp11b expression levels have been put into the

broader context of sex determination and differentiation based on previous

histomorophometric data concerning the proliferation of germ cells. The approach followed

herein could be useful for the study of the role of candidate genes during early stages of sex

differentiation in species in which the genetic sex cannot be established at fertilization due to

the lack of simple sex determining systems such as XX/XY as it is the case of many fish and

reptiles with TSD.

Acknowledgements

The authors wish to thank Sílvia Joly for technical assistance and Elvira Martínez for fish

rearing. Funded by a project from the Spanish Government SEXRATIO AGL-2002-02636 to

FP. MB was supported by a “Ramón y Cajal” contract from the Spanish Ministry of Science

Page 124: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-100-

and Technology. LN was supported by an FPI fellowship BES-2003-0006 from the Spanish

Ministry of science and Technology.

References

Ahluwalia N, Lammi-Keefe C, Bendel R, Morse E, Beard J, Haley N. 1995. Iron deficiency and anemia of chronic disease in elderly women: a discriminant-analysis approach for differentiation. American Journal of Clinical Nutrition 61:590-596.

Ayala MD, Lopez-Albors O, Gil F, Garcia-Alcazar A, Abellan E, Alarcon JA, Alvarez MC, Ramirez-Zarzosa G, Moreno F. 2001. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 202:359-370.

Barney ML, Patil JG, Gunasekera RM, Carter CG. 2008. Distinct cytochrome P450 aromatase isoforms in the common carp (Cyprinus carpio): sexual dimorphism and onset of ontogenic expression. Gen Comp Endocrinol 156:499-508.

Baroiller JF, D'Cotta H. 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 130:399-409.

Baron D, Cocquet J, Xia X, Fellous M, Guiguen Y, Veitia RA. 2004. An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 33:705-715.

Baron D, Houlgatte R, Fostier A, Guiguen Y. 2005. Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod 73:959-966.

Blázquez M, Carrillo M, Zanuy S, Piferrer F. 1999. Sex ratios in offspring of sex-reversed sea bass and the relationship between growth and phenotypic sex differentiation. Journal of Fish Biology 55:916-930.

Blázquez M, Gonzalez A, Papadaki M, Mylonas C, Piferrer F. 2008. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 158:95-101.

Blázquez M, Piferrer F. 2004. Cloning, sequence analysis, tissue distribution, and sex-specific expression of the neural form of P450 aromatase in juvenile sea bass (Dicentrarchus labrax). Mol Cell Endocrinol 219:83-94.

Blázquez M, Piferrer F. 2005. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Mol Cell Endocrinol 237:37-48.

Bogart M. 1987. Sex determination: a hypothesis based on steroid ratios. J Theor Biol 128:349-357.

Brennan J, Capel B. 2004. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nature Reviews Genetics 5:509-521.

Dalla Valle L, Lunardi L, Colombo L, Belvedere P. 2002. European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. Journal of Steroid Biochemistry and Molecular Biology 80:25-34.

D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of Tilapia Oreochromis niloticus. Molecular Reproduction and Development 59:265-276.

Page 125: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-101-

González A, Piferrer F. 2002. Characterization of aromatase activity in the sea bass: Effects of temperature and different catalytic properties of brain and ovarian homogenates and microsomes. Journal of Experimental Zoology 293:500-510.

Guiguen Y, Baroiller JF, Ricordel MJ, Iseki K, McMeel OM, Martin SAM, Fostier A. 1999. Involvement of estrogens in the process of sex differentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a Tilapia (Oreochromis niloticus). Molecular Reproduction and Development 54:154-162.

Halm S, Martinez-Rodriguez G, Rodriguez L, Prat F, Mylonas CC, Carrillo M, Zanuy S. 2004. Cloning, characterisation, and expression of three oestrogen receptors (ERalpha, ERbeta1 and ERbeta2) in the European sea bass, Dicentrarchus labrax. Mol Cell Endocrinol 223:63-75.

Halm S, Rocha A, Miura T, Prat F, Zanuy S. 2007. Anti-Mullerian hormone (AMH/AMH) in the European sea bass: its gene structure, regulatory elements, and the expression of alternatively-spliced isoforms. Gene 388:148-158.

Hattori RS, Gould RJ, Fujioka T, Saito T, Kurita J, Strussmann CA, Yokota M, Watanabe S. 2007. Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and DMRT1 expression profile. Sex Dev 1:138-146.

Herpin A, Schindler D, Kraiss A, Hornung U, Winkler C, Schartl M. 2007. Inhibition of primordial germ cell proliferation by the medaka male determining gene Dmrt I bY. BMC Dev Biol 7:99.

Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78:333-341.

Jørgensen A, Morthorst JE, Andersen O, Juul Rasmussen L, Bjerregaard P. 2008. Expression profiles for six zebrafish genes during gonadal sex differentiation. Reproductive Biology and Endocrinology 6:25.

Kaneene J, Miller R, Sayah R, Johnson Y, Gilliland D, Gardiner J. 2007. Considerations when using discriminant function analysis of antimicrobial resistance profiles to identify sources of fecal contamination of surface water in Michigan. Applied and Environmental Microbiology 73:2878-2890.

Karube M, Fernandino JI, Strobl-Mazzulla P, Strussmann CA, Yoshizaki G, Somoza GM, Patino R. 2007. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis. J Exp Zool Part A Ecol Genet Physiol.

Kemkes-Grottenthaler A. 2005. Sex determination by discriminant analysis: an evaluation of the reliability of patella measurements. Forensic Sci Int 147:129-133.

Kitano T, Takamune K, Kobayashi T, Nagahama Y, Abe SI. 1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). Journal of Molecular Endocrinology 23:167-176.

Kobayashi T, Kajiura-Kobayashi H, Guan G, Nagahama Y. 2008. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev Dyn 237:297-306.

Koumoundouros G, Divanach P, Anezaki L, Kentouri M. 2001. Temperature-induced ontogenetic plasticity in sea bass (Dicentrarchus labrax). Mar Biol 139:817-830.

Page 126: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-102-

Koumoundouros G, Pavlidis M, Anezaki L, Kokkari C, Sterioti K, Divanach P, Kentouri M. 2002. Temperature sex determination in the European sea bass, Dicentrarchus labrax (L., 1758) (Teleostei, Perciformes, Moronidae): Critical sensitive ontogenetic phase. Journal of Experimental Zoology 292:573-579.

Kwon JY, McAndrew BJ, Penman DJ. 2001. Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus. Mol Reprod Devel 59:359-370.

Lance VA. 2008. Is the regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? Journal of Experimental Zoology Part A.

Legendre P, Legendre L. 1998. Numerical ecology. Jørgensen SE, editor. Amsterdam: Elsevier. 853 p.

Liu SJ, Govoroun M, D'Cotta H, Ricordel MJ, Lareyre JJ, McMeel OM, Smith T, Nagahama Y, Guiguen Y. 2000. Expression of cytochrome P450(11 beta) (11 beta-hydroxylase) gene during gonadal sex differentiation and spermatogenesis in rainbow trout, Oncorhynchus mykiss. Journal of Steroid Biochemistry and Molecular Biology 75:291-298.

Luckenbach JA, Early LW, Rowe AH, Borski RJ, Daniels HV, Godwin J. 2005. Aromatase cytochrome P450: cloning, intron variation, and ontogeny of gene expression in southern flounder (Paralichthys lethostigma). J Exp Zoolog A Comp Exp Biol 303:643-656.

Marchand O, Govoroun M, D'Cotta H, McMeel O, Lareyre J, Bernot A, Laudet V, Guiguen Y. 2000. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochim Biophys Acta 1493:180-187.

Martins RS, Deloffre LA, Mylonas CC, Power DM, Canario AV. 2007. Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation. Reprod Biol Endocrinol 5:19.

Matsuoka MP, van Nes S, Andersen O, Benfey TJ, Reith M. 2006. Real-time PCR analysis of ovary- and brain-type aromatase gene expression during Atlantic halibut (Hippoglossus hippoglossus) development. Comp Biochem Physiol B Biochem Mol Biol 144:128-135.

Moretti A, Pedini Fernandez-Criado M, Cittolin G, Guidastri R. 1999. Manual on Hatchery Production of Seabass and Gilthead Seabream. Rome: FAO. 194 p.

Muller PY, Janovjak H, Miserez AR, Dobbie Z. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32:1372-1379.

Nakamura M, Nagahama Y. 1985. Steroid producing cells during ovarian differentiation of the tilapia, Sarotherodon niloticus. Development, growth & differentiation 27:701-708.

Ospina-Álvarez N, Piferrer F. 2008. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3:e2837.

Pavlidis M, Koumoundouros G, Sterioti A, Somarakis S, Divanach P, Kentouri M. 2000. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 287:225-232.

Piferrer F, Blázquez M, Navarro L, Gonzalez A. 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen Comp Endocrinol 142:102-110.

Piferrer F, Guigen Y. 2008. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. Reviews in Fisheries Science 16:33-53.

Piferrer F, Zanuy S, Carrillo M, Solar, II, Devlin RH, Donaldson EM. 1994. Brief Treatment with an Aromatase Inhibitor During Sex-Differentiation Causes Chromosomally Female

Page 127: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-103-

Salmon to Develop as Normal, Functional Males. Journal of Experimental Zoology 270:255-262.

Place AR, Lance VA. 2004. The temperature-dependent sex determination drama. Same cast, different stars. In: Valenzuela N, Lance VA, editors. Temperature-dependent sex determination in vertebrates. Washington: Smithsonian Institution. p 99-110.

Roblin C, Bruslé J. 1983. Ontogenèse gonadique et différenciation sexuaelle du loup Dicentrarchus labrax, en conditions d'élevage. Reproduction Nutrition Development 23:115-127.

Rodriguez-Mari A, Yan YL, Bremiller RA, Wilson C, Canestro C, Postlethwait JH. 2005. Characterization and expression pattern of zebrafish Anti-Mullerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns 5:655-667.

Saillant E, Chatain B, Menu B, Fauvel C, Vidal MO, Fostier A. 2003. Sexual differentiation and juvenile intersexuality in the European sea bass (Dicentrarchus labrax). Journal of Zoology 260:53-63.

Saillant E, Dupont-Nivet M, Haffray P, Chatain B. 2006. Estimates of heritability and genotype-environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254:139-147.

Saillant E, Fostier A, Haffray P, Menu B, Thimonier J, Chatain B. 2002. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 292:494-505.

Saillant E, Fostier A, Menu B, Haffray P, Chatain B. 2001. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202:371-387.

Socorro S, Martins RS, Deloffre L, Mylonas CC, Canario AV. 2007. A cDNA for European sea bass (Dicentrarchus labrax) 11beta-hydroxylase: gene expression during the thermosensitive period and gonadogenesis. Gen Comp Endocrinol 150:164-173.

Sokal RR, Rohlf FJ. 1997. Biometry. New York: W.H. Freeman and Co. 887 p. Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A, Orban L. 2008. Transcriptomic

analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS ONE 3:e1791.

Sudhakumari CC, Kobayashi T, Kajiura-Kobayashi H, Wang DS, Yoshikuni M, Nagahama Y, Senthilkumaran B. 2005. Ontogenic expression patterns of several nuclear receptors and cytochrome P450 aromatases in brain and gonads of the Nile tilapia Oreochromis niloticus suggests their involvement in sex differentiation. Fish Physiol Biochem 31:129-135.

Suzuki A, Tanaka M, Shibata N, Nagahama Y. 2004. Expression of aromatase mRNA and effects of aromatase inhibitor during ovarian development in the medaka, Oryzias latipes. J Exp Zoolog A Comp Exp Biol 301:266-273.

Tudela S, Coll M, Palomera I. 2005. Developing an operational reference framework for fisheries management on the basis of a two-dimensional index of ecosystem impact. ICES Journal of Marine Science: Journal du Conseil 62:585-591.

Valenzuela N, Adams DC, Janzen FJ. 2003. Pattern does not equal process: Exactly when is sex environmentally determined? American Naturalist 161:676-683.

Valenzuela N, Lance V. 2004. Temperature-dependent sex determination in vertebrates: Smithsonian Books.

van Nes S, Andersen O. 2006. Temperature effects on sex determination and ontogenetic gene expression of the aromatases cyp19a and cyp19b, and the estrogen receptors esr1 and esr2 in Atlantic halibut (Hippoglossus hippoglossus). Molecular Reproduction and Development 73:1481-1490.

Page 128: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-104-

Vandeputte M, Dupont-Nivet M, Chavanne H, Chatain B. 2007. A Polygenic Hypothesis for Sex Determination in the European Sea Bass Dicentrarchus labrax. Genetics.

Viñas J, Piferrer F. 2008. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdisection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biology of Reproduction in press.

Vizziano D, Baron D, Randuineau G, Mahe S, Cauty C, Guiguen Y. 2008. Rainbow trout gonadal masculinization induced by inhibition of estrogen synthesis is more physiological than masculinization induced by androgen supplementation. Biol Reprod 78:939-946.

Vizziano D, Randuineau G, Baron D, Cauty C, Guiguen Y. 2007. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev Dyn 236:2198-2206.

Wang XG, Orban L. 2007. Anti-Mullerian hormone and 11 beta-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males. Developmental Dynamics 236:1329-1338.

Yamaguchi T, Yamaguchi S, Hirai T, Kitano T. 2007. Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 359:935-940.

Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H, Araki K, Morohashi K, Ozato K. 2002. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev 63:5-16.

Page 129: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-105-

Tables

Table 1. Discriminant analysis

Wilks’

lambda

Sig Males

% (N)

Females

% (N)

Total

% (N)

SL (P1) 0.91 0.085 0 (0/9) 100 (26/26) 75.7 (26/35)

cyp19a (P2) 0.18 0.000 100 (9/9) 100 (26/26) 100 (35/35)

cyp11b (P3) 0.41 0.000 88.9 (8/9) 96.4 (27/28) 94.6 (35/37)

era (P4) 0.73 0.002 37.5 (3/8) 96.4 (27/28) 83.3 (30/36)

erb1 (P5) 0.85 0.026 12.5 (1/8) 88.9 (24/27) 71.4 (25/35)

erb2 (P6) 0.99 0.881 0 (0/8) 100 (27/27) 77.1 (27/35)

ar (P7) 0.89 0.061 0 (0/9) 100 (27/27) 75.0 (27/36)

P2, P3 100 (9/9) 100 (26/26) 100 (35/35)

P2, P3, P5 100 (8/8) 100 (26/26) 100 (34/34)

P2, P3, P7 100 (9/9) 100 (26/26) 100 (35/35)

P2, P3, P5, P7 100 (8/8) 100 (26/26) 100 (34/34)

Data included in the analysis are measured at 330 dpf (add P4 + P5)

Table 2. Canonical discriminat analysis

Wilks’

lambda

Sig F-ratio Undifferentiated

% (N)

Males

% (N)

Females

% (N)

Total

% (N)

SL (P1) 0.23 0.000 227.03 91.8 (67/73) 51.9 (14/27) 75.5 (37/49) 79.2 (118/149)

cyp19a (P2) 0.12 0.000 505.44 91.4 (64/70) 88.9 (24/27) 93.5 (43/46) 91.6 (131/143)

cyp11b (P3) 0.77 0.000 20.03 61.4 (43/70) 63.0 (17/27) 29.2 (14/48) 51.0 (74/145)

era (P4) 0.45 0.000 80.88 75.3 (55/73) 50.0 (13/26) 60.4 (29/48) 66.0 (97/147)

erb1 (P5) 0.37 0.000 115.20 98.6 (71/72) 12.0 (3/25) 45.7 (21/46) 66.4 (95/143)

Age (P6) 0.38 0.000 108.97 100 (73/73) 25.9 (7/27) 59.2 (29/49) 73.2 (109/149)

P1, P2 94.3 (66/70) 92.6 (25/27) 93.5 (43/46) 93.7 (134/143)

P1, P3 100 (70/70) 70.4 (19/27) 70.8 (34/48) 84.8 (123/145)

P2, P6 91.4 (64/70) 85.2 (23/27) 93.5 (43/46) 90.9 (130/143)

P1, P2, P6 91.4 (64/70) 100 (27/27) 93.5 (43/46) 93.7 (134/143)

P1, P2, P3 100 (69/69) 81.5 (22/27) 95.7 (44/46) 95.1 (135/142)

P1, P2, P3, P5 98.5 (67/68) 80.0 (20/25) 95.6 (43/45) 94.2 (130/138)

P1, P2, P3, P5, P6 98.5 (67/68) 80.0 (20/25) 95.6 (43/45) 94.2 (130/138)

Data from 35 dpf to 330 dpf are included in the analysis

Page 130: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-106-

Standard length (mm)

0 40 80 120 160 200 240Lo

g er

b2 M

NE

-8

-7

-6

-5

-4

-3

-2

Standard length (mm)

0 40 80 120 160 200

Log

erb1

MN

E

-8

-7

-6

-5

-4

-3

-2

Log

arb

MN

E

-7

-6

-5

-4

-3

-2

Log

era

MN

E

-7

-6

-5

-4

-3

-2

Log

cyp1

9a M

NE

-7

-6

-5

-4

-3

-2

Log

cyp1

1b M

NE

-7

-6

-5

-4

-3

-2A B

C D

E F

Undifferentiated MalesFemalesUndifferentiated MalesMalesFemalesFemales

Figures

Fig. 1. Sex-related differences in expression of key genes according to size. Sea bass samples covering the whole process of sex differentiation were obtained from LT and HT fish ranging from 8–225 mm SL sampled 30–330 dpf, the levels of cyp19a were determined by real time RT-PCR and the phenotypic sex assessed in a two-step procedure with the aid of CDA. Data for the expression of the steroidogenic enzymes aromatase (cyp19a; A) and 11beta hydroxylaxe (cyp11b; B); and sex steroid receptors, androgen receptor beta (arb; C), estrogen receptor alpha (era; D), estrogen receptor beta 1 (erb1; E), and estrogen receptor beta 2 (erb2; F) are plotted in relation to body standard length. The total number of datapoints shown is 152. The shaded area indicates the size range at which the first signs of ovarian differentiation could be histologically detected according to Piferrer et al. (2005).

Page 131: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-107-

Fig. 2. Sex-related differences in gene expression profiles of steroidogenic enzymes and sex steroid receptors during sex differentiation. Expression of the steroidogenic enzymes aromatase (cyp19a; A) and 11beta hydroxylaxe (cyp11b; B); and sex steroid receptors, androgen receptor beta (arb; C), estrogen receptor alpha (era; D), estrogen receptor beta 1 (erb1; E), and estrogen receptor beta 2 (erb2; F) were measured in LT and HT fish during sex differentiation sampled in the period 120–330 dpf. At 120, 150 and 195 dpf sex was assigned in a two-step procedure involving CDA, whereas sex was assessed by histological analysis of the gonads at 330 dpf. The sample size ranged between 20 and 39 fish in each sampling point. Different letters indicate statistical differences (P < 0.05) after ANOVA and a Tukey test (120 and 150 dpf) or Student’s t-test (195 and 330 dpf).

Age (dpf)

120 150 195 330

Log

erb1

MN

E

-8

-7

-6

-5

-4

-3

-2

Log

arb

MN

E

-7

-6

-5

-4

-3

-2

Age (dpf)

120 150 195 330

Log

erb2

MN

E

-8

-7

-6

-5

-4

-3

-2

Log

era

MN

E

-7

-6

-5

-4

-3

-2

Log

cyp1

9a M

NE

-7

-6

-5

-4

-3

-2

Log

cyp1

1b M

NE

-7

-6

-5

-4

-3

-2A B

C D

E F

a

b

b

a

bb

a

b

a

b

a

b

a

b

ab

a

b

ab

a

c

b

ab b

a

cb a

cb

Undifferentiated MalesFemalesUndifferentiatedUndifferentiated MalesMalesFemalesFemales

Page 132: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

A. Molecular endocrinology of sea bass sex differentiation

-108-

Fig. 3. Effects of temperature on cyp19a gene expression levels during sex differentiation. Gonadal aromatase (cyp19a) expression was measured in LT (G60) and HT fish at 120 dpf, the age when the earliest differences in cyp19a between future males and females can be detected but no histological signs are visible; and at 195 dpf, after histological sex differentiation has become visible. Based on CDA, cyp19a values were grouped into high expressers, corresponding to future females, and low expressers, corresponding to undifferentiated fish and future males. The number of high and low expressers is represented as percentages of the total number of fish sampled (n = 5 fish for each temperature-age combination) and plotted in pie charts. The evolution of standard length (SL) in LT and HT fish is shown (n = 5-8 fish for each temperature-age combination; data as mean ± SEM) next to the pie charts to illustrate how not only temperature but also size contributes to cyp19a levels and thus the number of high vs low expressers observed at each age.

Low expressers High expressers

120 195Age (dpf)

HT (21 ºC)

LT (15 ºC)

Stan

dard

leng

th(m

m)

0

20

40

60

80

100

120

140

Low expressers High expressersLow expressers High expressers

120 195Age (dpf)

HT (21 ºC)

LT (15 ºC)

Stan

dard

leng

th(m

m)

0

20

40

60

80

100

120

140

Page 133: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results II

-109-

Fig. 4. Effects of temperature on gene expression during early development and before histological sex differentiation. Expression of the steroidogenic enzymes aromatase (cyp19a; A) and 11beta hydroxylaxe (cyp11b; B); and the sex steroid receptors, androgen receptor beta (arb; C), estrogen receptor alpha (era; D), estrogen receptor beta 1 (erb1; E), and estrogen receptor beta 2 (erb2; F) were measured in LT and HT fish during early development (30-120 dpf). The sample size ranged between 5 and 8 fish in each sampling point. Asterisks indicate statistical differences (* = P < 0.05; ** = P < 0.01) after Student’s t-test.

Age (dpf)

30 60 90 120Lo

g er

b2 M

NE

-8

-7

-6

-5

-4

Age (dpf)

30 60 90 120

Log

erb1

MN

E

-8

-7

-6

-5

-4

Log

arb

MN

E

-7

-6

-5

-4

Log

cyp1

9a M

NE

-7

-6

-5

-4

Log

era

MN

E

-7

-6

-5

-4

Log

cyp1

1b M

NE

-7

-6

-5

-4A B

C D

E F

* *

* *

***

HT (21ºC)LT (15ºC)HT (21ºC)LT (15ºC)

Page 134: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 135: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results Block B

Aromatase as the key-determining gene responsible for ovarian differentiation in fish

Page 136: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 137: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-111-

RESULTS III

Diferents trànscripts de sox17 en la diferenciació sexual del

llobarro, Dicentrarchus labrax

Laia Navarro-Martín, Malyka Galay-Burgos, Glen Sweeney i Francesc Piferrer

Els gens Sox són coneguts per participar en processos del desenvolupament, incloent-

hi la determinació i la diferenciació sexual. En aquest estudi, es va caracteritzar l'estructura

genòmica del sox17 de llobarro. També es van identificat tres trànscripts d’aquest gen: un que

es tradueix en una proteïna normal (sb sox17), un altre en una de truncada (sb t-sox17) i un

tercer trànscript, originat per la retenció de l’intró (sb i-sox17). Sb sox17 es va trobar

expressat en molts teixits, mentre que l’expressió de sb i-sox17 predominava en pell i en

cervell. En gònades, es va observar que l'expressió de sb sox17 era elevada a 150 dies d'edat,

coincidint amb el començament de la diferenciació sexual. A partir dels 250 dies, l'expressió

de sb sox17 va ser significativament més alta en femelles que en mascles, amb una certa

correlació amb els nivells d’expressió del gen cyp19a. Aquest estudi proporciona la primera

evidència de l’existència d’un nou trànscript del gen Sox17 originat per la retenció d’un intró,

a més de demostrar que existeixen diferències en l’expressió de sox17 relacionades amb el

sexe. Aquest resultat demostra la implicació del gen sox17 en el desenvolupament i

funcionament de l’ovari en peixos.

Page 138: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 139: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-113-

Different sox17 transcripts during sex differentiation in sea bass,

Dicentrarchus labrax

Laia Navarro-Martín1, Malyka Galay-Burgos2, Glen Sweeney2 and Francesc Piferrer1∗

1Institut de Ciències del Mar, Consejo Superior de Investigaciones

Científicas (CSIC), Barcelona, Spain. 2 School of Biosciences, Cardiff University, Cardiff, UK.

Accepted in: Molecular and Cellular Endocrinology

Page 140: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-114-

Abstract

Sox genes participate in several developmental processes, including sex determination

and differentiation. In this study, the genomic structure of sox17 was characterized in the sea

bass (sb). Two transcripts, one producing a normal protein (sb Sox17) and another producing

a truncated protein (sb t-Sox17) were detected. A third, novel transcript, originated by intron

retention (sb i-sox17) was also observed. Sb sox17 was widely distributed, whereas sb i-sox17

was predominantly found in skin and brain. In gonads, sb sox17 expression first increased at

150 days of age, coinciding with the onset of sex differentiation. At 250 days and onwards, sb

sox17 expression was significantly higher in females, and mRNA levels correlated with those

of gonadal aromatase. Thus, this study provides the first evidence for the presence of

alternative splicing by intron retention in a Sox17 gene, and for sex-related differences in

expression, implicating sox17 in ovarian development and function in fish.

Keywords: sox17, development, gonadal differentiation, alternative splicing, sea bass.

1. Introduction

In humans and most other mammals, the Y-chromosome gene SRY (sex-determining

region Y) encodes the testis-determining factor that initiates the pathway leading to male

development. However, this gene appears to be a mammalian innovation and is absent in all

other vertebrate groups. The SRY-related high mobility group (HMG) containing box (Sox)

genes constitute a family of transcription factors that posses a conserved 79 amino acid

domain forming a DNA-binding HMG box (Gubbay et al., 1990) and share at least 50%

amino acid identity with the HMG box of SRY (Wegner, 1999). Sox genes are subdivided into

ten groups, named from A through J, based on the homology of the HMG box within the

family (Bowles et al., 2000). From an evolutionary viewpoint, Sox genes are present

throughout the animal kingdom, at least from cnidarians to humans (Bowles et al., 2000;

Jager et al., 2006; Magie et al., 2005). In mammals, they are abundant, with 20 Sox genes

present in the mouse genome. In fish, they are even more numerous, presumably reflecting

the genome duplications that have occurred during their evolution. Thus, for example, there

are 24 Sox genes in the genome of the fugu, Takifugu rubripes (Koopman et al., 2004). Fish

species in which sox genes have been identified include the zebrafish, Danio rerio (Gao et al.,

2005; Girard et al., 2001; Vriz et al., 1996; Vriz and Lovell-Badge, 1995); medaka, Oryzias

Page 141: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-115-

latipes (Fukada, 1995; Nakamoto et al., 2005; Yokoi et al., 2002); rainbow trout,

Oncorhynchus mykiss (Kanda et al., 1998; Takamatsu et al., 1997; Takamatsu et al., 1995;

Yamashita et al., 1998); rice field eel, Monopterus albus (Liu and Zhou, 2001; Zhou et al.,

2003; Zhou, 2002); channel catfish, Ictalurus punctatus (Zhou et al., 2001); European sea

bass, Dicentrarchus labrax (Galay-Burgos et al., 2004); fugu (Koopman et al., 2004);

European Atlantic sturgeon, Acipenser sturio (Hett and Ludwig, 2005); grass carp,

Ctenopharyngodon idella (Zhong, 2006) and orange-spotted grouper, Epinephelus coioides

(Zhang et al., 2008).

Some particularities exist when comparing Sox genes across species. As an example,

fugu does not have orthologues of SRY, Sox15 and Sox30, which are specific to mammals,

whereas sox19, found in fugu and zebrafish, seems to be specific to fish (Koopman et al.,

2004). The redundancy of Sox genes in all animal taxa suggests that their specificity may be

achieved through changes in their temporal and spatial expression in different tissues or

during different stages of development (Pevny and Lovell-Badge, 1997). Thus, the regulation

of the expression of the numerous Sox genes present in animals is a timely research subject

that can increase our understanding of the processes in which they are involved.

Functionally, Sox genes are involved in several developmental processes, especially

organogenesis (Pevny and Lovell-Badge, 1997; Wegner, 1999). Thus, members of the Sox

gene family have been studied as potential candidate genes that may drive gonadal sex

determination and differentiation in both mammalian and non-mammalian vertebrates. For

example, Sox9 has been found to be related to primary sex determination and is involved in

the process of testis determination in mammals, birds and reptiles (Foster et al., 1994; Kent et

al., 1996; Meyer et al., 1997; Morais da Silva et al., 1996; Wagner et al., 1994; Western et

al., 1999). In mice, over expression of Sox9, which is located downstream of Sry in the sex

determination/differentiation pathway, leads to the development of fertile males in the

absence of Sry (Qin and Bishop, 2005). Conversely, Sox9 expression can transform mature

granulosa cells into functional Sertoli cells in ovaries from adult mice (Dupont et al., 2003).

In humans, duplications of SOX9 are associated with the presence of sex reversal (Huang et

al., 1999). In fish, several sox genes have been found to possess gonadal expression

(summarized in Table 1), but their exactly role in sex determination and gonadal

differentiation is generally unknown.

Page 142: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Table 1. Sox genes and gonadal development in fish

Species Sox gene Gene expression Authors

Medaka (Oryzias latipes) sox9a2 Similar in both sexes during early development. In adults, upregulated

in testes and downregulated in ovaries

(Nakamoto et al., 2005)

sox9a1 Developing oocytes in the adult ovaries (Yokoi et al., 2002)

Zebrafish (Danio rerio) sox9a

sox9b

Sertoli cells in testes

Adult ovaries

(Chiang et al., 2001)

(Chiang et al., 2001)

sox5 Ubiquitous expression in adults (brain>intestine>liver>ovary~testis) (Gao et al., 2005)

Rainbow trout sox9 Adult testes (Takamatsu et al., 1997)

(Oncorhynchus mykiss) sox23 Predominantly in brain and ovary (but not in testis) (Yamashita et al., 1998)

sox24 Predominantly in ovary, localized in oocytes. No changes during

ovarian maturation

(Kanda et al., 1998)

soxLz (sox6) A short transcript is testis-specific and its expression occurs during early

stages of spermatogenesis

(Takamatsu et al., 1995)

Rice field eel sox17 Testes, ovaries and ovotestis (Wang et al., 2005)

(Monopterus albus) sox9a1 Testes, ovaries and ovotestis (Zhou et al., 2003)

sox9a2 (Zhou et al., 2003)

Orange-spotted grouper

(Epinephelus coioides)

sox11b High in ovary. Involved in oogenesis, embryogenesis, larval

development and sex change (decreases consistently during sex change

from female to male). Role in ovarian maintenance and differentiation

(Zhang et al., 2008)

-116-

Page 143: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-117-

Sox17 is a member of the F group of Sox genes and has been characterized only in a

few species so far. Sox17 is particularly interesting for several reasons. In the mouse, Sox17

has three introns: two in the 5’UTR and one inside the HMG box. Two transcripts of mouse

Sox17 mRNA were found. One of them encodes a truncated protein lacking most of the DNA-

binding domain (HMG box) (Kanai et al., 1996). Sox17 is also involved in frog and mouse

spermatogenesis (Hudson, 1997; Kanai et al., 1996), although in Xenopus laevis it also acts as

a regulator of endoderm development (Hudson, 1997). Further, two of X. laevis sox17 copies

(xsox17α1 and xsox17α2) had been identified and found to be slightly expressed in the spleen

and kidney (Hasegawa et al., 2002). Mouse Sox17 is involved in late stage differentiation of

the extraembryonic endoderm towards parietal and visceral endoderm (Shimoda et al., 2007).

A similar genomic structure was found between the rice field eel, Monopterus albus, an

hermaphrodite fish, and mouse Sox17, suggesting conserved functions in both species (Zhou,

2002). In the rice field eel, sox17 expression was detected in the brain, spleen and especially

in the lamellae of ovaries, ovotestis and testes as well as in developing spermatogenic cells of

the testis. This suggests a role of sox17 in rice field eel sex change (Wang et al., 2003). Fish

exhibit many different reproductive strategies and the sex determining mechanisms are not

conserved (Penman and Piferrer, 2008). In contrast, the process of sex differentiation is more

conserved, and one of the most active areas of research deals with the characterization of the

role of transcription factors involved in the regulation of sex differentiation (Piferrer and

Guiguen, 2008).

The European sea bass is a gonochoristic teleost in which many studies on its

physiology, including the process of sex differentiation (reviewed by Piferrer et al., 2005),

have been carried out, and partial clones of 12 sox genes, including sox17, were obtained

(Galay-Burgos et al., 2004). The regulation of gonadal aromatase (estrogen synthetase,

cyp19a) is considered essential for female sex differentiation in fish (Devlin and Nagahama,

2002; Piferrer et al., 1994). Interestingly, several putative Sox binding sites were found in the

promoter region of sea bass cyp19a (Galay-Burgos et al., 2006), suggesting that they can be

related with its regulation.

The objective of this study was to contribute to our knowledge of Sox genes, and

specifically of Sox17, with two goals: 1) to provide information on the genomic structure of

Page 144: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-118-

these genes in a lower vertebrate such as the sea bass, and 2) to contribute to our

understanding of the role of Sox17 during sexual differentiation. We report on the genomic

characterization of sea bass sox17, the identification of several transcripts and place its

genomic structure into the context of other Sox17 genes. We also study the tissue distribution

and show that it is expressed in a sex-dependent manner and that correlates with ovarian

aromatase.

2. Experimental Procedures

2.1. Biological material

To characterize sea bass sox17, a genomic library provided by Prof. S. Zanuy

(Institute of Aquaculture Torre de la Sal, Spain) was used. In addition, and to complete the

characterization of the sox17 gene structure, adult sea bass ovarian tissue was collected to

allow the identification of the 5′ and 3′ UTRs. To check expression of sox17 transcripts during

sex differentiation, samples from male and female-dominant stocks produced by successive

size grading (Papadaki et al., 2005) were used. In addition, to study sb sox17 gene expression

during early development in fish reared at different temperatures, RNA was extracted from

larvae raised at either 15ºC or 20ºC (Martins et al., 2007). The tissue-distribution of sox17

was studied using adult sea bass. Fish were anesthetized with MS-222, sacrificed and tissues

removed to study its expression. Tissues were frozen in liquid nitrogen and stored at -80ºC

until further analysis. Animals were treated according to EU Commission recommendation

2007/526/CE about experimental animals and EU Council Directive 86/609 EEC for the

protection of animals used for experimental and other scientific purposes.

2.2. Genomic library screening and sequencing

The sea bass genomic library was probed under conditions of low stringency

(hybridization was carried out at 55°C, with final washes being performed at 42°C) using a 32P-labelled probe prepared from the insert of a cDNA clone of chicken Sox9 (A generous gift

from Dr. Chris Healy from King’s College, London). Positive clones were isolated and

purified to homogeneity by two further rounds of screening. Bacteriophage λ DNA was

subsequently purified from selected clones using the Qiagen lambda midi kit.

Page 145: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-119-

2.3. Genomic organization of the sea bass sox17

Direct sequencing of the cloned λDNA was performed by primer walking using the

primers listed in Table 2 with sequencing reactions resolved on an ABI377 sequencer.

Exon/intron boundary predictions were determined by Splice Site Prediction by Neural

Network of the Baylor College of Medicine (http://searchlauncher.bcm.tmc.edu/seq-

search/gene-search.html) and by Genscan (http://genes.mit.edu/GENSCAN.html). To verify

these predictions, intron/exon boundaries were checked by comparing genomic and cDNA

sequences and also by comparing sox17 intron localization in other species. The sequences of

the promoters were scanned for potential transcription factor binding sites using MatInspector

(http://www.genomatix.de/products/MatInspector).

2.4. 5′ and 3′-rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR)

To obtain transcription start and end sites, full-length RNA ligase-mediated rapid

amplification of 5′ and 3′ cDNA ends (RLM-RACE-PCR) was carried out. GeneRacerTM Kit

(Invitrogen) was used to obtain the 5′- and 3′-ends of sea bass sox17 cDNA following the

manufacture’s instructions. Ovarian Poly(A)+ RNA was purified from total RNA and 250 ng

used to perform a first-strand cDNA reaction. In the case of 5′-end, mRNA was

dephosphorylated and the CAP removed and replaced with the GeneRacer™ RNA Oligo

using RNA ligase. Then, mRNA was reverse transcribed to cDNA using Superscript II

(Invitrogen) and 250 ng of random hexamer primers (pdN6) following the manufacturer’s

instructions. The resulting cDNA was used to amplify 3′ and 5′ RACE PCR using the

GeneRacer™ Primer specific to the GeneRacer™ RNA Oligo sequence and gene-specific

primers (Table 2). The specific designed primers were based on the partial cDNA sequence

published at GenBank (accession number AY247002). Two rounds of PCR by use of nested

primers were required. A Platinum Taq DNA Polymerase High Fidelity (Invitrogen) was used

for both external and nested PCR. External PCR consisted of 2 min at 94ºC; 5 cycles of 30 s

at 94ºC and 2 min at 72ºC; 5 cycles of 30 s at 94ºC and 2 min at 70ºC; 25 cycles of 30 s at

94ºC, 30 s at 65ºC and 2 min at 68ºC and a final extension of 15 min at 68ºC. Subsequently,

nested PCR was performed consisting in 2 min at 94ºC; 25 cycles of 30 s at 94ºC, 30 s at 65

ºC, 2 min at 68ºC and a final extension of 10 min at 68ºC. PCR products were cloned into

pCR4-TOPO vector (Invitrogen) and sequenced.

Page 146: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-120-

2.5. Amplification of sb sox17 ORF by RT-PCR

Based on genomic and cDNA-race sequences, PCR primers Sox17Start Fw/Sox17End Rv

(Table 2) were designed to amplify the ORF of sox17. Total RNA was isolated from two-year

old sea bass ovary. Tissues were homogenized with 0.5 ml of trizol and total RNA was

extracted with chloroform, precipitated with isopropanol and washed with 75% ethanol.

Pellets were resuspended in 25 µl DEPC water and stored at -80ºC. One microgram of RNA

was reverse transcribed to cDNA using Superscript III (Invitrogen) and 250 ng of random

hexamer primers (pdN6) following the manufacturer’s instructions. The resulting cDNA was

used to amplify the ORF of sb sox17 using the Biotherm Taq DNA polymerase (Genecraft).

The PCR cycling conditions for sb sox17 transcript were: 2 min at 94ºC; 35 cycles of 30 s at

94ºC, 30 s at 55ºC, 1 min 30 s at 68ºC and a final extension of 10 min at 68ºC. PCR products

of each sample were resolved on 1% agarose gel stained with ethidium bromide.

Table 2. Primer sets used in the genomic DNA walking, RACE-PCR, tissue distribution

and real-time PCR

Primer name Primer sequence (5’→3’)

Walk-Sox17 Fw CACTACCGAGATGCTCAGGCT Walk-Sox17 Fw2 TTCAGCACATGCAGGATCAC Walk-Sox17 Fw3 CCAGCTTGAAAGCCAGAAAT Walk-Sox17 Rv CTCGCTCTTCCCGCGATTCTG Walk-Sox17 Rv2 TGCTCATGTGAAGATAACATTGATT 5’Race-S17 Rv AGATACTGAACGCAGTCTGGTGATGCACGeneRacer™ 5’ primer Fw CGACTGGAGCACGAGGACACTGA 5’Race-S17Nest Rv TGTTGCCATTTTAGGGGGCATGGAC GeneRacer ™ 5’ nested primer Fw GGACACTGACATGGACTGAAGGAGTA 3’Race-S17 Fw GTCCATGCCCCCTAAAATGGCAACA GeneRacer™ 3’ primer Rv GCTGTCAACGATACGCTACGTAACG 3’Race-S17Nest Fw GTGCATCACCAGACTGCGTTCAGTATCT GeneRacer™ 3’ nested primer Rv CGCTACGTAACGGCATGACAGTG Sox17Start Fw CCCTGCTGGACAGAGATGAG Sox17End Rv AGGTCAGATCAAGTGTCCTTGC Sox17-Rt Fw CAAGAGACTGGCGCAGCAA Sox17-Rt Rv TTTCCACGATTTCCCCAACAT Intron-Sox17 Rv GCTGCCTAAACAATGAATGC Temp-Sox17 Fw CAAAGGATGAGCGCAAGAGA Temp-Sox17 Rv TCGGCCTCCTCCACAAAG r18S-Rt Fw CCGCTTTGGTGACTCTAGATAACC r18S-Rt Rv CAGAAAGTACCATCGAAAGTTGATAGG r18S Fw TCAAGAACGAAAGTCGGAGG r18S Rv GGACATCTAAGGGCATCACA

Page 147: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-121-

2.6. Analysis and alignment of amino-acid sequence

Predicted protein sequence was determined using Expert Protein Analysis System

(Expasy) translate program (http://www.expasy.ch/tools/dna.html). The protein molecular

weight was obtained using the ProtParam tool program (http://www.expasy.ch). Full-length

protein and HMG domain sequences were analyzed by BLAST

(http://www.ncbi.nlm.nih.gov/BLAST) and ClustalW multiple alignment programs

(http://www.ch.embnet.org/software/ClustalW.html). The parameters used for all alignments

were default settings (gap opening penalty of 10, gap extension penalty of 0.05 and gap

distance of 8). Complete teleost Sox17 protein sequences used for comparison and their

GenBank accession numbers were as follows: Monopterus albus (AAM47494), Takifugu

rubripes (AAQ18511), Gasterosteus aculeatus (BT027942), Tetraodon nigroviridis

(CAG10226 predicted sequence) and Danio rerio (NP571362). The sequence of Oryzias

latipes sox17, obtained from http://www.ensembl.org/Oryzias_latipes/index.html

(ENSORLG00000011542), was used to compare the identity between fish species. In

addition, HMG box comparisons of Sox17 proteins were performed in vertebrate published

sequences: Pan troglodytes (pt) XM001153136, Homo sapiens (hs) BAB83867, Macaca

mulatta (mcm) XM001083536, Mus musculus (mm) NP035571, Mus musculus CRAa

(mmCRAa) EDL14240, Mus musculus CRAb (mmCRAb) EDL14241, Ratus norvegicus (rn)

NM00102478, Gallus gallus (gg) BAE06069, Canis familiaris (cf) XM544084, Xenopus

tropicalis alpha (xt a) NP989425, Xenopus tropicalis beta2 (xt b2) NP988849, Xenopus laevis

(xl) NM001088162, Eleutherodactylus coqui alpha (ec a) ABN58783, Oreochromis niloticus

(on) ABG11755 and Acipenser sturio (ast) AY847641.

2.7. Phylogenetic analysis

Phylogenetic and molecular evolutionary analyses were conducted using MEGA

version 4 (Tamura et al., 2007). Human SRY was used as an outgroup in the phylogenetic

tree constructed using the Neighbour-joining method with 1000 bootstrap replicates.

Sequences used for fish were the same as noted above, whereas the rest were as follows: xl

NP988849, xl NM001088162, ec ABN58783, gg BAE06069, mm NP035571, rn

NM00102478, cf XM544084, mcm XM001083536, pt XM001153136 and hs BAB83867.

Page 148: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-122-

2.8. Sox17 gene expression in temperature-manipulated fish during early development

Semi-quantitative PCR assays were used to analyze expression of sb sox17 transcript.

RNA was extracted and pooled from 4 individuals prior to treatment with DNAse (Ambion).

The PCR reactions were carried out using PCR mastermix (Sigma) and a combination of

Tem-Sox17 Fw and Rv primers (Table 2) with the following conditions: 2 min at 95ºC; 30

cycles of 1 min at 95ºC, 1 min at 58ºC, 30 s at 72ºC and a final extension of 10 min at 72ºC.

As with the tissue-distribution section, amplification of 18s rRNA was used as RNA control

with the same primers and conditions used before, except that only 15 cycles of PCR were

performed. Products of the RT-PCR reactions were resolved on agarose gels.

2.9. Developmental expression of sox17 in males and females by real-time PCR

Gonadal cDNA samples were used to determine the expression of sox17 during sea

bass sex differentiation. Briefly, a group of large fish (essentially all-females) and small fish

(mostly males) obtained by repetitive grading (Papadaki et al., 2005) were sampled at 50,

100, 150, 200, 250 and 300 days post hatching (dph) were used for cDNA synthesis. Since

gonadal aromatase expression levels can be used as an early marker of sex differentiation in

the sea bass already at 150 dph (Blázquez et al., 2008) the sex of each fish used could be

unambiguously assigned at 150 dph and onwards. In addition, at 200, 240 and 300 dph sex

was verified histologically. Real-time PCR reactions were carried out to determine sb sox17

transcript expression. The primers used were Sox17-Rt Fw and Sox17-Rt Rv (Table 2). The

endogenous control gene used was also 18s rRNA with the combination of r18S-Rt Fw and

r18S-Rt Rv. PCR reactions contained 1X SYBR green master mix (Applied Biosystems), 10

pmol of each primer and 1 µl of the RT reaction. Samples were run in duplicate in optically

clear 384-well plate. Cycling parameters were: 50ºC for 2 min, 95ºC for 10 min, followed by

40 cycles of 95ºC for 15 s and 60ºC for 1 min. Finally, a temperature-determining dissociation

step was performed at 95ºC for 15 s, 60ºC for 15 s and 95ºC for 15 s at the end of the

amplification phase. Real-time PCR data were collected by SDS 2.2 and RQ Manager 1.2

software. The cycle threshold (CT) was estimated for each reaction replicate. Once CT for all

replicates were obtained, analyses were conducted using QGene (Muller et al., 2002). Briefly,

for each primer set/gene, an amplification efficiency (E) was determined as E = 1(-1/slope),

where the slope was estimated plotting the CT given by serial dilutions of cDNA. Normalized

Page 149: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-123-

expression of each sample replicate was referenced to 18s rRNA expression levels using NE=

(Etarget)Ct target / (Eref)Ct ref.

2.10. RNA isolation, cDNA synthesis and tissue-specific expression of sbsox17 and sb i-sox17

Total RNA and cDNA synthesis was carried out from ovary, testis, female and male

brain, muscle, stomach, liver, heart, intestine and skin, obtained from two-year old adult sea

bass. After RNA extraction and before cDNA synthesis, 10 µg of extracted RNA were DNase

treated using a mix of 5 µl of DNaseI and 5 µl of DNaseI Reaction Buffer in a final volume of

50 µl following the manufacturer’s instructions (Invitrogen). The resulting cDNA was used to

amplify sb sox17 and sb i-sox17 transcripts by RT-PCR using the Platinum Taq DNA

polymerase (Invitrogen). Expression analysis of sb t-sox17 was not undertaken since it is not

possible to design primers that would detect only this isoform. A combination of Sox17-Rt

Fw/Sox17Rt Rv and Sox17-Rt Fw/Intron-Sox17Rv primers (Table 2) were used to amplify sb

sox17 and sb i-sox17 transcripts, respectively. The PCR cycling conditions for sb sox17

transcript were: 2 min at 94ºC; 40 cycles of 30 s at 94ºC, 1 min at 60ºC, 1 min 30 s at 72ºC

and a final extension of 10 min at 72ºC. The same conditions were used to amplify sb i-sox17

except the annealing temperature, which was changed to 59ºC. Amplification of 18s rRNA

was used as RNA control using a combination of r18SFw/r18SRv primers (Table 2) with the

following conditions: 1 min at 95ºC; 25 cycles of 30 s at 95ºC, 30 s at 58ºC, 1 min at 72ºC

and a final extension of 5 min at 72ºC. PCR products of each sample were resolved on 1.5%

agarose gels stained with ethidium bromide.

2.11. Statistical analysis

Prior to statistical analysis, data were log transformed to normalize its distribution.

Two-way ANOVA, with sex and developmental time (dph) as fixed factors, was carried out

followed by Tukey’s multiple comparisons test to analyze sox17 expression levels throughout

development. In addition at 50, 100, 150, 200, 250 and 300 dph sampling, the Student’s t-test

was used to compare sox17 expression between males and females. The possible relationship

between the expression of cyp19a and of sox17 on an individual fish basis was statistically

determined by correlation analysis. Differences were considered significant at P < 0.05.

Results are expressed as mean ± SEM.

Page 150: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-124-

3. Results

3.1. Isolation and characterization of the sea bass sox17 gene

The sea bass genomic library was probed under conditions of low stringency with the

insert from a cDNA clone of chicken Sox9. Five positive clones were isolated and purified to

homogeneity. Phages from the positive clones were used as a substrate for PCR using primers

designed to anneal to conserved motifs within the Sox9 gene. All 5 phages yielded PCR

products that were subcloned into pGEM-T and sequenced. Searches of the GenBank

database revealed that all the clones obtained were related to members of the Sox gene family

that had been characterized from other species. One clone was most closely related to sox17.

DNA was purified from this clone and the sox17 gene was sequenced by primer walking. This

sequence has been sent to GenBank and given the accession number EU761243.

The sequenced region spanned 3,233 bp. This included 1,168 bp of promoter upstream

the predicted transcription start site, 205 bp of 5′ untranslated region, 1,191 bp of the open

reading frame, and 305 bp of partial 3′ untranslated region. A putative canonical poly-A

signal, AATAAA, was found in the 3′ UTR. Similar to other Sox17 genes, the presence of an

intron inside the HMG box of sea bass (sb) sox17 that divides the ORF in two exons of 299

bp and 892 bp (Figure 1A) was confirmed. Two alternative transcription start sites (TSS)

were determined by comparing the sequences obtained by RACE-PCR with the genomic

DNA sequence (Figure 2). The first TSS (TSS1) was located 27 bp downstream of the TATA

box predicted motif, whereas the other (TSS2) was found inside the intron region 204 bp

upstream of the intron/exon2 boundary, suggesting the possibility of an alternative promoter

inside the intron and demonstrating the existence of at least two sb sox17 transcripts (Figure

1B). In addition, two different bands were obtained from the ovary after amplification of the

sb sox17 ORF (Figure 1C). Both bands were purified, sequenced and identified as sb sox17.

The smaller band (1256 bp) corresponded to the sb sox17 transcript, but the larger one (1621

bp) evidenced a new sb sox17 transcript, similar to sb sox17 but with the intron retained.

Thus, in total, we identified three sea bass sox17 transcripts (Figure 1B and 2): the largest,

retaining the intron region (sb i-sox17), one formed by the combination of the two exons (sb

sox17) and a last one, the shortest, with a partial deletion of the HMG box region (sb t-sox17).

Page 151: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-125-

The promoter sequences were analyzed for putative cis-acting regulatory sequences,

revealing many potential transcription factor binding sites, including NFY, Nuclear factor Y

(Y-box binding factor); GATA binding factor; SREB, Sterol regulatory element binding

protein; NKX2.5/CSX, Homeodomain factor Nkx-2.5/Csx; SOX5 binding factor; SP1,

Stimulating protein 1 (ubiquitous zinc finger transcription factor); GSH2, Homeodomain

transcription factor Gsh-2; OCT1, Octamer-binding factor 1; and TATA box. (Figures 3A and

3B). A candidate TATA box (TTTATA) was observed 231 bp upstream of the initiation

codon (ATG) in promoter 1. The analysis of the intron sequence (corresponding to promoter

2) revealed also the presence of clear features indicative of the presence of a mechanism of

alternative splicing. These features included the 5′ splice site (5′ss), a potential branch point

(BP), a polypyrimidine track (PT) and the 3′ splice site (3′ss). Also, several in frame stop

codons were located inside the intron (Figure 3B). In addition, the intron sequence was found

to be inserted at exactly the same position as found in mouse, rice field eel, two species of

pufferfish, the fugu, T. rubripes, and the japanese pufferfish T. nigroviridis; the; Nile tilapia,

Oreochromis niloticus; medaka, O. latipes; and sturgeon, A. sturio. In the sea bass, the size of

the intron was 364 bp and thus it was similar to that of the rice field eel (384 bp), sturgeon

(364 bp), fugu (365 bp), medaka (311 bp) and the japanese pufferfish (380 bp) but it was

smaller than that of the mouse (431 bp). Intron sequences were compared to sea bass in some

available species. Introns are usually expected to show high variability, but a strong

conservation was found between the intron sequence in sea bass and other fish species (rice

field eel, 72.5%; tilapia, 63.2%; medaka, 53.4%; fugu, 42.3%; japanese pufferfish, 40.4%;

and sturgeon, 37.6%). In the two fish species with higher homology to sea bass, a highly

conserved region was found in the downstream part of the intron corresponding with the

localization of the sea bass TSS2 (Figure 4).

3.2. The Sox17 protein is highly conserved through vertebrates

Two different putative proteins were found to be encoded by the transcripts sb sox17

and sb t-sox17, with 397 aa (44.3 kDa) and 272 aa (30.2 kDa), respectively (Figure 5).

Multiple amino-acid alignments of sea bass Sox17 against other vertebrate Sox17

proteins showed high amino acid identities. Published teleost sequences had the following

percentage of identity with sb sox17: rice field eel (91.7%), fugu (89.7%), the common

stickleback Gasterosteus aculeatus (89.0%), medaka (88.7%) and japanese pufferfish

Page 152: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-126-

(87.7%). On the other hand, the sea bass protein showed only 39.4% amino acid identity with

its zebrafish, D. rerio, counterpart (Figure 6). Blast searches showed that the amino-acid

sequence of the HMG box of sea bass and all the complete fish HMG box sequences were

also strongly conserved, with identities between 91.1 and 100% (Figure 7).

Phylogenetic analysis of Sox17 in fish, amphibians, birds and mammals showed

relationships among those species (Figure 8). This analysis indicated that sb sox17 is closely

related to sox17 genes of other fish species analyzed in this study with the exception of that of

zebrafish.

3.3. Temperature-dependent expression of sox17 in the sea bass

The expression of sb sox17 transcript was assessed in fish exposed to two different

temperatures at different times during early development (low temperature, 15°C, and high

temperature, 20°C). At each sampling date sb sox17 expression was more apparent in the

group exposed to the highest temperature (Figure 9).

3.4. Expression of sox17 during sex differentiation evidenced sex-related differences

The sea bass exhibits growth-dependent sex differentiation, in such a way that, at the

time when sex differentiation starts the larger fish usually become females and the smallest

fish usually become males (Papadaki et al., 2005). Thus, by repetitive size-grading it is

possible to produce populations enriched with a particular sex. The temporal expression

pattern of sb sox17 transcript of male- and female-dominant stocks (~70% males and 97%

females, respectively) was investigated by real-time PCR during sea bass sex differentiation

(Figure 10A). Regardless of sex, the first significant increase of sb sox17 expression was

found at 150 dph. Similar sb sox17 expression levels between male- and female-dominant

groups were found until 200 dph. At 250 dph and onwards, clear sex-related differences were

observed, with verified females exhibiting statistically significant higher levels (P < 0.005)

than males. In males, similar levels were observed during development, reaching the highest

expression at 150-200 dph.

Page 153: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-127-

3.5. Correlation between gonadal aromatase and sb sox17 expression

A weak but statistically significant (P < 0.001) multiplicative correlation (sb sox17

MNE = -7.382xE-4 x cyp19a MNE0.489), with r2=0.631 and F=109.3, was found between

mRNA expression levels of gonadal aromatase (cyp19a gene) and sb sox17 throughout all

developmental stages analyzed in this study (Figure 10B).

3.6. sb sox17 transcript is widely distributed in two-years adult fish

The tissue distribution of sb sox17 and sb i-sox17 transcripts was analyzed by RT-PCR

in tissues of adult fish. Sb sox17 transcript was observed in the gonads, brain, muscle, liver,

stomach, heart, intestine and skin, whereas sb i-sox17 transcript was predominantly expressed

in skin and less expressed in other organs (female brain>male

brain>testes=muscle=stomach>ovary=heart>intestine>liver) (Figure 11). The identity of the

bands obtained after the RT-PCR amplification was confirmed by sequencing.

4. Discussion

The existence of sea bass sox17 gene had previously been found by PCR amplification

using primers based on Sox9-related gene sequences (Galay-Burgos et al., 2004). The present

study provides the cloning and characterization of the complete sea bass sox17 gene. The

genomic structure of Sox genes is known for several species of vertebrates, from fish to

mammals (see Bowles et al., 2000 for review). However, the genomic structure of Sox17

genes was previously known only in two species: the mouse (Kanai et al., 1996) and the rice

field eel (Wang et al., 2003). Three introns had been found in the mouse Sox17 gene: two in

the 5’UTR and one inside the HMG box (Kanai et al., 1996). Although no introns were found

in the corresponding 5’UTR of the sb sox17 gene in this study, one intron was identified

within the HMG box. This intron is located exactly at the same position as in the mouse,

puffer fish, tilapia, stickleback, rice field eel, medaka and sturgeon, as deduced from sequence

comparisons. Although introns are regions that usually exhibit high variability in the

genomes, in fish the sox17 intronic region was found to be highly conserved, especially

between sea bass and the rice field eel (72.5% homology), and between sea bass and tilapia

(63.2% homology). These results, and the fact that the end of the intron region (the most

conserved part) coincides with the sea bass TSS2, strongly suggests that an alternative

Page 154: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-128-

transcript similar to the sb t-sox17 identified in the present study may also exist, at least in the

rice field eel and tilapia.

Three sox transcripts were identified in the sea bass in the present study. Two of them,

sb sox17 and sb t-sox17, were structurally equivalent to the two Sox17 transcripts previously

identified in mouse (m) by Kanai et al. (1996): one which encodes a functional protein with a

single HMG box domain near the amino acid terminus (m Sox17) and another encoding a

truncated protein lacking most parts of the HMG box (m t-Sox17), respectively. m Sox17 was

highly expressed in spermatogonia and mRNA levels decreased in spermatocytes and

subsequent stages, whereas m t-Sox17 first appeared in spermatocytes and latter accumulated

in spermatids (Kanai et al., 1996). This suggests that the different transcripts seem to have

different roles during the spermatogenesis progression. In this regard, co-transfection analysis

demonstrated that m Sox17 could stimulate transcription, whereas m t-Sox17 had little effect

on reporter gene expression. Further, m t-Sox17 transcript did not show specifically DNA-

binding activity to the AACAAT motif as the m Sox17 transcript does. Based on these results,

it was hypothesized that a switch from m Sox17 (found in premeiotic germ cells) to m t-Sox17

transcription may result in a loss of function in the postmeiotic germ cells (Kanai et al.,

1996).

In an independent study carried out in our laboratory using laser-capture

microdissection (LCM) to investigate gene expression during sea bass spermatogenesis, it was

found that, consistent with the situation in mouse, sb sox17 was expressed in spermatogonia

(Viñas and Piferrer, 2008). However, sb t-sox17 was not analyzed in the LCM study referred

to above. The sb t-sox17 transcript identified in the present study encodes a predicted 272

amino acid protein that is similar to, and starts at the same position as, the m t-Sox17 protein.

Together, these results suggest that the role of Sox17, at least in some essential biological

functions such as the regulation of spermatogenesis, have been well conserved throughout

vertebrate evolution.

PCR using primers designed to amplify the ORF of sb sox17 (Sox17StartFw and

Sox17EndRv) revealed, in addition to the expected band of 1256 bp, a second band of 1621

bp, indicative of the presence of a third, novel sox17 transcript (sb i-sox17). Sequence

Page 155: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-129-

analysis showed that this second band exactly corresponded to the ORF with the retained

intron. Further, the sequence of this intron possessed very conserved consensus splice-site

motifs indicative of the presence of a mechanism for alternative splicing (defined by Smith

and Valcárcel, 2000). No such additional transcripts had been previously found in Sox genes

of other species. Thus, in addition to the normal (sb sox17) and truncated (sb t-sox17)

transcripts, equivalent to the mouse m Sox17 and m t-Sox17, respectively, a third transcript

(sb i-sox17) was found in the sea bass. Intron retention has been pointed out as a regulatory

system in tissue- or stage-specific splicing mechanisms by which expression may be

regulated. This regulation may be achieved by the introduction of premature stop codons that

function as an on-off gene expression switch (Smith and Valcárcel, 2000). In fact, seven stop

codons were found in the sb sox17 intron region, hence suggesting the possibility that this

alternative splicing mechanism may be also responsible for sb sox17 gene expression

regulation.

Results obtained in two-year adult sea bass, showed that sb sox17 was expressed in

every tissue studied and usually at higher levels than sb i-sox17. The latter, however, clearly

predominated in some tissues, particularly in the skin, but also in brain. The high expression

of sb i-sox17 may be indicative of a role of Sox17 in these tissues. Similarly to other Sox

genes, the redundancy of Sox17 gene expression and the fact that Sox genes can recognize and

bind to the same consensus sequences, suggests that their specificity may be achieved through

changes in their temporal and spatial expression (Pevny and Lovell-Badge, 1997).

The existence of one transcription starting site different from TSS1, located within the

intron region (TSS2), suggests the existence of a second promoter (P2) in addition to the

region upstream of TSS1 (P1). Analysis of sb sox17 P1 and P2 revealed, in accordance with

the situation in mouse Sox9 and human SOX9 (Kanai and Koopman, 1999; Piera-Velazquez et

al., 2007), or human SOX3, SOX14 and SOX18 (Kovacevic-Grujicic et al., 2008; Kovacevic-

Grujicic et al., 2005), the presence of conserved putative binding sites for GATA, CREB, SP-

1 and NF-Y, suggesting that similar gene regulatory pathways can drive regulation of Sox

genes across species. Some of these transcription factors had been previously related with

SOX17. The combination of SOX17 and the ubiquitous factors Sp1/Sp3 and NF-Y has been

implicated in the transcriptional regulation of mouse Lama1, a parietal endoderm specific

gene (Niimi et al., 2004).

Page 156: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-130-

High identity (88-92%) was observed between the sb Sox17 protein and other piscine

Sox17 available protein sequences, especially in the HMG box, but also in other areas,

particularly around the N- and C-terminal regions (symbolized by A and C, respectively, in

Figure 4). Sb Sox17 protein has a similar structure to m Sox17 (see Bowles et al., 2000).

Nevertheless, m Sox17 possesses a Pro-Glu rich region (Kanai et al., 1996) which is absent in

the sea bass sequence. A high identity has been also observed between Xenopus, mouse and

human Sox17 proteins, indicating that these proteins can be considered evolutionary

conserved (Wang et al., 2003). However, in our analysis of piscine Sox17 proteins, the

zebrafish sequence was found to posses only 39.4% identity with the sea bass protein

sequence, suggesting the possibility that the zebrafish sequence had been originally

misclassified as Sox17. To eliminate this doubt, all HMG box Sox17 available sequences

were checked by alignment against the consensus sequence of the HMG box, showing that all

of them had indeed more than 50% identity, thus verifying that they belonged to the Sox gene

family. For that reason, and since sb Sox17, or for that matter any other piscine Sox17

sequence, has more in common to the Sox17 sequence of tetrapods than to the corresponding

one of zebrafish, we conclude that the latter is very different from the rest.

Expression of the sb Sox17 transcript in sea bass exposed to different temperatures

during early development appeared to be higher in the group exposed to 20°C as compared to

the group exposed to 15°C until 32 dph. Thereafter, similar levels were observed in both

groups. Interestingly, in the sea bass the end of primordial germ cell migration and the

formation of the gonadal ridges takes place around 30 dph (Roblin and Bruslé, 1983). Whilst

this could be related to sex determination or early gonadal development in this species, it

should be borne in mind that Sox17 is a multifunctional gene. Thus, the higher expression of

sb Sox17 may be connected with an alternative role (e.g. endoderm differentiation) or else

simply be a reflection of more rapid development in the larvae cultured at the higher

temperature.

In the present study, we observed a sexually dimorphic expression of sox17 during sea

bass sex differentiation, with females exhibiting increasing levels as ovarian differentiation

progressed. In contrast, in males levels remained low. These differences cannot be accounted

for by sex dimorphic growth. Clearly, our results do not support sox17 as being the sex-

Page 157: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-131-

determining gene in the sea bass, because expression appeared when gonadal sex

differentiation was already well underway. Nevertheless, to the best of our knowledge, this

constitutes the first study where it is shown that sb sox17 expression is clearly sex dependent

in any vertebrate during the critical time of sex differentiation. The first significant increase

was observed at 150 dph, precisely coinciding with the first morphological signs of gonadal

differentiation in the sea bass (Piferrer et al., 2005), and with the first dimorphic expression of

the gonadal form of aromatase (cyp19a) in the same species (Blázquez et al., 2008). However,

there were no differences between groups. These were first observed between 200 and 250

dph, precisely coinciding with the end of the period of ovarian differentiation and ~100 days

later than the corresponding differences in cyp19a (Blázquez et al., 2008). This difference of

~100 days would explain the weak but significant correlation between cyp19 and sox17

observed in the present study. Since estrogens are essential for female sex differentiation in

fish (Piferrer et al., 1994) and particularly in the sea bass (Blázquez et al., 2008; Piferrer et

al., 2005), and both cyp19a and sox17 showed a similar pattern of expression, this suggests

that in sea bass sox17 is also involved in ovarian differentiation. However, the exact role of sb

sox17 in this process remains to be determined.

In summary, in this study we have characterized sox17 in a modern teleost and

provided evidence for the presence of different transcripts. In particular, in addition to the two

transcripts found in mouse, we found the first evidence of the existence of a mechanism of

alternative splicing by intron retention in a Sox17 gene. This, along with the existence of two

different promoters suggests that levels of sox17 transcripts in the sea bass can be regulated

by multiple mechanisms. Further, we also provide evidence suggesting the involvement of

sox17 in ovarian development.

Acknowledgements

Thanks are due to S. Joly and N. Sánchez for technical assistance; to Drs. C.C.

Mylonas and M. Papadaki for providing sea bass samples, and to Drs. M. Blázquez and J.

Viñas for their technical advice and for helpful critical comments on the manuscript. LN was

supported by the Spanish Ministry of Education and Science (MEC) predoctoral fellowship

BES-2003-0006. Research carried out with the financial support of the Commission of the

European Union, Quality of Life and Management of Living Resources specific RTD

Page 158: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-132-

programme (Project Q5RS-2000-31365, “Probass”), to G.S and F.P, and of the MEC project

“Sexratio”(AGL2002-02636) to F.P.

Page 159: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-133-

References

Blázquez, M., González, A., Papadaki, M., Mylonas, C. and Piferrer, F., 2008. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 158, 95-101.

Bowles, J., Schepers, G. and Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239-255.

Chiang, E.F., Pai, C.I., Wyatt, M., Yan, Y.L., Postlethwait, J. and Chung, B., 2001. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149-63.

Devlin, R.H. and Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-364.

Dupont, S., Dennefeld, C., Krust, A., Chambon, P. and Mark, M., 2003. Expression of Sox9 in granulosa cells lacking the estrogen receptors, ERalpha and ERbeta. Dev. Dyn. 226, 103-6.

Foster, J.W., Dominguez-Steglich, M.A., Guioli, S., Kowk, G., Weller, P.A., Stevanovic, M., Weissenbach, J., Mansour, S., Young, I.D., Goodfellow, P.N., 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525-30.

Fukada, S., 1995. The Sox gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Dev. Growth Differ. 37, 379-385.

Galay-Burgos, M., Llewellyn, L., Mylonas, C.C., Canario, A.V., Zanuy, S. and Sweeney, G.E., 2004. Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 137, 279-284.

Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S. and Sweeney, G.E., 2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and identification of single nucleotide polymorphisms. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 145, 47-53.

Gao, S., Zhang, T., Zhou, X., Zhao, Y., Li, Q., Guo, Y., Cheng, H. and Zhou, R., 2005. Molecular cloning, expression of Sox5 and its down-regulation of Dmrt1 transcription in zebrafish. J. Exp. Zool. B Mol. Dev. 304, 476-83.

Girard, F., Cremazy, F., Berta, P. and Renucci, A., 2001. Expression pattern of the Sox31 gene during zebrafish embryonic development. Mech. Dev. 100, 71-3.

Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P. and Lovell-Badge, R., 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245-250.

Hasegawa, M., Hiraoka, Y., Hagiuda, J., Ogawa, M. and Aiso, S., 2002. Expression and characterization of Xenopus laevis SRY-related cDNAs, xSox17 alpha1, xSox17 alpha2, xSox18 alpha and xSox18 beta. Gene 290, 163-172.

Hett, A.K. and Ludwig, A., 2005. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome 48, 181-186.

Huang, B., Wang, S., Ning, Y., Lamb, A.N. and Bartley, J., 1999. Autosomal XX sex reversal caused by duplication of SOX9. Am. J. Med. Genet. A. 87, 349-353.

Hudson, C., 1997. Xsox17 alpha and - beta mediate endoderm formation in Xenopus. Cell 91, 397-405.

Page 160: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-134-

Jager, M., Quéinnec, E., Houliston, E. and Manuel, M., 2006. Expansion of the SOX gene family predated the emergence of the Bilateria. Mol. Phylogenet. Evol. 39, 468-477.

Kanai, Y., Kanai-Azuma, M., Noce, T., Saido, T.C., Shiroishi, T., Hayashi, Y. and Yazaki, K., 1996. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. J. Cell Biol. 133, 667-681.

Kanai, Y. and Koopman, P., 1999. Structural and functional characterization of the mouse Sox9 promoter: implications for campomelic dysplasia. Hum. Mol. Genet. 8, 691.

Kanda, H., Kojima, M., Miyamoto, N., Ito, M., Takamatsu, N., Yamashita, S. and Shiba, T., 1998. Rainbow trout Sox24, a novel member of the Sox family, is a transcriptional regulator during oogenesis. Gene 211, 251-257.

Kent, J., Wheatley, S.C., Andrews, J.E., Sinclair, A.H. and Koopman, P., 1996. A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813-22.

Koopman, P., Schepers, G., Brenner, S. and Venkatesh, B., 2004. Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 328, 177-86.

Kovacevic-Grujicic, N., Mojsin, M., Krstic, A. and Stevanovic, M., 2005. Functional characterization of the human SOX3 promoter: identification of transcription factors implicated in basal promoter activity. Gene 344, 287-297.

Kovacevic-Grujicic, N., Mojsin, M., Djurovic, J., Petrovic, I. and Stevanovic, M., 2008. Comparison of promoter regions of SOX3, SOX14 and SOX18 orthologs in mammals. Mitochondrial DNA 19, 185-194.

Liu, L. and Zhou, R., 2001. Isolation of Sox11a, Sox11b and Sox19 genes from Rice field eel (Monopterus albus) using degenerate primers and nested PCR. Aquat. Sci. 63, 191-195.

Magie, C.R., Pang, K. and Martindale, M.Q., 2005. Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev. Genes Evol. 215, 618-630.

Martins, R.S.T., Deloffre, L.A.M., Mylonas, C.C., Power, D.M. and Canário, A.V.M., 2007. Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation. Reprod. Biol. Endocrinol. 5, 19.

Meyer, J., Sudbeck, P., Held, M., Wagner, T., Schmitz, M.L., Bricarelli, F.D., Eggermont, E., Friedrich, U., Haas, O.A., Kobelt, A., Leroy, J.G., Van Maldergem, L., Michel, E., Mitulla, B., Pfeiffer, R.A., Schinzel, A., Schmidt, H. and Scherer, G., 1997. Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Hum. Mol. Genet. 6, 91-8.

Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A. and Lovell-Badge, R., 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14, 62-8.

Muller, P.Y., Janovjak, H., Miserez, A.R. and Dobbie, Z., 2002. Processing of gene expression data generated by quantitative real-time RT PCR (vol 32, pg 1378, 2002). Biotechniques 33, 514-514.

Nakamoto, M., Suzuki, A., Matsuda, M., Nagahama, Y. and Shibata, N., 2005. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochem. Biophys. Res. Commun. 333, 729-36.

Page 161: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-135-

Niimi, T., Hayashi, Y., Futaki, S. and Sekiguchi, K., 2004. SOX7 and SOX17 regulate the parietal endoderm-specific enhancer activity of mouse Laminin alpha1 gene. J. Biol. Chem. 279, 38055.

Papadaki, M., Piferrer, F., Zanuy, S., Maingot, E., Divanach, P. and Mylonas, C.C., 2005. Growth, sex differentiation and gonad and plasma levels of sex steroids in male and female dominant populations of Dicentrarchus labrax obtained through repeated size grading. J. Fish Biol. 66, 938-956.

Penman, D.J. and Piferrer, F., 2008. Fish Gonadogenesis. Part1. Genetic and environmental mechanisms of sex determination. Rev. Fish. Sci. 16 S1, in press.

Pevny, L.H. and Lovell-Badge, R., 1997. Sox genes find their feet. Curr. Opin. Genet. Dev. 7, 338-44.

Piera-Velazquez, S., Hawkins, D.F., Whitecavage, M.K., Colter, D.C., Stokes, D.G. and Jimenez, S.A., 2007. Regulation of the human SOX9 promoter by Sp1 and CREB. Exp. Cell Res. 313, 1069-79.

Piferrer, F., Zanuy, S., Carrillo, M., Solar, II, Devlin, R.H. and Donaldson, E.M., 1994. Brief treatment with an aromatase inhibitor during sex-differentiation causes chromosomally female salmon to develop as normal, functional males. J. Exp. Zool. 270, 255-262.

Piferrer, F., Blázquez, M., Navarro, L. and González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comp. Endocrinol. 142, 102-10.

Piferrer, F. and Guiguen, Y., 2008. Fish gonadogenesis. Part 2. Molecular biology and genomics of fish sex differentiation. Rev. Fish. Sci. 16 S1, in press.

Qin, Y. and Bishop, C.E., 2005. Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Hum. Mol. Genet. 14, 1221-1229.

Roblin, C. and Bruslé, J., 1983. Ontogenèse gonadique et différenciation sexuelle du loup Dicentrarchus labrax, en conditions d’elevage. Reprod. Nutr. Dévelop 23, 115-127.

Shimoda, M., Kanai-Azuma, M., Hara, K., Miyazaki, S., Kanai, Y., Monden, M. and Miyazaki, J., 2007. Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro. J. Cell Sci. 120, 3859.

Smith, C.W.J. and Valcárcel, J., 2000. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci. 25, 381-388.

Takamatsu, N., Kanda, H., Tsuchiya, I., Yamada, S., Ito, M., Kabeno, S., Shiba, T. and Yamashita, S., 1995. A gene that is related to SRY and is expressed in the testes encodes a leucine zipper-containing protein. Mol. Cell. Biol. 15, 3759-3766.

Takamatsu, N., Kanda, H., Ito, M., Yamashita, A., Yamashita, S. and Shiba, T., 1997. Rainbow trout SOX9: cDNA cloning, gene structure and expression. Gene 202, 167-170.

Tamura, K., Dudley, J., Nei, M. and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24, 1596.

Viñas, J. and Piferrer, F., 2008. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biol. Reprod., DOI:10.1095/biolreprod.108.069708.

Vriz, S. and Lovell-Badge, R., 1995. The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene 153, 275-6.

Vriz, S., Joly, C., Boulekbache, H. and Condamine, H., 1996. Zygotic expression of the zebrafish Sox-19, an HMG box-containing gene, suggests an involvement in central nervous system development. Brain Res. Mol. Brain Res. 40, 221-8.

Page 162: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-136-

Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., Pasantes, J., Bricarelli, F.D., Keutel, J., Hustert, E., 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111-20.

Wang, D.S., Senthilkumaran, B., Sudhakumari, C.C., Sakai, F., Matsuda, M., Kobayashi, T., Yoshikuni, M. and Nagahama, Y., 2005. Molecular cloning, gene expression and characterization of the third estrogen receptor of the Nile tilapia, Oreochromis niloticus. Fish Physiol. Biochem. 31, 255-266.

Wang, R., Cheng, H.H., Xia, L.X., Guo, Y.Q., Huang, X. and Zhou, R.J., 2003. Molecular cloning and expression of Sox17 in gonads during sex reversal in the rice field eel, a teleost fish with a characteristic of natural sex transformation. Biochem. Biophys. Res. Commun. 303, 452-457.

Wegner, M., 1999. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409-20.

Western, P.S., Harry, J.L., Graves, J.A.M. and Sinclair, A.H., 1999. Temperature-dependent sex determination in the American alligator: AMH precedes SOX9 expression. Dev. Dyn. 216, 411-419.

Yamashita, A., Suzuki, S., Fujitani, K., Kojima, M., Kanda, H., Ito, M., Takamatsu, N., Yamashita, S. and Shiba, T., 1998. cDNA cloning of a novel rainbow trout SRY-type HMG box protein, rtSox23, and its functional analysis. Gene 209, 193-200.

Yokoi, H., Kobayashi, T., Tanaka, M., Nagahama, Y., Wakamatsu, Y., Takeda, H., Araki, K., Morohashi, K. and Ozato, K., 2002. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol. Reprod. Dev. 63, 5-16.

Zhang, L., Lin, D., Zhang, Y., Ma, G. and Zhang, W., 2008. A homologue of Sox11 predominantly expressed in the ovary of the orange-spotted grouper Epinephelus coioides. Comp. Biochem. Physiol. B 149, 345-353.

Zhong, L., 2006. Sox genes in grass carp (Ctenopharyngodon idella) with their implications for genome duplication and evolution. Genet. Sel. Evol. 38, 673-687.

Zhou, R., Zhang, Q., Tiersch, T.R. and Cooper, R.K., 2001. Four members of the Sox gene family in channel catfish. J. Fish Biol. 58, 891-894.

Zhou, R., Liu, L., Guo, Y., Yu, H., Cheng, H., Huang, X., Tiersch, T.R. and Berta, P., 2003. Similar gene structure of two Sox 9 a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol. Reprod. Dev. 66, 211-217.

Zhou, R.R., 2002. SRY-related genes in the genome of the rice field eel (Monopterus albus). Genet. Sel. Evol. 34, 129-137.

Page 163: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-137-

Figures

Figure 1. Schematic representation of the sea bass sox17 gene organization. Base pair numbers are indicated in italics. A, the genomic clone isolated was composed of a total 3,233 bp. The gene includes: two putative promoters, P1 and P2; two exons, Ex1 and Ex2 symbolized by a grey box; the HMG box is symbolized by solid box; one intron situated inside the HMG box; two transcription start sites, TSS1 and TSS2; two start codons (ATG) and two stop codons and the polyA signal (AATAAA). Localization of the primers used for primer walking, RACE-PCR, real-time PCR and tissue distribution PCR are symbolized with arrow lines. B, The three different transcripts (sb sox17, sb i-sox17 and sb t-sox17) were identified starting at two different transcription start sites (TSS1 and TSS2). 5′ and 3′ UTR are also represented in the diagram for each isoform. Dashed lines represent intron splicing in sb Sox17 transcript. Intron retention is symbolized as an open bar in sb i-sox17. The putative poly (A) signal is symbolized as AAUAAA. C, the two bands amplified after ORF RT-PCR corresponded to sb i-sox17 and sb sox17.

A

B

0 1000 2000 3000 bp

5’UTR 3’UTRAAUAAATSS1

1370 29291168

TSS11370

5’UTR 3’UTR

29291168

TSS25’UTR 3’UTR

29291834 2116

sb sox17

sb i-sox17

sb t-sox17

1673 2038

Ex1 Ex2P20

1569 21213233 bpP1

1374ATG1374ATG

TSS11168TSS11168TSS11168

TSS21834TSS21834TSS21834

2113ATG2113ATG

2929STOP2929STOP

1677STOP1677STOP

5’-Genome walking

3’-Genome walking3’-RACE

5’-RACE

Sox17-RT Fw

Intron-Sox17 Rv

Sox17-RT Rv

18s rRNA

sb i-sox17sb sox17

18s rRNA

sb i-sox17sb sox17

C

AAUAAA

AAUAAA

AATAAA3188

Page 164: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-138-

Figure 2. Sequence of the three sea bass sox17 transcripts (sb sox17, sb i-sox17 and sb t-sox17) characterized in the present study compared with the genomic one. The putative TATA box is boxed and transcription start sites (TSS1 and TSS2) as well as start codons (underlined ATG) are in bold. Splicing of intron in sb sox17 transcript is symbolized by a dashed line.

attggctgcctgtgagtttatagcgcaccaaccttcacatccagcgctGAGTACTCGGTATCGTTCAGTCCACAAGACTC ...........................................TSS1-GAGTACTCGGTATCGTTCAGTCCACAAGACTC ...........................................TSS1-GAGTACTCGGTATCGTTCAGTCCACAAGACTC ................................................................................ CTGGAAGTGGCCAATGGATGTGACTAATTATTTTCCATTCCAGCTTGAAAGCCAGAAATCTTGTTAAGTTATTATTATTT CTGGAAGTGGCCAATGGATGTGACTAATTATTTTCCATTCCAGCTTGAAAGCCAGAAATCTTGTTAAGTTATTATTATTT CTGGAAGTGGCCAATGGATGTGACTAATTATTTTCCATTCCAGCTTGAAAGCCAGAAATCTTGTTAAGTTATTATTATTT ................................................................................ TTTCCTTTAAATCTATCTGGTCTCAGTGGTAGTGTGTTGTCGCCTCTGCGAGCTGTCCGGTGGCTCTCCAAAAAACCTCC TTTCCTTTAAATCTATCTGGTCTCAGTGGTAGTGTGTTGTCGCCTCTGCGAGCTGTCCGGTGGCTCTCCAAAAAACCTCC TTTCCTTTAAATCTATCTGGTCTCAGTGGTAGTGTGTTGTCGCCTCTGCGAGCTGTCCGGTGGCTCTCCAAAAAACCTCC ................................................................................ CTGCTGGACAGAGATGAGTAGTCCCGATGCGGGTTACGCCAGCGACGATCAGACCCAGGCAAGGTGTACGATGTCAGTCA CTGCTGGACAGAGATGAGTAGTCCCGATGCGGGTTACGCCAGCGACGATCAGACCCAGGCAAGGTGTACGATGTCAGTCA CTGCTGGACAGAGATGAGTAGTCCCGATGCGGGTTACGCCAGCGACGATCAGACCCAGGCAAGGTGTACGATGTCAGTCA ................................................................................ TGATGCCTGGAATGGGACACTGCCAGTGGGCCGACCCTATCAGTCCTCTTGGGGACACCAAAGTGAAAAACGAGCCGTGC TGATGCCTGGAATGGGACACTGCCAGTGGGCCGACCCTATCAGTCCTCTTGGGGACACCAAAGTGAAAAACGAGCCGTGC TGATGCCTGGAATGGGACACTGCCAGTGGGCCGACCCTATCAGTCCTCTTGGGGACACCAAAGTGAAAAACGAGCCGTGC ................................................................................ GCCTCCAGCTCCGGCAGCCAGAATCGCGGGAAGAGCGAGCCGCGGATCCGACGGCCCATGAACGCGTTTATGGTCTGGGC GCCTCCAGCTCCGGCAGCCAGAATCGCGGGAAGAGCGAGCCGCGGATCCGACGGCCCATGAACGCGTTTATGGTCTGGGC GCCTCCAGCTCCGGCAGCCAGAATCGCGGGAAGAGCGAGCCGCGGATCCGACGGCCCATGAACGCGTTTATGGTcTGGGC ................................................................................ AAAGGATGAGCGCAAGAGACTGGCGCAGCAAAATCCGGACCTGCACAACGCCGAGCTGAGCAAAATGTTGGgtaagtaat AAAGGATGAGCGCAAGAGACTGGCGCAGCAAAATCCGGACCTGCACAACGCCGAGCTGAGCAAAATGTTGG------- AAAGGATGAGCGCAAGAGACTGGCGCAGCAAAATCCGGACCTGCACAACGCCGAGCTGAGCAAAATGTTGGGTAAGTAAT ................................................................................ tttatttaatcaatcccatgttgctcgcctatttgccaagtctgtacatgttattatagagagctgtaacatcattgtta -------------------------------------------------------------------------------- TTTATTTAATCAATCCCATGTTGCTCGCCTATTTGCCAAGTCTGTACATGTTATTATAGAGAGCTGTAACATCATTGTTA ................................................................................ ctgaattttaggagcctgtaatttgaatttcatgtttttattctgctaaaaaacacatgaatagttacttatcagtcagt -------------------------------------------------------------------------------- CTGAATTTTAGGAGCCTGTAATTTGAATTTCATGTTTTTATTCTGCTAAAAAACACATGAATAGTTACTTATCAGTCAGT ....................................................................TSS2-AGTCAGT gcattcattgtttaggcagcaggtggtgttactatgtcattaaaagttactgtgtctgagttaagctgcacatgtaacct -------------------------------------------------------------------------------- GCATTCATTGTTTAGGCAGCAGGTGGTGTTACTATGTCATTAAAAGTTACTGTGTCTGAGTTAAGCTGCACATGTAACCT GCATTCATTGTTTAGGCAGCAGGTGGTGTTACTATGTCATTAAAAGTTACTGTGTCTGAGTTAAGCTGCACATGTAACCT gaaaaacctgtccatgccccctaaaatggcaacaagctatttttgtgtgcatcaccagactgcgttcagtatctgctgac -------------------------------------------------------------------------------- GAAAAACCTGTCCATGCCCCCTAAAATGGCAACAAGCTATTTTTGTGTGCATCACCAGACTGCGTTCAGTATCTGCTGAC GAAAAACCTGTCCATGCCCCCTAAAATGGCAACAAGCTATTTTTGTGTGCATCACCAGACTGCGTTCAGTATCTGCTGAC atatcattgatgtgcactgtcctcttgacctgcagGGAAATCGTGGAAAGCCCTTCCTGTCACAGAAAAGCAGCCCTTTG -----------------------------------GGAAATCGTGGAAAGCCCTTCCTGTCACAGAAAAGCAGCCCTTTG ATATCATTGATGTGCACTGTCCTCTTGACCTGCAGGGAAATCGTGGAAAGCCCTTCCTGTCACAGAAAAGCAGCCCTTTG ATATCATTGATGTGCACTGTCCTCTTGACCTGCAGGGAAATCGTGGAAAGCCCTTCCTGTCACAGAAAAGCAGCCCTTTG TGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCCAACTACAAGTACCGGCCCCGGCGCCGGAAGCAG TGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCCAACTACAAGTACCGGCCCCGGCGCCGGAAGCAG TGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCCAACTACAAGTACCGGCCCCGGCGCCGGAAGCAG TGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCCAACTACAAGTACCGGCCCCGGCGCCGGAAGCAG

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-Sox17

sox17 genesb sox17sb i-sox17sb t-Sox17

sox17 genesb sox17sb i-sox17sb t-sox17

sox17 genesb sox17sb i-sox17sb t-sox17

Page 165: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-139-

Figure 3. Sequence of sea bass sox17 promoter region 1 (A) and promoter region 2 (B). Nucleotide sequences corresponding to consensus transcription factor binding sites are boxed and labeled: NFY, Nuclear factor Y (Y-box binding factor); GATA binding factor; SREB, Sterol regulatory element binding protein; NKX2.5/CSX, Homeo domain factor Nkx-2.5/Csx; SOX5 binding factor; SP1, Stimulating protein 1; GSH2, Homeodomain transcription factor Gsh-2; OCT1, Octamer-binding factor 1; TATA box. Promoter region sequences are in lowercase whereas transcribed region sequences are in uppercase letters. On the other hand, translated amino acids are in italic uppercase letters. The translation initiation codons (ATG) are underlined and indicated in bold. Features that evidence the presence of a mechanism of alternative splicing in promoter region 2 are symbolized in bold as: 5′ss, 5′ splice site; BP, branch point; PT, polypyrimidine track and the 3′ss, 3′ splice site. Also, several in frame stop codons are underlined.

A NFY aaggattattaagcatacagtaaagcaaatgagcatctaatgaggggaaaataattagattgagacacaatagttcagatatttgaagtg acatgcgctttaaagctttgttgaaagaggcataatagctgggaatcaaatcctgagcacaaaaaaataatcaattattatttttagtca tcacagacttggcattatttccactatgtacctcttttatttaattcctgtacaaataagctgagacaaaggtatttgggcatttgtcca GATA SREB gacattatcagttctcataaatgtgatactgaaaaaagtgtttcacccccccagcttaatcaatccgctgtttgtttagttcattaacat NKX2.5/CSX GATA cccagaccgacgtctagtcgggtaaagacagtgtatccacttgagaatctgttttgacatttgaacgccacaccagtatcacataacatt

NKX2.5/CSX ttacaggtttgagtcagacacttgatcactttacagctatgtgatgggtgtttatttaagcgttctccactcgcactgatttcgcttttt aggacatttaaatcctcaattagcgccttttttgtccttctcattaggctgcaatcaaagaaaagtctccatcgagacgaccgtgcgtaa aagtggcgaatgagggagccattaactccacgcgtaaacctgatattcaagatttaacacagttaaactcccccaatacacagactgacg

atcaagtgtattgatgtctgagcattagtgtcagtctaatgcaagggtgagaattaaaactggaccgtgtggttgtccaaataaacgtta

SOX5 ttgtggattaaatattccaccagtttcacctctttacttcaaaataaagaaatatacacacattgttgctctaaagtctggaattacatc GATA ttaagtgtttaatgtcgctataaaaaataattcaatgtttaaatcaatgttatcttcacatgagcatatattcttatcaggtaaacttag

SP1 ttttgcatctatttgaaatctcacagctctctcctcagagggtctcagctcttcacacacaagggtcggaggcggggtgctcgaaacttt TATA tttacacctttgtagtagtgggcactcccaccacatggtgattggctgcctgtgagtttatagcgcaccaaccttcacatccagcgctgA GTACTCGGTATCGTTCAGTCCACAAGACTCCTGGAAGTGGCCAATGGATGTGACTAATTATTTTCCATTCCAGCTTGAAAGCCAGAAATC TTGTTAAGTTATTATTATTTTTTCCTTTAAATCTATCTGGTCTCAGTGGTAGTGTGTTGTCGCCTCTGCGAGCTGTCCGGTGGCTCTCCA AAAAACCTCCCTGCTGGACAGAGATGAGTAGTCCCGATGCGGGTTACGCCAGCGACGATCAGACCCAGGCA M S S P D A G Y A S D D Q T Q A

B 5’ss TGGCGCAGCAAAATCCGGACCTGCACAACGCCGAGCTGAGCAAAATGTTGGgtaagtaattttatttaatcaatcccatgttgctcgcct L A Q Q N P D L H N A E L S K M L SOX5 GSH2 OCT1 atttgccaagtctgtacatgttattatagagagctgtaacatcattgttactgaattttaggagcctgtaatttgaatttcatgttttta ttctgctaaaaaacacatgaatagttacttatcagtcagtgcattcattgtttaggcagcaggtggtgttactatgtcattaaaagttac tgtgtctgagttaagctgcacatgtaacctgaaaaacctgtccatgccccctaaaatggcaacaagctatttttgtgtgcatcaccagac BP PT 3’ss tgcgttcagtatctgctgacatatcattgatgtgcactgtcctcttgacctgcagGGAAATCGTGGAAAGCCCTTCCTGTCACAGAAAAG G K S W K A L P V T E K CAGCCCTTTGTGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCCAAC Q P F V E E A E R L R V Q H M Q D H P N

Page 166: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-140-

Figure 4. Fish sox17 intron alignment between nucleotide sequence of Dicentrarchus labrax (dl, EU761243), Monopterus albus (ma, AF001047), and Oreochromis niloticus (on, DQ632583). Exon 1 end and exon 2 start (in capital letters and localized inside the grey box) are also included to facilitate intron alignment. Gaps were introduced in the sequences to optimize the alignment and are represented by dashes (-). Nucleotides from M. albus and O. niloticus identical to the corresponding nucleotide from the sea bass sequence are shown by a asterisks (*). Comparison of the nucleotide sequences was performed using the ClustalW multiple alignment (http://www.ch.embnet.org/software/ClustalW.html) program.

TSS2

dl TGGCGCAGCAAAATCCGGACCTGCACAACGCCGAGCTGAGCAAAATGTTGGgtaagtaatttt--atttaat----caatcccatgttgc ma .......A.....C......T..........G.....C.........C......c........gt.......tcat.g.c.t.t...... on .............C.................A...............C........g.cg..cat.c..tt.ttaa...c----...--- ******* ***** ****** ********** ***** ********* ****** * * ** * ** * * * *** dl tcgcctatttgccaagtctgtacatgttattatagaga---gctgtaacat----cattgttactgaat-tttaggagc--ctgta---- ma .t....g.g.a...ga...a....g.a......tc.accacat.c.tct..tcca..ca...t......-..g...t..tt.....ttta on ------.....t..ca.....g..-..c.c-----------...a.t.tt.tc--..c..a.tt.c.g.c....c.t.a--t..c.t--- * * ** *** * ** * * * * * ** * * * * * ** * * * ** * dl atttgaatttcatgt--------ttttattct-gctaaa---aaacacatgaatagttacttatcagtcagtgcattcattgtttaggca ma g...t....-.....ctagttga.........ta..ct.cgc.....-.cagt..a...t.c.ct.a.gga....g.gg.....c..... on -...t.c.g.t....c-----ac.........---c.g.t---...t-g.a......cct..cc...caga..----------------- *** * * **** ********* * *** ** * * * ** dl gcaggtggtgttactatgtcattaaaagttactgt-gtctgagttaagctgcacatgtaacctgaaaaacctgtccatgccccctaaaat ma .......--------....t..............c-a....g....c..at..g.........c..g..t......c..t....a..... on --.c...--------....tt..........g.c.t.........g-....t.gg........c............ca.t.......... * *** **** ********** * **** *** ** * ******** ** ** ****** * **** ***** dl ggcaacaagctatttttgtgtgcatcaccagactgcgttcagtatctgctgacatatcattgatgtgcactgtcctcttgacctgcagGG ma ....................................t.a....................c...........c.................. on .......g.....................g......aca.g..................c.......t...c..t............... ******* ********************* ****** * ****************** ******* *** ** *************** dl AAATCGTGGAAAGCCCTTCCTGTCACAGAAAAGCAGCCCTTTGTGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCC ma .....A......................................T............................................. on .....A......T.G......A.A..............T........A.....A..............C..............C...... ***** ****** * ****** * ************** ***** ** ***** ************** ************** ******

Page 167: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-141-

Figure 5. Nucleotide sequence and deduced amino acid sequence of sea bass Sox17 proteins. Italic numbers indicate the nucleotide position starting at the first ATG start codon. The two start codons (in bold) indicate the initiation of the two putative proteins encoded by sb sox17 and sb t-sox17 transcripts. The stop codon (TAA) is symbolized by an asterisk. Amino acid positions are numbered starting with the first methionine. The HMG box is shaded. The arrow indicates the position of the intron within the HMG box. The putative poly (A) signal is underlined. The sea bass sox17 gene sequence has been given the GenBank accession number EU761243.

agtactcggtatcgttcagtccacaagactcctggaagtggccaatggatgtgactaatt -145 attttccattccagcttgaaagccagaaatcttgttaagttattattattttttccttta -85 aatctatctggtctcagtggtagtgtgttgtcgcctctgcgagctgtccggtggctctcc -25 aaaaaacctccctgctggacagagATGAGTAGTCCCGATGCGGGTTACGCCAGCGACGAT 36 M S S P D A G Y A S D D 12 CAGACCCAGGCAAGGTGTACGATGTCAGTCATGATGCCTGGAATGGGACACTGCCAGTGG 96 Q T Q A R C T M S V M M P G M G H C Q W 32 GCCGACCCTATCAGTCCTCTTGGGGACACCAAAGTGAAAAACGAGCCGTGCGCCTCCAGC 156 A D P I S P L G D T K V K N E P C A S S 52 TCCGGCAGCCAGAATCGCGGGAAGAGCGAGCCGCGGATCCGACGGCCCATGAACGCGTTT 216 S G S Q N R G K S E P R I R R P M N A F 72 ATGGTCTGGGCAAAGGATGAGCGCAAGAGACTGGCGCAGCAAAATCCGGACCTGCACAAC 276 M V W A K D E R K R L A Q Q N P D L H N 92 GCCGAGCTGAGCAAAATGTTGGGGAAATCGTGGAAAGCCCTTCCTGTCACAGAAAAGCAG 336 A E L S K M L G K S W K A L P V T E K Q 112 CCCTTTGTGGAGGAGGCCGAGCGGCTGCGGGTTCAGCACATGCAGGATCACCCCAACTAC 396 P F V E E A E R L R V Q H M Q D H P N Y 132 AAGTACCGGCCCCGGCGCCGGAAGCAGGTGAAGAGGATTAAGAGGCTGGACTCTGGTTTT 456 K Y R P R R R K Q V K R I K R L D S G F 152 CTAGTGCACGGTGTGTCCGATCACCAGGCCCAGTCGATGTCCGGGGACGGCAGAGTGTGT 516 L V H G V S D H Q A Q S M S G D G R V C 172 GTGGAGAGCCTGGGCCTGGGCTACCACGAGCACGGCTTCCAGCTTCCTCCACAGCCGCTC 576 V E S L G L G Y H E H G F Q L P P Q P L 192 AGCCACTACCGAGATGCTCAGGCTCTCGGAGGCCCCTCTTATGAAACCTACAACCTCCCA 636 S H Y R D A Q A L G G P S Y E T Y N L P 212 ACCCCTGACACCTCTCCTCTGGACGCTGTAGAGTCAGACTCCATGTTTTTCCCTCCACAT 696 T P D T S P L D A V E S D S M F F P P H 232 TCACAAGAGGACTGCCACATGATGCCTGCGTACGCTTACCACTCCCAGGTGGCAGAGTAC 756 S Q E D C H M M P A Y A Y H S Q V A E Y 252 CAGCCCCAGGACCCCCTCTCCAACCACCACAGCAATCCCATCCTGCACCGACACCCCACC 816 Q P Q D P L S N H H S N P I L H R H P T 272 TCGGCTCCAGAGCAGCCTGCCACCCTTCCCCCTTCCTACATGGGATGCCCCAACCCTCTG 876 S A P E Q P A T L P P S Y M G C P N P L 292 GCCATGTATTACACCCAGCACTGCAGTCCCAGCCACCCCAAGCGGCATCCTGGTGGGGCA 936 A M Y Y T Q H C S P S H P K R H P G G A 312 GGACAGCTCTCCCCCCCTCCTGACTCCCACCCTCACTCAGCAGACAGCGTGGAGCAGATG 996 G Q L S P P P D S H P H S A D S V E Q M 332 CACCACTCTGAGCTGCTAGCCGAGGTGGACCGCAGCGAGTTCGAGCAGTATTTGAGTTCC 1056 H H S E L L A E V D R S E F E Q Y L S S 352 TCTTCGGCGCGTGCGGACATGACAGGCTTGCCGTACGGGCCACATGAGGCTGGCATGCAA 1116 S S A R A D M T G L P Y G P H E A G M Q 372 GGACCTGAAAGCCTCATATCATCGGTGCTGTCAGACGCCAGCACAGCTGTGTATTACTGT 1176 G P E S L I S S V L S D A S T A V Y Y C 392 AGCTACAACAACTCCTAAcctcctgcccagcctgttaccccgctgcaaggacacttgatc 1236 S Y N N S * 397 tgacctcaaatctctgtagctaaatttgaaacaaaaatgtttttgttttgtttttttaaa 1296 tttgtttttcactgctagcacagaaggtccatgagattttaaaaggaagctttggagaag 1356 actgttgtactgtatctgtctaagaaaagaatattttacactggttttaactttttcctt 1416 ccacccttgcagggatatgaattcattttgtgataataaatattgtacagtcactatttt 1476 aaagtttatgtatatactga 1496

Page 168: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-142-

Figure 6. Multiple alignment of Sox17 proteins of Dicentrarchus labrax (dl, EU761243), Monopterus albus (ma, AAM47494), Takifugu rubripes (tr, AAQ18511), Gasterosteus aculeatus (ga, BT027942), Oryzias latipes (ol, ENSORLG00000011542), Tetraodon nigroviridis (tn, CAG10226 predicted sequence) and Danio rerio (dr, NP571362). Gaps introduced in the sequences to optimize the alignment are represented by dashes (-). Amino acids that are identical to the corresponding residue from the sea bass sequence are shown by a dot. Conserved N-terminal region (A) and C-terminal region (B) are shown. The HMG box characteristic of Sox genes is shaded. The asterisk indicates a perfect match among all aligned sequences whereas dots under the amino acid sequences represent conservative replacements; (.) indicates conserved, and (:) highly conserved. Comparison of the amino acid sequences was performed using the Clustal W multiple alignment program (http://www.ch.embnet.org/software/ClustalW.html). The percent amino acid identities with sea bass (dl) Sox17 are indicated at the end of the sequence.

A B

C

dl MSSPDAGYASDDQTQARCTMSVMMPGMGHCQWADPISPLGDTKVKNEPCASSSGSQNRGKSEPRIRRPMN ma ..................................TL..P......T.....G.V................ tr ................................V..L.........S.....G.................. ga ..................A..A......R......L.....A.........G..G.....T......... ol ..................A.......I.......AL.....A.........G....S............. tn ...................................L.........S.....G.................. dr ........S...PS.TSSCS........Q.P.V..L...S.S.S.H.K.SAAGPG--............. ********:*** :*: . *.****:*:* *.*.:** .*:* * * *::.. . ***:********* dl AFMVWAKDERKRLAQQNPDLHNAELSKMLGKSWKALPVTEKQPFVEEAERLRVQHMQDHPNYKYRPRRRK ma ...................................................................... tr ...................................................................... ga .........................................R............................ ol ...................................................................... tn ...................................................................... dr .....................................MVD.R...........K................ *************************************:.:*:***********:**************** dl QVKRIKRLDSGFLVHGVSDHQAQSMSGDGRVCVESLGLGYHEHGFQLPPQPLSHYRDAQALGGPSYETYN ma ..............P.......P..P..S....G......P..S..V......................S tr ................AA...G.PLA.E....M.............IHS....................S ga .....................GP..P....A.A....--.......V...Q.G......G.........S ol .........................P....................V.S...G....P.........P.S tn ................AA...S..IA.E....M.............I.S..................A.S dr ....N...EPS.PLP.MC.AKMTLCTEGMSAGYSGA..PQYCENHT.FESYSLPTP.PSPMDAGTT.FFA **** ***:..* : * .* : . . . * ... : . *.. :.. : * : dl LPTPDTSPLDAVESDSMFFPPHSQE---DCHMMPAYAYHSQVAEYQPQDPLSNHHSNPILHRHPTSAPEQ ma ....................Q....---.....S..YHS-.A....S..............G..V..... tr ...................Q.....---........P..P.A......................A..... ga ...............L....S....---.............A........HG...G........G.T... ol ...................S..T..---.....S..P.P....DF...EH.......T......A.VS.. tn .............P.....Q.....---......T.P..P.A........I.S...........P..... dr QLQDQSAFSYHHQQEHH.QEQTNILNDTH..GNTQTLKSR.SHSIAYSNINT.TN..LHAPINAQLSSIN ::: : : * . .** . * . .: . :.* :. . : dl ---PATLPPSYMGCPNPLAMYYTQHCSPSHPKRHPGGAGQLSPPPD-SHPHSADSVEQMHHSELLAEVDR ma STQ..A....................N...................-........M.............. tr PPQ.S....A.........L...-....G.T......P........-.....T.......QA...S.... ga PLQS.N......................G.................SH...P.................. ol PHQTPN..QA....H.............N.................---SQ....M.........G.... tn PPQGSA...A.........L...-....G.A...............-.Q..P........QA...S.... dr LQQVFHENANPQISHH.GTHLNIFNR...SSSH.AMTPAY.NC.STLDTFYNSS.QMKELSHCVSSHTHK . :* : : .*. ..:*. .. *. *. :.* : : ....: dl SEFEQYLSSSSARADMTG------------LPYGPHEAGMQGPESLISSVLSDASTAVYYCSYNNS ID ma ................I.------------.S.................................. 91.7%tr ...........G.G..A.------------.A..A...A........................... 89.7%ga .............V..A.------------HYG-................................ 89.0%ol N.................------------.......P............................ 88.7%tn .......N...G..E.A.------------.A..S...P.P....................... 87.7%dr QQSIAEAQ.QAST.THSSGQMVDEVEFEHC.SF.VPS.PLP.SD-...T......S.....G.... 39.4% .: .*.:. . .. : *.: ***:******:*****.****

Page 169: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-143-

Figure 7. Multiple alignment of Sox17 protein HMG domain amino acid sequences of different species: Dicentrarchus labrax (dl), Monopterus albus (ma), Takifigu rubripes (tr), Tetraodon nigroviridis (tn), Gasterosteus aculeatus (ga), Oryzias latipes (ol), Danio rerio (dr), Pan troglodytes (pt), Homo sapiens (hs), Macaca mulatta (mcm), Mus musculus (mm), Ratus norvegicus (rn), Gallus gallus (gg), Canis familiaris (cf), Xenopus tropicalis (xt), Xenopus laevis (xl), Eleutherodactylus coqui (ec), Oreochromis niloticus (on) and Acipenser sturio (ast). Gaps introduced in the sequences to optimize the alignment are represented by dashes (-). Residues identical to those of the HMG-box consensus sequence (csHMG) are indicated by dots (.). ClustalW consensus sequence is symbolized with asterisks indicating a perfect match among all aligned sequences, whereas dots represents conservative replacements under the amino acid sequences; (.) indicates conserved, and (:) highly conserved. Comparison of the amino acid sequences was performed using ClustalW multiple alignment program (http://www.ch.embnet.org/software/ClustalW.html). The percent amino acid identities with Dicentrarchus labrax Sox17 HMG-box and with HMG-box consensus sequence are indicated at the end of each sequence.

Figure 8. Phylogenetic rooted tree constructed using the Neighbour-Joining method in Mega version 4 (Tamura et al., 2007). Bootstrap support values for each node are shown (percentage of bootstrap trees supporting the node, out of 1000 trees). Human SRY was used as an outgroup. Sequences were as follows: Dicentrarchus labrax (EU761243), Monopterus albus (ma,

AAM47494), Gasterosteus aculeatus (ga, BT027942), Oryzias latipes (ol, ENSORLG00000011542), Tetraodon nigroviridis (tn, CAG10226), Takifigu

rubripes (tr, AAQ18511), Danio rerio (dr, NP571362), Xenopus tropicalis (xt, NP988849), Xenopus laevis (xl, NM001088162), Eleutherodactylus coqui (ec, ABN58783), Gallus gallus (ga, BAE06069), Mus musculus (mm, NP035571), Ratus norvegicus (rn, NM00102478), Canis familiaris (cf, XM544084), Macaca mulatta (mcm, XM001083536), Pan troglodytes (pt, XM001153136) and Homo sapiens (hs, BAB83867).

10 20 30 40 50 60 70 80 ....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....| csHMG DHIKRPMNAFMVWSRGERRKIAQQNPDMHNSEISKRLGKRWKLLSESEKRPFIEEAERLRAQHMKDYPDYKYRPRRKKK ID dl PR.R.........AKD..KRL......L..A.L..M...S..A.PVT..Q..V.......V...Q.H.N.......R.Q ID 67.0% ma PR.R.........AKD..KRL......L..A.L..M...S..A.PVT..Q..V.......V...Q.H.N.......R.Q 100% 67.0% tr PR.R.........AKD..KRL......L..A.L..M...S..A.PVT..Q..V.......V...Q.H.N.......R.Q 100% 67.0% tn PR.R.........AKD..KRL......L..A.L..M...S..A.PVT..Q..V.......V...Q.H.N.......R.Q 100% 67.0% ol PR.R.........AKD..KRL......L..A.L..M...S..A.PVT..Q..V.......V...Q.H.N.......R.Q 100% 67.0%ga PR.R.........AKD..KRL......L..A.L..M...S..A.PVT.....V.......V...Q.H.N.......R.Q 98.7% 68.3% dr PR.R.........AKD..KRL......L..A.L..M...S..A.PMVD....V.......VK..Q.H.N.......R.Q 93.6% 65.8%pt SR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3% hs SR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3%mcm SR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3%mmCRAb SR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3%mmCRAa SR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3%rnCRAa SR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3%gg AR.R.........AKD..KRL......L..A.L..M...S..A..LA.....V.......V...Q.H.N.......R.Q 93.6% 69.6%xt a AR.R.........AKD..KRL......L..A.L..M...S..A.TLA.....V.......V...Q.H.N.......R.Q 93.6% 68.3%cf SR.R.........AKD..KRL......L..A.L..M...S..A..LRR....V.......V...Q.H.N.......R.Q 92.4% 68.3%xl a2 AR.R.........AKD..KRL......L..A.L..M...S..S.TLA.....V.......V...Q.H.N.......R.Q 92.4% 68.3%xl a1 AR.R.........AKD..KRL......L..A.L..M...S..S.TLA.....V.......V...Q.H.N.......R.Q 92.4% 68.3%ec AR.R.........AKD..KRL......L..A.L..M...T..S.TLP.....V.......V...Q.H.N.......R.Q 91.1% 68.3%on V..........AKD..KRL......L..A.L..M...S..S.PIT..Q..V.......V...Q.H.N........ 88.6% 67.0% xt b AR.R.........AKD..KRL......L..A.L..M...S..S.TLAS....VK......V..IQ.............Q 84.8% 68.3% ast a ....AKD..KRL......L..A.L..M...S..A.PVT.....V.......V...Q.H 72.1% 49.3%ast b ....AKD..KRL.H....L..A.L..M...S..A.PVT.....V.......V...Q.H 70.8% 48.1% :::*********::.**:::*:****:**:*:** *** ** *. *:**::******.:*::*:*:*******:*:

hsSRYDanio rerio

Homo sapiensPan troglodytesMacaca mulata

Canis familiarisMus musculusRatus norvegians

Gallus gallusXenopus tropicalisXenopus laevis

Eleutherodactylus coquiTakifugu rubripesTetraodon nigroviridis

Oryzias latipesGasterosteus aculeatusMonopterus albus

Dicentrarchus labrax

100

100

100

100100

94

100

100

98

95

75

92

100

0.05

Mammals

Birds

Amphibians

Fish

hsSRYDanio rerio

Homo sapiensPan troglodytesMacaca mulata

Canis familiarisMus musculusRatus norvegians

Gallus gallusXenopus tropicalisXenopus laevis

Eleutherodactylus coquiTakifugu rubripesTetraodon nigroviridis

Oryzias latipesGasterosteus aculeatusMonopterus albus

Dicentrarchus labrax

100

100

100

100100

94

100

100

98

95

75

92

100

0.05

hsSRYDanio rerio

Homo sapiensPan troglodytesMacaca mulata

Canis familiarisMus musculusRatus norvegians

Gallus gallusXenopus tropicalisXenopus laevis

Eleutherodactylus coquiTakifugu rubripesTetraodon nigroviridis

Oryzias latipesGasterosteus aculeatusMonopterus albus

Dicentrarchus labrax

100

100

100

100100

94

100

100

98

95

75

92

100

0.05

Mammals

Birds

Amphibians

Fish

Page 170: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-144-

0 50 100 150 200 250 300

0

2

4

6

8

10

12

14

16

18FemalesMales

a

bc bc

a

a a ab a

bccd

de

e

0 10 20 30 40 50 60 70

0

2

4

6

8

10

12

14

16

18FemalesMales

sb s

ox17

MN

E x

105

Days post hatching (dph)

cyp19a MNE x 105

sb s

ox17

MN

E x

105

A

B

Figure 9. sox17 RT-PCR of sea bass larvae reared at 15ºC or 20ºC. RNA was extracted and pooled from 4 individuals sampled at different times during early development, from 4 days post hatching (dph) to 67 dph. 18s rRNA levels were monitored to confirm that similar amounts of cDNA were used as substrate in each RT-PCR reaction.

Figure 10. A, Sea bass sox17 expression in gonads from females and males at different developmental stages. Total RNA (1 µg) was reverse transcribed to cDNA and amplified by real-time PCR. Results are represented as MNE (mean normalized expression) that takes into account standardization of data against 18s rRNA and gene efficiency corrections. Data shown are expressed as mean ± S.E.M (n=6). Two-way ANOVA, with sex and developmental time in days post hatch (dph) as fixed factors, was carried out followed by Tukey’s multiple comparisons test to analyze sox17 expression levels throughout development and between sexes (P < 0.05). The dashed line separates the period from which all fish were histologically verified as males or females in each group. Open bar represents the period of sex differentiation in sea bass, while the black bar represents the period in which individual fishes can be sexed using an early sex marker gene, the gonadal aromatase (cyp19a) gene (Blázquez, Navarro-Martín and Piferrer, unpublished results). B, Relationship between cyp19a and sox17 expression in sea bass during sexual differentiation. Mean Normalized Expression

(MNE) of each sample replicate in each gene was referenced to 18s expression levels using NE= (Etarget)Ct target / (Eref)Ct ref. Correlation analysis was performed on an individual fish basis.

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

20ºC

15ºC

4 11 18 25 32 38 46 53 60 67 (dph)

-ve-R

T

15ºC18s rRNA

sb Sox17

Page 171: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results III

-145-

Figure 11. Tissue-specific expression of sb sox17 and sb t-sox17 transcripts. Total RNA (1 µg) from adult sea bass ovary (O), testis (T), female brain (Bf), male brain (Bm), muscle (M), liver (L), stomach (St), heart (H), intestine (I) and skin (Sk) was reverse transcribed to cDNA and amplified by PCR. A 100 bp marker was used to determine the size of PCR products. Also, a negative control (-) was included to check false positives. 18s rRNA was used as a control of the efficiency of the reverse transcribed step.

O T Bf MBm L St H I Sk -

T Bf MBm L St H I Sk -18s rRNA18s rRNA

sb sox17

sb i-sox17sb i-sox17

O600 bp

100 bp

Page 172: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 173: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 174: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 175: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-147-

RESULTS IV

Participació d’un mecanisme epigenètic en els canvis de les

proporcions de sexes induïts per la temperatura en les poblacions

de peixos

Laia Navarro-Martín, Jordi Viñas, Arantxa Gutierrez, Luciano di Croce i Francesc Piferrer

Identificar els senyals mediambientals i els seus mecanismes de percepció i transducció ha

estat un dels interesos principals en la recerca eco-devo. El canvi de les proporcions sexuals

en resposta a la fluctuació tèrmica durant el desenvolupament primerenc és comú en molts

vertebrats, incloent-hi els peixos i els rèptils. Malgrat això, el mecanisme responsable romàn

desconegut. En el nostre estudi mostrem que en el llobarro, un peix amb un sistema poligènic

de determinació sexual on les proporcions sexuals són fàcilment influenciades per la

temperatura, els mascles tenen uns nivells de metilació del DNA en el promotor del gen

aromatasa gonadal (cyp19a), dues vegades superior que les femelles. El gen cyp19a codifica

un enzim esteroidogènic que catalitza la conversió irreversible dels andrògens a estrògens,

que són essencials per a la diferenciació sexual de les femelles en els vertebrats no mamífers.

També mostrem que les femelles exposades a temperatures anormalment altes són

convertides a mascles fenotípics i que aquesta masculinització implica un control en

l’expressió de cyp19a mitjançat per la metilació del seu promotor, amb una relació inversa

entre la seva expressió i els nivells de metilació. A més, mostrem que la metilació induïda del

promotor de cyp19a, suprimeix l'habilitat de SF-1 i Foxl2, dos potents reguladors

transcripcionals de cyp19a, d’estimular la seva transcripció in vitro. Finalment, mostrem que

un CpG adjacent al lloc d’unió del Sox i a la TATA box es troba conservat tant en espècies

filogenèticament properes com en distants. Així, la metilació del DNA del promotor de

cyp19a és, probablement, el mecanisme llargament buscat que connecta la temperatura i les

proporcions sexuals en espècies amb determinació sexual dependent de la temperatura,

incloent-hi els peixos i els rèptils.

Page 176: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 177: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-149-

An epigenetic mechanism involved in temperature-induced sex

ratio shifts in fish populations

Laia Navarro-Martín1, Jordi Viñas1, Arantxa Gutierrez2,

Luciano di Croce2 & Francesc Piferrer1*

1Institute of Marine Sciences, Spanish Council for Scientific Research (CSIC), Barcelona,

Spain.

2Center for Genomic Regulation (CRG), Barcelona, Spain.

To be submitted to a international peer-reviewed journal of wide audience

One-sentence summary

We demonstrate in fish sex-specific and temperature-dependent DNA methylation of the

gonadal aromatase (cyp19a) promoter, showing that the masculinization of genetic females

into phenotypic males observed in many species when animals are exposed to abnormally

high water temperature involves DNA methylation-mediated control of cyp19a gene

expression, and suggest that this may be the long sought after mechanism connecting

environmental temperature and sex ratios in species with temperature-dependent sex

determination.

Correspondence to: Dr. Francesc Piferrer. Institut de Ciències del Mar, Consejo Superior de

Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain. e-mail:

[email protected]; Tel. +34-932309567; Fax: +34-93-2309555.

Page 178: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-150-

Abstract

Identifying environmental cues and their perception and transduction mechanisms is a

central focus of eco-devo research. Sex ratio shifts in response to thermal fluctuation during

early development is common in many vertebrates, including fishes and reptiles. However,

the proximate mechanism linking environmental temperature and sex ratios has been elusive.

Here we show in the sea bass, a fish with a polygenic system of sex determination where sex

ratios are easily influenced by temperature, first, that males have twice as much DNA

methylation levels than females in the promoter of sb cyp19a, the gene coding for ovarian

aromatase. This steroidogenic enzyme catalyzes the irreversible conversion of androgens into

estrogens, which are essential for female sex differentiation in non-mammalian vertebrates.

Next, we show that females exposed to abnormally high water temperature are masculinized

into phenotypic males and that this masculinization involves DNA methylation-mediated

control of aromatase gene expression, with an inverse relationship between aromatase

expression and methylation levels. We also show that induced methylation of the sb cyp19a

promoter suppressed the ability of SF-1 and Foxl2, two potent transcriptional regulators of

cyp19a, to stimulate aromatase transcription in vitro. Finally, we show that a CpG adjacent to

a Sox binding site and the TATA box is conserved in both phylogenetically close and distant

species. Thus, DNA methylation of the aromatase promoter most likely is the long sought

after mechanism connecting environmental temperature and sex ratios in species with

temperature-dependent sex determination, including fish and reptiles.

Main text

The sex ratio is a crucial demographic parameter very important for population

viability, and is first established by the process of sex determination and differentiation.

Vertebrates have two major sex determining systems: Genotypic (GSD) and temperature-

dependent (TSD). Except rare exceptions, TSD species do not have sex chromosomes.

Instead, the temperature experienced during a particular time during early development called

the thermolabile period irreversibly determines gonadal sex. So far, TSD has been clearly

established in fish and reptiles. However, and regardless of the sex determining system, in

non-mammalian vertebrates the androgen-to-estrogen ratio determines whether a sexually

Page 179: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-151-

undifferentiated gonad will develop as a testis or ovary. This ratio depends of the aromatase

enzymatic activity, which converts androgens into estrogens. Teleost fish have two genes

encoding for aromatase (cyp19), one preferably expressed in the gonads (cyp19a) and the

other in the brain (cyp19b). Several lines of research have now clearly established a critical

role of ovarian aromatase and in consequence estrogens in ovarian differentiation in

gonochoristic fish (Baroiller et al., 1999; Devlin and Nagahama, 2002) and for sex inversion

on protandrous hermaphroditic fish (Baroiller et al., 1999). In this regard, expression and

activity of cyp19a is higher in females than in males at the time of sex differentiation and also

in adult fish (D'Cotta et al., 2001; Blázquez et al., 2008).

In ectothermic vertebrates, including fish, amphibians and reptiles, the effects of

environmental temperature on sex ratios are mediated by changes in aromatase expression at

critical thermolabile periods during early gonadal development. Recently, it has been shown

that fish who actually possess TSD exhibit only one general sex ratio response to temperature

(Ospina-Álvarez and Piferrer, 2008), with more males produced with increasing temperatures.

In many species, aromatase inhibition correlates with exposure to increased temperature and

results in genetic females developing as phenotypic males. However, the molecular

mechanism by which temperature effects are translated in altered sex ratios is not known and

has been a subject of debate. Gorelick (2003) hypothesiszed that different methylation

patterns of virtually identical sex chromosomes in species with TSD could be altered by small

environmental changes determining the sex of individuals. He also proposed that sex

differences are initially determined by different patterns of methylation on nuclear DNA of

females and males.

Sea bass is a gonochoristic species without sexual dimorphism. Recently a polygenic

system with environmental influences has been suggested in the sea bass (Vandeputte et al.,

2007), where sex ratios are the result of interaction between parental and temperature

influences (Piferrer et al., 2005; Saillant et al., 2006; Vandeputte et al., 2007). Several studies

have evidenced that exposure to abnormally high temperatures (>17°C) during the

thermolabile period results in male-biased sex ratios since about half of the genotypic females

are masculinized into phenotypic males (supplementary Figs. 1a and b) with variations in the

response depending upon the parental component. Here is worth pointing out that abnormally

high temperatures experienced very early in sea bass development (~0-60 dpf), when the

Page 180: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-152-

gonadal ridges are just being formed and the gonads contain only a few germ cells (Roblin

and Bruslé, 1983), have profound organizational effects that are only evidenced during sex

differentiation after 120 dpf, when levels of sb cyp19a are suppressed, in agreement with the

epigenetic mechanism described in this study.

Our hypothesis was that differences in DNA methylation of the sb cyp19a promoter

might account for sex differences in sb cyp19a expression and that temperature effects on sex

ratios may be mediated by changes in DNA methylation of the sb cyp19a promoter.

Two groups of newly hatched sea bass larvae were reared throughout the thermolabile period,

0-60 days post-fertilization (dpf), at the low temperature of 15°C (LT group), the same

temperature that sea bass experiences in the wild, or switched gradually to a the high

temperature of 21°C at 10 (HT group). Thus, fish in the HT were reared at high temperature

for most of the thermolabile period group, respectively (supplementary Fig. 2). The sea bass

(sb) cyp19a promoter was recently characterized by Galay-Burgos et al. (2006) and the

localization of putative binding sites as well as CpG dinucleotids are represented in

supplementary Fig. 3. The amount of methylation in a fragment close to the transcription start

site in the sb cyp19a promoter was determined by bisulphite sequencing according to

phenotypic sex and the average methylation per position and fish were calculated. The typical

methylation pattern of sb cyp19a promoter in females and males reared at low and high

temperature is shown in supplementary Fig. 4. Results evidenced differences in DNA

methylation levels of the sb cyp19a promoter, with female with significantly (P = 0.005)

lower levels than males (Fig 1a). In addition, sex-related differences were also clearly

observed by distinct frequency distribution of average methylation levels, with values 12.9–

72.8% in females and 71.4–97.1% in males, with mean ± SEM of 43.2 ± 3.04 in the former

and 81.5 ± 8.58 in the latter (Fig. 1b). This clearly shows that methylation levels of sb cyp19a

promoter are sex-specific in of one-year-old sea bass. Similar results were found in the cattle

and sheep cyp19a promoter regions P1.1, P1.5 and P2, where methylation levels were tissue-

specific (Furbass et al., 2001; Vanselow et al., 2001; Vanselow et al., 2005). In the model fish

medaka, Oryzias latipes, five CpGs located within a region of approximately 300 bp of the

cyp19a promoter were methylated mostly in testis and female brain and unmethylated in

ovary and male brain (Contractor et al., 2004). Together, these results suggest that changes in

methylation levels of the cyp19a promoter is a generalized mechanism present from fish to

Page 181: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-153-

mammals. In the mouse, Rohx5 gene is regulated by two independently promoters, Pd and Pp,

differentially active in ovary and testis, respectively. Some studies have shown that in the

ovary Pd promoter was unmethylated, whereas Pp was methylated, consistent with the fact

that Pd was exclusively activated in the ovary. In contrast, Pp was specifically activated in the

testis, where it was unmethylated, whereas in the ovary it was methylated (Rao and

Wilkinson, 2006).

The sb cyp19a promoter methylation levels of males exposed to high temperature were higher

than those of males exposed to low temperature, although differences were not statistically

significant (77.7 vs 85.3%; t-test P = 0.062), probably because levels were already very high.

In contrast, high temperature significantly increased this figure from 37.1 to 53.9% in females

(t-test, P = 0.005) (Fig. 1a). Temperature effects on the methylation of certain promoters is

well studied in plants. In Antirrhinum majus temperature induces changes in the methylation

of the transposon Tam3, resulting in hypermethylation of the gene at higher temperatures and

a reduction of methylation levels at lower temperatures (Hashida et al., 2003). There are also

evidences on the influences of environmental condition in the developmental fate of animals

mediated by epigenetic mechanisms (Jaenisch and Bird, 2003) resulting in phenotypic

plasticity. This is the situation in honeybees, where nutrition input produces two different

forms of adult female honeybees, the fertile queens and the sterile (Kucharski et al., 2008). In

some eurythermal fishes such as the common carp, Cyprinus carpio, physiological winter-

acclimation related with methylation had been suggested in the regulation of gene expression

of the histone variant macroH2A (Pinto et al., 2005). Several studies have shown different

levels of methylation in the genomes of vertebrates, with fish and amphibians exhibiting

higher levels than reptiles and, in turn, higher levels than birds and mammals (Varriale and

Bernardi, 2006b, a). In addition, an inverse relationship between DNA methylation and fish

body temperature was observed (Jabbari and Bernardi, 2004; Varriale and Bernardi, 2006b)

Thus, the overall genome methylation patterns and the DNA methylation levels typically

found in imprinting and developmental regulation are two unrelated phenomena that share the

same mechanism (Varriale and Bernardi, 2006b).

When sexed at about one year of age, the LT group had 74% females whereas the HT

had 56% (Fig. 1c). It has been demonstrated that temperature is capable to regulate the

Page 182: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-154-

expression of certain genes. For example, in some eurythermal fish, the expression of a

particular set of genes, responsible for the contractile characteristics of the muscle, are

differently expressed at low vs high temperatures (Goldspink, 1995). Also, temperature is

known to influence some major genes involved in the sex differentiation cascade and, in

particular, either directly or indirectly, to influence aromatase expression and activity and

consequently estrogen disponibility. The effects of environmental temperature on sex ratios

are mediated by changes in aromatase expression at critical thermolabile periods during early

gonadal development. In many species, aromatase inhibition correlates with exposure to

increased temperature and results in genetic females developing as phenotypic males. Some

examples can be found in tilapia and Japanese flounder (Kitano et al., 1999; D'Cotta et al.,

2001), where cyp19a expression was higher in fish reared at low temperatures. Quantitative

real-time PCR analyses were used to determine sb cyp19a expression levels in females from

HT and LT groups. Significant differences (P = 0.003) in gene expression were found in one

year-old females reared at high and low temperatures, with the former with lower expression

than the latter (Fig. 1d). In addition, similarly to what has been observed in cattle and sheep—

where tissue-specific differences in DNA methylation account for tissue-specific differences

in aromatase gene expression (Furbass et al., 2007)—our results show an inverse correlation

between sb cyp19a expression and methylation levels in females, with (r2=0.2922; P = 0.01)

(Fig. 1e). This observation reinforces the relationship between methylation and transcription

repression in sb cyp19a regulation and suggests that low methylation levels of the sb cyp19a

promoter are required for ovarian development.

Different CpGs were differentially methylated according to sex or temperature. The

methylation level of each analyzed CpG in males and females reared at low and high

temperatures are summarized in Fig. 1f. CpG in position –13 showed the highest sex-related

differences, suggesting that this site is important for aromatase gene transcription. Thus, a

significant correlation between methylation of the CpG in position –13 and sb cyp19a

expression levels was found. This position is near to a TATA box and a Sox binding site, and

could therefore be important for transcription initiation. All positions had low levels of

methylation in fish reared at low temperatures vs reared at high (except position -13 in males)

(supplementary Table 1).

It has been suggested that the molecular mechanisms underlying sex ratio responses to

temperature must be conserved throughout vertebrates (Janzen and Krenz, 2004). To

Page 183: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-155-

determine whether the number and position of CpGs was conserved, 600 bp of the sb cyp19a

promoter, including all CpG islands analyzed in the present study and 94 bp within the

opening reading frame, were aligned with the promoter region of both phylogentically-related

and -unrelated piscine species. Overall sequence similarity was 53%, with a clear

conservation of some of the transcription factors binding sites including the TATA box

(supplementary Fig. 5). Interestingly, the CpG island located at position -13 was the most

conserved among all species, with three of the promoters presenting this CpG island exactly

at this position. This observation suggest that this epigenetic mechanism may be indeed

present in many species.

To further explore how methylation of the sb cyp19a could actually inhibit gene

expression in vitro studies were carried out. The transcription factor FoxL2 is able to bind to

the cyp19a promoter and capable of directly activating aromatase transcription in a number of

fish species including medaka (Nakamoto et al., 2006), Japanese flounder (Yamaguchi et al.,

2007) and tilapia (Wang et al., 2007). However, it has been suggested that Foxl2 best works

with the involvement of other cofactors (Nakamoto et al., 2006; Pannetier et al., 2006). Thus,

Foxl2 and SF-1 were correlated with cyp19a expression in tilapia, both spatially and

temporally (Wang et al., 2007). Co-transfection of cyp19a promoter constructs with either

SF-1 or Foxl2 significantly increased luciferase activity (Watanabe et al., 1999; Nakamoto et

al., 2007). Furthermore, simultaneous co-transfection of SF-1 and Foxl2 significantly

activated cyp19a promoter ~8-fold more than each one separately, demonstrating a

synergistically activation of cyp19a (Nakamoto et al., 2007). In the present study, SF-1 and

Foxl2 were co-transfected with sb cyp19a promoter to activate promoter luciferase activity.

Results showed that SF-1 and Foxl2 were each capable to activate sb cyp19a expression, and

that both factors acted sinergically when combined together (Fig. 2). Further, DNA

methylation of the sb cyp19a promoter suppressed transcription in vitro. The actual

methylation status of the vectors used was verified by analyzing band patterns on

electrophoresis gel after digestion with McrBC enzyme (Fig. 2, insert). This suggests that

methylation of the sb cyp19a promoter physically blocks the binding of Foxl2 and SF-1 to

their respective sites, thus preventing sb cyp19a transcriptional activation.

Page 184: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-156-

This study shows clear sex-related differences in sb cyp19a promoter methylation and

how temperature is able to influence this. However, what determines the different levels of sb

cyp19a promoter methylation between males and females reared at the normal temperature

experienced in the wild is at present unknown. Throughout development cell- and tissue-

specific methylation patterns are the result of the dynamic processes of de novo methylation,

or maintenance of the existing pattern, as well as demethylation (Hsieh, 2000). Thus, for

example, a certain methylation pattern is established in the gonads (Razin and Riggs, 1980)

but it changes as gametogenesis progresses (Monk et al., 1987). One possibility is that that

methylation and /or demethylation of specific genes, needed through development and

specifically during sex differentiation, may regulate its expression in a particularly manner.

Thus, sexual differentiation has to be regulated in a similar manner as the differentiation of

other tissues. In this regard, several DNA methyltranferases (Dnmts), the enzymes responsible

to transfer methyl groups to DNA, had been identified in fish. In zebrafish, eight different

Dnmts have been identified and characterized (Mhanni et al., 2001; Shimoda et al., 2005).

Studies in the zebrafish de novo methyltransferase dnmt7 have shown that is involved in the

gene-specific methylation of the no tail (nlt) gene, being the first methylases found to show

specific local methylation for one specific gene (Shimoda et al., 2005). Other studies have

shown spatial and temporal regulation of Dnmt1 expression in developing medaka and

Xiphophorus embryos, suggesting that this enzyme may play an important role during

development in fish (Altschmied et al., 2000). Thus, we suspect that methylation levels of sb

cyp19a and other genes involved in gonadal development and differentiation may be acquired

by imprinting and that methylation levels are a mechanism by which sex is determined in

normal (low temperature) sea bass gonadal development. In addition, DNA methylation had

been demonstrated to mediate the control of SRY gene expression in mouse gonadal

development (Nishino et al., 2004), suggesting that regulation of methylation levels can also

regulate genotypic sex determination.

In summary, to the best of our knowledge, this is the first report showing clear sex-

dependent differences in the DNA methylation level of the cyp19a promoter in any vertebrate.

Our data shows that the sb cyp19a promoter is significantly more methylated in males than

females. This agrees with the well established constitutively lower levels of cyp19a

expression in testes than in ovaries. Further, luciferase assays confirmed that DNA

Page 185: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-157-

methylation of the sb cyp19a promoter represses transcription in vitro. Together, these results

indicate that low methylation levels of the cyp19a promoter are required for normal ovarian

development, suggesting that cyp19a promoter methylation is the mechanism by which

cyp19a transcription is silenced in developing males during sex differentiation, preventing the

development of an undifferentiated gonad into an ovary. In addition, we show that in a fish

species where sex determination depends on the interaction between genotype and

environment, exposure to abnormally high temperatures during the thermolabile period is able

to modify methylation patterns of the cyp19a promoter, resulting in a significant increase in

the average methylation level of the cyp19a promoter of females past a certain threshold,

approaching the values characteristic of genotypic males and resulting in decreased gene

expression (Fig. 3). This would result in that genotypic females that under normal conditions

would differentiate as phenotypic females differentiate as phenotypic males instead, altering

population sex ratios, as observed in many species when animals are exposed to high

temperatures. Importantly, it has been suggested that in species with GSD such as mammals,

where sex determination depends on the inheritance of the sex determining gene SRY, sex is a

threshold dichotomy mimicking a single gene effect (Mittwoch, 2006). Our results indicate

that such a threshold dichotomy also applies to a completely distinct scenario: cyp19a

promoter methyation levels of males vs females, implying that the two major sex determining

mechanisms of vertebrates, GSD and TSD, can be unified into a single common proximate

mechanism. Thus, temperature modulates sex ratios through changes in the proportion of

animals whose cyp19a promoter methylation level is above or below a threshold. Together,

these results demonstrate an epigenetic mechanism by which changes in environmental

temperature can affect an essential biological function such as sex differentiation, with

consequences in resulting population sex ratios. Finally, we hipothesize that the epigenetic

mechanism described herein is not exclusive of GSD species easily influenced by

temperature, as is the sea bass, but that most likely is the long sought after mechanism

connecting environmental temperature and sex ratios in species with TSD, including both fish

and reptiles.

Reference

Altschmied, J., Volff, J.N., Winkler, C., Gutbrod, H., Korting, C., Pagany, M., Schartl, M., 2000. Primary structure and expression of the xiphophorus DNA-(cytosine-5)-methyltransferase XDNMT-1. Gene 249, 75-82.

Page 186: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-158-

Baroiller, J.F., Guigen, Y., Fostier, A., 1999. Endocrine and environmental aspects of sex differentiation in fish. Cellular and Molecular Life Sciences 55, 910-931.

Blázquez, M., González, A., Papadaki, M., Mylonas, C., Piferrer, F., 2008. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). General and Comparative Endocrinology 158, 95-101.

Contractor, R.G., Foran, C.M., Li, S.F., Willett, K.L., 2004. Evidence of gender- and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. Journal of Toxicology and Environmental Health-Part A 67, 1-22.

D'Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., Baroiller, J.F., 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of Tilapia Oreochromis niloticus. Molecular Reproduction and Development 59, 265-276.

Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-364.

Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479-491.

Furbass, R., Selimyan, R., Vanselow, J., 2007. DNA methylation and chromatin accessibility of the proximal Cyp19 promoter region 1.5/2 correlate with expression levels in sheep placentomes. Molecular Reproduction and Development.

Furbass, R., Said, H.M., Schwerin, M., Vanselow, J., 2001. Chromatin structure of the bovine Cyp19 promoter 1.1 - DNaseI hypersensitive sites and DNA hypomethylation correlate with placental expression. European Journal of Biochemistry 268, 1222-1227.

Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S., Sweeney, G.E., 2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and identification of single nucleotide polymorphisms. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 145, 47-53.

Goldspink, G., 1995. Adaptation of fish to different environmental temperature by qualitative and quantitative changes in gene expression. Effects of Rising Temperature on the Ecology and Physiology of Aquatic Organisms. Journal of Thermal Biology 20, 167-174.

Gorelick, R., 2003. Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biological Journal of the Linnean Society 80, 353.

Hashida, S.N., Kitamura, K., Mikami, T., Kishima, Y., 2003. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology 132, 1207-1216.

Hsieh, C.L., 2000. Dynamics of DNA methylation pattern. Current Opinion in Genetics and Development 10, 224-228.

Jabbari, K., Bernardi, G., 2004. Body temperature and evolutionary genomics of vertebrates: a lesson from the genomes of Takifugu rubripes and Tetraodon nigroviridis. Gene 333, 179-181.

Jaenisch, R., Bird, A., 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33 Suppl, 245-254.

Page 187: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-159-

Janzen, F.J., Krenz, J.G., 2004. Phylogenetics: Which was first, TSD or GSD? In: Valenzuela, N., Lance, V. (Eds.), Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washigton, pp. 121-130.

Kitano, T., Takamune, K., Kobayashi, T., Nagahama, Y., Abe, S.I., 1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). Journal of Molecular Endocrinology 23, 167-176.

Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., 2008. Nutritional Control of Reproductive Status in Honeybees via DNA Methylation. Science 319, 1827.

Mhanni, A.A., Yoder, J.A., Dubesky, C., McGowan, R.A., 2001. Cloning and sequence analysis of a zebrafish cDNA encoding DNA(cytosine-5)-methyltransferase-1. Genesis 30, 213-219.

Monk, M., Boubelik, M., Lehnert, S., 1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371-382.

Nakamoto, M., Matsuda, M., Wang, D.S., Nagahama, Y., Shibata, N., 2006. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications 344, 353-361.

Nakamoto, M., Wang, D.S., Suzuki, A., Matsuda, M., Nagahama, Y., Shibata, N., 2007. Dax1 suppresses P450arom expression in medaka ovarian follicles. Molecular Reproduction and Development 74, 1239-1246.

Nishino, K., Hattori, N., Tanaka, S., Shiota, K., 2004. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. Journal of Biological Chemistry 279, 22306-22313.

Ospina-Álvarez, N., Piferrer, F., 2008. Temperature-dependent sex determination in Fish. Prevalence, existence of a single sex ratio response pattern, and possible effects on climate change. Public Library of Science One (in press).

Pannetier, M., Fabre, S., Batista, F., Kocer, A., Renault, L., Jolivet, G., Mandon-Pepin, B., Cotinot, C., Veltla, R., Pailhoux, E., 2006. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. Journal of Molecular Endocrinology 36, 399-413.

Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). General and Comparative Endocrinology 142, 102-110.

Pinto, R., Ivaldi, C., Reyes, M., Doyen, C., Mietton, F., Mongelard, F., Alvarez, M., Molina, A., Dimitrov, S., Krauskopf, M., Vera, M.I., Bouvet, P., 2005. Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Letters 579, 5553-5558.

Rao, M.K., Wilkinson, M.F., 2006. Identification of a CpG-free methylation boundary that serves as an insulator between alternative sex-specific promoters, Society of the Study of reproduction. Annual meeting. Biology of reproduction, Omaha, Nebraska, pp. 73.

Razin, A., Riggs, A.D., 1980. DNA methylation and gene function. Science 210, 604-610. Roblin, C., Bruslé, J., 1983. Ontogenèse gonadique et différenciation sexuelle du loup

Dicentrarchus labrax, en conditions d’elevage. Reprod. Nutr. Dévelop 23, 115-127. Saillant, E., Dupont-Nivet, M., Haffray, P., Chatain, B., 2006. Estimates of heritability and

genotype-environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139-147.

Page 188: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-160-

Shimoda, N., Yamakoshi, K., Miyake, A., Takeda, H., 2005. Identification of a gene required for de novo DNA methylation of the zebrafish no tail gene. Developmental Dynamics 233, 1509-1516.

Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Chatain, B., 2007. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176, 1049-1057.

Vanselow, J., Pohland, R., Furbass, R., 2005. Promoter-2-derived Cyp19 expression in bovine granulosa cells coincides with gene-specific DNA hypo-methylation. Molecular and Cellular Endocrinology 233, 57-64.

Vanselow, J., Furbass, R., Zsolnai, A., Kalbe, C., Said, H.M., Schwerin, M., 2001. Expression of the aromatase cytochrome P450 encoding gene in cattle and sheep. Journal of Steroid Biochemistry and Molecular Biology 79, 279-288.

Varriale, A., Bernardi, G., 2006a. DNA methylation in reptiles. Gene 385, 122-127. Varriale, A., Bernardi, G., 2006b. DNA methylation and body temperature in fishes. Gene

385, 111-121. Wang, D.S., Kobayashi, T., Zhou, L.Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K.,

Morohashi, K., Nagahama, Y., 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Molecular Endocrinology 21, 712-725.

Watanabe, M., Tanaka, M., Kobayashi, D., Yoshiura, Y., Oba, Y., Nagahama, Y., 1999. Medaka (Oryzias latipes) FTZ-F1 potentially regulates the transcription of P-450 aromatase in ovarian follicles: cDNA cloning and functional characterization. Molecular and Cellular Endocrinology 149, 221-228.

Acknowledgements

We thank Drs. Silvia Zanuy and Manuel Carrillo (Institute of Aquaculture, Castellón

Spain) for kindly providing the fish, Elvira Martínez and Dr. Maxi Delgado for fish rearing

assistance, Silvia Joly for technical support, Drs. Y. Nagahama and D. Wang for kindly

providing the expression plasmids containing tilapia SF-1 and Foxl2 transcription factors, and

Dr. Mercedes Blázquez for helpful comments on the manuscript. LN and JV were supported

by pre- and postdoctoral scholarships, respectively, from the Ministry of Education and

Science. Research funded by Spanish Government project “Sexgene” FP.

Author information: The authors have no conflicts of interest and nothing to declare.

Page 189: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-161-

Figures

Figure 1. Effects of temperature on sea bass sex ratios affecting cyp19a promoter methylation and gene expression patterns. a, Resulting differences in sb cyp19a promoter DNA methylation according to sex and temperature treatment; data represents mean ± S.E.M; F= 50.26, P = 0.000, two-way ANOVA b, Frequency distribution of average methylation levels in relation to phenotypic sex. The dashed line indicates the methylation threshold (67%) calculated with the 95% confidence interval. This threshold separates typical sea bass female and male sb cyp19a methylation levels. c, Temperature treatment resulting sex phenotypes. d, Female sb cyp19a expression assessed by Q-PCR; data as mean ± S.E.M.; F = 0.024, P = 0.003, Student’s t test e, Correlation between sb cyp19a methylation level and gene expression. f, Differentially expression patterns per each CpG position in males and females reared at low and high temperature; data as mean ± S.E.M. Individual CpG analysis was carried out by using Analysis of Molecular Variance (AMOVA), (Excoffier et al., 1992), where methylated positions were considered C and unmethylated T. Statistical parameters of this analysis are summarized in supplementary information table 1.

Methylation (%)

Freq

uenc

y

02468

10

0 50 100

Males

Females

Sex

ratio

(%)

0255075

100

Methylation (%)0 20 40 60 80

Aro

mA

(RQ

)

0

10

20

Aro

mA

(RQ

)

0

5

10

CpG position-431 -56 -49 -33 -13 9 60

Met

hyla

tion

(%)

0

20

40

60

80

100

Low temp

High temp

Low temp

High temp

0 20 40 60 80 100

Females

Males

Females MalesLow tempHigh temp

ab

cc

a

b

Y=15.333e-0.0288x R2 = 0.2922

F = 7.84370 P = 0.0114

14 8

148

99

+ +

a

b

c

d

e

f

Page 190: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-162-

Figure 2. Effects of methylation on sea bass cyp19a promoter activity in vitro. HEK 293T cells were transfected with PGL3-cyp19a methylated and unmethylated promoter vectors. Transcription factors SF1 and Foxl2 were cotransfected with the sb cyp19a promoter to activate promoter luciferase activity. Transfected methylated and unmethylated groups were as follows: 1) 500 ng of plasmid β-galactosidase (Ctrl beta); 2) 2.5 µg of sb cyp19a promoter cloned into pGL3-basic luciferase reporter plasmid (cyp19a); 3) 2.5 µg of cyp19a and 250 ng of tilapia SF1 transcription factor cloned into pCDNA3.1 expression plasmid (cyp19aS); 4) 2.5 µg of cyp19a and 250 ng of tilapia Foxl2 transcription factor cloned into pCDNA3.1 expression plasmid (cyp19aFx); 5) 2.5 µg of cyp19a, 250 ng of tilapia SF1-pCDNA and 250 ng of tilapia Foxl2-pCDNA (cyp19aSFx). Five hundred nanograms of plasmid β-galactosidase were co-transfected in all cases as an internal control of transfection efficiency. The t-test comparing methylated and unmethylated vectors showed significant differences symbolized by * (P = 0.006 in cyp19a, P = 0.006 in cyp19aS, P = 0.003 in cyp19aFx and P = 0.013 in cyp19aSFx) between both. Also, SF1 and Foxl2 exhibited a synergistic effect since the activation of sb cyp19a promoter was significantly higher when both were transfectetd together. Values are shown as mean ± SEM (n=2-4). Insert: Successful vector methylation verification by analysis of band patterns on electrophoresis gel after digestion of the purified plasmids with McrBC enzyme. Lane 1, 0.5 µg sb cyp19a-PGL3; lane 2, 0.5 µg sb cyp19a-PGL3 digested with McRBC enzyme; lane 3, 0.5 µg methylated sb cyp19a -PGL3; lane 4, 0.5 µg methylated sb cyp19a-PGL3 digested with McRBC enzyme; lane 5, 1Kb marker; lane 6, 100bp marker. The electrophoresis gel shows that, as expected, only the methylated vector was digested.

Ctrl beta Aro AroS AroFx AroSFx

Rel

ativ

e Lu

cife

rase

Act

ivity

0

2

4

6

8

10

12

14

16

18 Control Methylated

1 2 3 4 5 6

*

**

*

cyp19aSFxCtrl beta cyp19aScyp19a cyp19aFx

Page 191: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-163-

Figure 3. Schematic diagram of DNA methylation distribution of the sb cyp19a promoter in females and males. Low methylation levels of the sb cyp19a promoter appear to be required for ovarian differentiation. Males typically show high methylation levels of the promoter. This may block aromatase transcription and induce testicular differentiation caused by lack of estrogens. As shown in this study, high temperatures (HT) during the thermolabile period increase methylation levels of the sb cyp19a promoter, shifting the female distribution closer to that of males. The dotted area represents the fraction of genotypic females that are sex reversed into phenotypic males by high temperature. Our hypothesis is that temperature may modulate sex ratios through changes in the methylation pattern of the sb cyp19a promoter.

Phenotypic Males

Freq

uenc

y

AromA promoter methylation level

ThresholdPhenotypic Females

HT

Genotypic females Genotypic males

Page 192: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-164-

Supplementary Information

Methods

Animal rearing conditions. Freshly fertilized European sea bass (Dicentrarchus labrax L.) eggs were collected

from the Institute of Aquaculture (Castellón, Spain) and transported to our experimental aquarium facilities at

the Institute of Marine Sciences in Barcelona. Egg incubation and rearing during the larval and juvenile stages

were performed according to standard sea bass rearing practices (Moretti et al., 1999). Once animals reached

mid-metamorphosis (standard length; SL > 18 mm), juveniles were reared in 650 l fiberglass tanks under

simulated natural photoperiod and fed ad libitum with pelleted dried food of the appropriate size. Fish were

treated in agreement with the European Convention for the Protection of Animals used for Experimental and

Scientific Purposes (ETS Nº 123, 01/01/91).

Temperature treatments. Eggs were incubated at 14–15°C, the natural temperature for sea bass spawning and

fertilization during winter and early spring in the Mediterranean. Hatching occurred 3–4 days after fertilization

(dpf). At this point, fish were separated into two groups. One group was reared at 15°C throughout the

thermolabile period until 60 dpf (“low temperature”, LT or control group). Then, temperature was increased to

21°C at a rate of 0.5°C·day-1 and left to follow the natural fluctuations until the end of the study. The remaining

group was incubated in a similar manner, except that the switch to 21°C either took place earlier, soon after

hatching at 10 dpf (see Supplementary Information Fig. 2). Thus, fish in this group was exposed to artificially

higher temperature (HT) essentially during the entire thermolabile period. Each temperature treatment was

carried in duplicate. While the thermal regimen of the LT group is similar to the one experienced by sea bass in

the wild, the thermal regimen of the HT group typically result in the masculinization of about one-half of the

genotypic females into males (Piferrer et al., 2005).

Sampling and gonadal histology. At about one year of life (330 dpf), fish were sacrificed and gonadal samples

were collected. From each fish, one gonad was processed for histological identification of sex (n = 40 fish per

treatment). Gonads were fixed in 2% paraformaldehyde in PBS, embedded in paraffin, cut at 7 µm thickness and

stained with hematoxylin-eosin. In addition, a portion of the other gonad was snap- frozen in liquid nitrogen and

stored at -80ºC until further analysis.

Gonadal aromatase promoter bisulfite-mediated genomic sequencing. The sea bass (sb) gonadal aromatase

(cyp19a) promoter (Galay-Burgos et al., 2006) was examined to identify CpG dinucleotides that could be

differentially methylated (see Supplementary Information Figure 3). Genomic DNA was obtained from the

gonads of eight females from the HT, and 14 from the LT group and nine males each from the HT and LT

groups and subjected to sodium bisulphite-mediated sequencing as described by Widschwendter (2000). The

targeted portion of the promoter was amplified from the bisulfite-modified DNA with two rounds of PCR by use

of nested primers specific to the bisulfite-modified sequence of this region. The primers were as follows:

External Forward (EF), ATTGGTAGTTTAATGGAGGA ATTT; External Reverse (ER),

Page 193: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-165-

AATCCCACTACAATAACATTTAAAAAC; Nested Forward (NF),

GAGGAATTTGGGAGGAATTATAAATAT; Nested Reverse (NR),

CCAAATCTACCACTATAATATCCAAAC. A hot start polymerase (QIAGEN, #203205) was used in both

external and nested PCR. External PCR consisted in 5 min at 94ºC; 5 cycles of 1 min at 94ºC, 2 min at 55ºC, 3

min at 72ºC; 25 cycles of 30 s at 94ºC, 2 min at 50ºC,1 min and 30 s at 72ºC and a final extension of 7 min at

72ºC. Subsequently, nested PCR consisted in 5 min at 94ºC; 30 cycles of 30 s at 94ºC, 30 s at 56 ºC, 30 s at 72ºC

and a final extension of 7 min at 72ºC. PCR products were separated by gel electrophoresis and gel bands were

purified by Purelink Quick Gel Extraction (Invitrogen, # K2100-12). Gel purified bands were cloned into pCR4-

TOPO vector and transformed into E. coli Topo10 chemically competent cells (Invitrogen, # K4575-J10). Ten

individual clones per each fish were sequenced each in both directions and used to evaluate the seven CpG

dinucleotide positions present in the promoter region. Average methylation levels per position and fish were

computed.

Plasmid construction. Genomic DNA was used to clone the sb cyp19a promoter by PCR. The primers used

were: AroALucF, GCAGAGGTAGGAACACAGTTCA and AroALucR, CATTTGGGGACGTGGAGA. To

each 5’-end primer sequence a restriction site for XhoI enzyme was added. Promoter sequence was obtained

using Easy-A High-fidelity PCR cloning polymerase (Stratagene, #600400) and PCR conditions were: 2 min at

95ºC; 25 cycles of 30 s at 95ºC, 30 s at 68ºC, 2 min and 30 s at 72ºC and a final extension of 5 min at 72ºC. The

amplified promoter fragment was gel purified and cloned into pGEM-T (Promega, #A1360). The Sb cyp19a

promoter was subsequently digested with XhoI enzyme from pGEM-T vector and cloned into XhoI digested

pGL3 Basic Vector (Promega, # E1751).

In vitro methylation of plasmid reporters. PGL3-cyp19a plasmids were cytosine-methylated using SssI

methylase according to the manufacturer's instructions (New England BioLabs). SssI methylation, which

methylates all cytosine residues within the double-stranded dinucleotide recognition sequence (5′-CG-3′), was

performed with 10 mM Tris, pH 7.9, 50 mM NaCl, 10 mM MgCl2, 1 mM DTT, and 160 µM S-

adenosylmethionine at 37°C for 1 h. After the methylation, reaction plasmids were purified by phenol extraction.

Successful vector methylation was checked by analyzing band patterns on gel electrophoresis after digestion of

the purified plasmids with McrBC enzyme, which digests only methylated DNA, according to the

manufacturer’s instructions (New England BioLabs). Fully methylated plasmids were utilized for transient

transfection assays.

Transfection and luciferase reporter gene assay. Human embryonic kidney 293T (HEK 293T) cells were

transfected using the calcium phosphate coprecipitation method (Villa et al., 2006). HEK 293T cells were

transfected with PGL3-cyp19a methylated and unmethylated promoter vectors. Transcription factors SF1 and

Foxl2 were cotransfected with the sb cyp19a promoter to activate promoter luciferase activity. Transfected

methylated and unmethylated groups were as follows: 1) 500 ng of plasmid β-galactosidase (Ctrl beta); 2) 2.5 µg

of sb cyp19a promoter cloned into pGL3-basic luciferase reporter plasmid (cyp19a); 3) 2.5 µg of cyp19a and 250

ng of tilapia SF1 transcription factor cloned into pCDNA3.1 expression plasmid (cyp19aS); 4) 2.5 µg of cyp19a

and 250 ng of tilapia Foxl2 transcription factor cloned into pCDNA3.1 expression plasmid (cyp19aFx); 5) 2.5 µg

Page 194: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-166-

of cyp19a, 250 ng of tilapia SF1-pCDNA and 250 ng of tilapia Foxl2-pCDNA (cyp19aSFx). Five hundred

nanograms of plasmid β-galactosidase were co-transfected in all cases as an internal control of transfection

efficiency. All the transfections were carried out at least in duplicate. Cells were incubated for 16 h with

precipitated vectors-CaPO4. Forty-eight hours after transfection, cells were washed with PBS and lysed in 400

µl luciferase lysis buffer. Lysisate was analyzed for Luc activity using the luciferase assay system (Promega) in

an Orion Microplate luminometer (Berthold). β-galactosidase activity was used to normalize the results.

RNA isolation, cDNA synthesis and quantitative analysis of cyp19a gene expression by real time-PCR in

females. Total RNA was isolated from ovaries of eight females each from the HT and 14 from the LT groups.

Gonad tissue was homogenized with 0.5 ml of trizol and total RNA was extracted with chlorophorm,

precipitated with isopropanol and washed with 75% ethanol. Pellets were resuspended in 25 µl DEPC-water and

stored at -80ºC. One microgram of total RNA was reverse transcribed into cDNA using Superscript II

(Invitrogen, Carlsbad CA, USA) and 250 ng of random hexamer primers (pdN6) following the manufacturer’s

instructions. Real-time PCR reactions were carried out to determine Sb cyp19a gene expression. The endogenous

control used was 18S. PCR was carried out in the SYBR® Green chemistry (Power SYBR® Green PCR Master

Mix; Applied biosystems). The primers were: ovaro RT-F1: AGACAGCAGCCCAGGAGTTG and ovaro RT-

R1: TGCAGTGAAGTTGATGTCCAGTT. PCR reactions contained 1X SYBR green master mix (Applied

Biosystems), 10 pmol of each primer and 1µl of the RT reaction. Samples were run in duplicate in optically clear

384-well plates. Cycling parameters were: 50 ºC for 2 min, 95ºC for 10 min, followed by 40 cycles of 95 ºC for

15 s and 60ºC for 1 min. Finally, a temperature-determining dissociation step was performed at 95ºC for 15 s,

60ºC for 15 s and 95ºC for 15 s at the end of the amplification phase. Real-time PCR data were collected by SDS

2.2 and RQ Manager 1.2 software and RQ value were estimated for each reaction replicate. The female with

lower level of aromatase expression (i.e., higher ∆Ct) was assigned as the calibration sample to calculate ∆∆Ct

and RQ values.

Statistical analysis. Data reported as proportions (sex ratios and methylation levels) were arcsin square root

transformed before any statistical analysis. RQ expression data were ln transformed to ensure normality. Two-

way ANOVA was carried out to check differences in methylation levels between sex and temperature

treatments. Also a t-Student test was used to analyze differential expression levels among females of each

temperature treatment (n=14 for LT and n=8 for HT) and to detect differences between methylated and

unmethylated sb cyp19a_prom-pGL3 vectors in the transfection assay. Differences were considered statistically

different when P < 0.05.

To check differences in methylation levels in each CpG position a hierarchical poblational analysis was carried

out. First, sequences were trimmed to seven nucleotides length with two possible variants for each nucleotide, T

for unmethylated and C for methylated. Then, all sequences from the same individuals were considered as one

populations with size equivalent to the number of sequences nalyzed for each individual. The four treatments

were considered as group of populations. The hierarchical analysis of the molecular variance, AMOVA,

(Excoffier et al., 1992) was used for test for possible genetic differentiation among treatments. When less than

5% of the 10000 pseudo replicates presents higher genetic variance than one estimated by chance then the

Page 195: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-167-

genetic structure is considered not significant. AMOVA also calculate the correlation measure fixation index of

population differentiation (Fst).

Supplementary references

Blázquez, M., Zanuy, S., Carillo, M., Piferrer, F., 1998. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 281, 207-216.

Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479-491.

Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S., Sweeney, G.E., 2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and identification of single nucleotide polymorphisms. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 145, 47-53.

Koumoundouros, G., Pavlidis, M., Anezaki, L., Kokkari, C., Sterioti, K., Divanach, P., Kentouri, M., 2002. Temperature sex determination in the European sea bass, Dicentrarchus labrax (L., 1758) (Teleostei, Perciformes, Moronidae): Critical sensitive ontogenetic phase. Journal of Experimental Zoology 292, 573-579.

Moretti, A., Pedini Fernandez-Criado, M., Cittolin, G., Guidastri, R., 1999. Manual on Hatchery Production of Seabass and Gilthead Seabream. FAO, Roma, 194 pp.

Mylonas, C.C., Anezaki, L., Divanach, P., Zanuy, S., Piferrer, F., Ron, B., Peduel, A., Ben Atia, I., Gorshkov, S., Tandler, A., 2003. Influence of rearing temperature at two periods during early life on growth and sex differentiation of two strains of European sea bass. Fish Physiology and Biochemistry 28, 167-168.

Mylonas, C.C., Anezaki, L., Divanach, P., Zanuy, S., Piferrer, F., Ron, B., Peduel, A., Ben Atia, I., Gorshkov, S., Tandler, A., 2005. Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. Journal of Fish Biology 67, 652-668.

Pavlidis, M., Koumoundouros, G., Sterioti, A., Somarakis, S., Divanach, P., Kentouri, M., 2000. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 287, 225-232.

Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). General and Comparative Endocrinology 142, 102-110.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Thimonier, J., Chatain, B., 2002. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 292, 494-505.

Villa, R., Morey, L., Raker, V.A., Buschbeck, M., Gutierrez, A., De Santis, F., Corsaro, M., Varas, F., Bossi, D., Minucci, S., 2006. The methyl-CpG binding protein MBD1 is required for PML-RARa function. Proceedings of the National Academy of Sciences 103, 1400-1405.

Widschwendter, M., Berger, J., Hermann, M., Muller, H.M., Amberger, A., Zeschnigk, M., Widschwendter, A., Abendstein, B., Zeimet, A.G., Daxenbichler, G., 2000. Methylation and silencing of the retinoic acid receptor-ß2 gene in breast cancer. Journal of the National Cancer Institute 92, 826-832.

Page 196: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-168-

Supplementary tables

Table 1. Effects of high temperature on DNA methylation of the sea bass gonadal

aromatase promoter at different loci. For each locus, differences between fish exposed at

high vs low temperature are reported separately by phenotypic sex. Statistically significant

differences are highlighted in bold face.

Males Females

CpG Fst P Fst P

-431 0.031 0.063 0.060 0.004

-56 0.031 0.074 0.083 0.003

-49 0.008 0.247 0.061 0.010

-33 0.002 0.353 0.024 0.077

-13 0.003 0.279 0.058 0.005

+9 0.002 0.374 0.015 0.117

+60 0.046 0.044 0.031 0.046

Abbreviations: Fst, Fixation index of population differentiation ; P, significance level.

Page 197: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-169-

Supplementary Figures

Supplementary Figure 1. Pattern of observed sex ratio response to temperature in the European sea bass. a) Resulting percent of phenotypic females as a function of rearing temperature during the first 60 days post fertilization (dpf). Within each temperature, each datapoint represents individual groups of the same or different studies. Different sex ratios within the same temperature evidence parental influences, in agreement with the proposed polyfactorial sex determining system for the sea bass (Vandeputte et al., 2007). The dotted line indicates the observed maximum percent females, showing that is inversely related to temperature. b) Percent phenotypic females as a function of time reared at ≤ 17°C starting at fertilization. Data from (Blázquez et al., 1998; Pavlidis et al., 2000; Koumoundouros et al., 2002; Saillant et al., 2002, Navarro-Martin unpublish results; Mylonas et al., 2003, 2005). Opened and filled circles denotes significant and no significant differences of mean sex ratios of each group vs 1:1 (female:male) ratio (after arcsin square root transformation of percent female data and ANOVA, F = 4.306 and P = 0.003; and Dunnett t (2-sided), P = 0.023 tests)

Supplementary Figure 2. Thermal regimens applied in the present study. The experimental groups (carried out in duplicate) were: HT, 15ºC from 0-10 dpf, then at 21ºC throughout the thermolabile period and LT, 15ºC from 0-60 dpf, thereafter at 21ºC. Since no differences were found in sb cyp19a promoter methylation levels from the HT30 and LT groups, data from those were considered together in one group named LT. The thermolabile and the sex differentiation periods are indicated (with a dashed line and a line between arrows, respectively) in relation to the thermal regimens.

Temperature during 0-60 dpf (°C)

13 15 17 19 21

Perc

ent f

emal

es

20

40

60

80

100a

023

Time at ? 17ºC starting at 0 dpf (days)

0 30 60 90 120

b

20

40

60

80

100

0

Perc

ent f

emal

es

Time at ? 17ºC starting at 0 dpf (days)

0 30 60 90 120

b

20

40

60

80

100

0

Perc

ent f

emal

es

Days post fertilization (dpf)0 30 60 90 120 150 180 210 240 270 300

Tem

pera

ture

(ºC

)

14

16

18

20

22

24

26

HT LT

Sex differentiation

Page 198: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

B. Aromatase as a key-determining gene, responsible for ovarian differentiation in fish

-170-

Supplementary Figure 3. Diagram of the sea bass (sb) gonadal aromatase (cyp19a) promoter region analyzed in this study. Genomic DNA extraction of each fish was carried out using 25 mg of gonads. Restriction enzyme digestion (Bgl II and Dra II) outside the region of interest was used to obtain a smaller and linearized fragment of the promoter. After bisulfite treatment, external and nested PCR was carried out to amplify a 598 bp PCR fragment. Inside this region putative transcription factors binding sites that were identified by (Galay-Burgos et al., 2006), as well as CpG localizations (lollipops) are shown, indicating their nucleotide position with respect to the transcription start site. Transcription and translation starting sites are symbolized with an asterisk and an arrow, respectively.

Supplementary Figure 4. Typical methylation patterns of sea bass gonadal aromatase promoter in females and males reared at low and high temperature as observed in this study. One fish for each sex and temperature combination representative of the level of methylation is shown. Numbers with a plus or minus sign indicate CpG positions with respect to the transcription starting site. Open and filled circles denote unmethylated and methylated positions, respectively. Ten clones per fish were analyzed. Average methylation was calculated specifically for each position (numbers below each column) as well as the mean methylation level for each fish. (white-boxed number).

I

-600 -400 -200 +200+1 +400-600 -400 -200 +200+1 +400-600 -400 -200 +200+1 +400

? ATG

II

SoxTATA

PparSox

Sf1AreSoxSox

FoxCre

Bgl II Dra II

- 431 - 56- 49- 33 - 13 + 9 + 60

-500 -400 -300 -100 +1 +100

?

-500 -400 -300 -100 +1 +100-500 -400 -300 -100 +1 +100

?

Sb cyp19a promoter

598 bp PCR fragment

Transcription

TranslationATG

*

*

60 70 60 9040 40 4060 70 60 9040 40 4020 30 30 9040 30 30

60 90 80 10070 60 8060 90 80 10070 60 80

57.1%38.6%

77.1%

80 100 80 9070 100 8080 100 80 9070 100 80

85.7%

Low temperature High temperature

Fem

ales

Mal

es

+60+9-13-33-49-56-431 +60+9-13-33-49-56-431

Page 199: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results IV

-171-

Supplementary Figure 5. Alignment of the sea bass (Dicentrarchus labrax) gonadal aromatase promoter with that of other teleost species. (Accession numbers: Dicentrarchus labrax, DQ177458; Lates calcarifer, AY686690; Cromileptes altivelis, AY686691; Mugil cephalus, AY859426; Oerochromis niloticus, AB089924). CpG islands are shown in bold. The numbers above D. labrax CpGs denote the position relative to the transcription start site. Putative binding sites for specific transcription factors were localized in D. labrax after Galay-Burgos et al. (2006) and are indicated by boxes when are conserved among species or by underlying if aply only to D. labrax. The open reading frame is depicted by upper case text and putative transcription start sites “ATG” are highlighted in bold and underlined.

-431 FoxD. labrax tatt------ccagctttccgttgtctgtc-ttccttta-tagatacaa---aagtaaataaaact--catgtgtggatt L. calcarifer tatt------ccagcttctccttgtctttc-ttcttttcttagaa-------aaatgaaaaaaacc--------------C. altivelis tattaaaaaataatatttaaaacagaaagcattttaaatgcagcattaatttcgagattttccttgtgtgtcttcc--tt M. cephalis tatt------ctatttttaaagggtgaacc-atttaatcctagctttagctcatctttcttggcct--catctttc--tt O. niloticus aatgtaatg-aagattataattcaaatgcatctacatatgtaaatatta---acatttaatccattcccttgtctcgctt Sox Sox D. labrax tt-tctagaaaaaaactt-------caattcaattttgcaagacagataaagctttaacaataataat-aacaataacag L. calcarifer ---tgaagtaaacaga---------aaatttaattctgccagacagataaagttgtaataatga-gac---------taa C. altivelis tt--atagataaaat-----ggatgtctcttaa-----aaaaaca-cagaatttaattttgcag-gaca------gataa M. cephalis ct-cacagaaaaaaa----------aaacttaa-------agatg--agaatttccaactacagtgac-------cctga O. niloticus ctttattaaaaacagatgaa-----aaatttcagtttattgaaaa-gctgatttttaacaggca--gc---------tag ARE D. labrax actttcccatattctcagaggccagatgtt-cttttgtagggtttccaatcagattattttgatgttcaaaggaggagca L. calcarifer cactgataacattctcacggcacatctgctgtttttgtaggatttccagccagatttttttgatgttcaaaggaggagtg C. altivelis agctaatgacgtaaataca--ttgatttcc-tctttgtggga--tccaatcagattcttttgatgttcaaagggggagcc M. cephalis cactcccc-catcaacacagcccagctgtt-cttgtgta------ccgaagaaatccttttgatgttcaaaga-------O. niloticus agcaaataacact--gatgttctcaaactcccacaggca--------aagcaacttcttttgaagtttaaaggaggtgaa D. labrax aaacttgcttttcatcactaaaatgtcaaataa----cccaactccaactccaacatgtactcactgagctaagtcctgt L. calcarifer atacttgcttctcatcatcaaactgtcaaatacaccccataatagaaactctct--ccactccactgaactaagccctgt C. altivelis agacttgctcctcatcaccaaactgtcaaata------caacctgt-gaactcaca-acatgaaatgaactaagtcctgt M. cephalis -----tacttctcatcaccaaaata-------------caagctc--acgccaacatgtaccgattgaaccagatcctat O. niloticus aa----ccttatcatcaacaaaatgccaaata------cgagctc--acgccaacatgcagccattgaactaggtcctgt SF-1 Sox D. labrax actctcaagagcacaggcactaatacaacccttcaaggttacaagtgtattgtttaccattttt--ctcctctgttgtgg L. calcarifer ttgcccaagggcactggtacaaatccaacccctcaaggtcaaaagtgtattgtttacctttttc--ctcctctgttgtgg C. altivelis acgctcaagggcacaggctcaaatccaacccctcaaggctgtgactgtattgtttacctttctc--ctcctctgttgtgg M. cephalis aaacccgaggtcacacacacaaatccgccccttcaaggttaccagtgtgttgtttaccattttttcctcctctgttgtgg O. niloticus aaacccaagggcatgagcacaaacccaatccctcaaggttgccacaatattgtttacctttttc--ctgcagtgttgtgg PPARE CRE -56 -49 -33 TATA box -13 Sox D. labrax cttttactttgccc-tgacgtggctcgtaacc-agctcagaccg--catataaagagaaagcc-ccgattgttgaggcAG L. calcarifer cttttgcattaccc-tgacctggcttgtaacc-agttctggctg--cttataaaggggaagcc-ccgattgttgaggcag C. altivelis cttttgcattacccctgacccagcttgtaacccagctcagacca--catataaggagaaagctg-----tgctgaggcag M. cephalis ctttaacatcaccc-tgacctggctccttacc-agctcagacaggctataaaaagaggaagcc-ccgg-------ggcag O. niloticus cttttgcattaccc-tgacctggctcgtaacc-agctcagaccg--cctataaaaaggcagatgcaa---cattcggacc +9 +60 D. labrax CT-----CACACGGAGCAG------TTGCTTTTGGTTATTTTAAATG-GATCTGATCT-CTGCATGTGAACGGGCAATGA L. calcarifer ctttcatCACTCGGACCTG------TTGCTG--GGTTTGTGCAGTTGTGGTGCGGGTT---GT-TTTAAATCTGC----A C. altivelis ctctcatCACTCGGACCTG------TTGCTG--GGTTTGTGCAGTTGTGGTGCGGGTT---GT-TTTAAATCTGC----C M. cephalis ccttcTTCATTTGGATCCGGCAGGTTAGCAG-TAATAATAATAATTAATAAATAAAAT---AA--AAAAATCTCC----C O. niloticus cttcgAGTCTGTGCAGGCTG------TTCTACATCATCACCCTTCTCATGGATCTGATCTCTGCTTGTGAACAGGCGATG D. labrax CTCCTGTAGGTTTGGACACCATAGTGG L. calcarifer TTCTTATGGATCTCATCTCTGCT---- C. altivelis TTCTTATGGATCTCATCTCTGCT---- M. cephalis CTCTTATGGATCTGATCTCC------- O. niloticus AATCCTGTAGGCTTAGACGCCGTGGTG

Page 200: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 201: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results Block C

Aquaculture applications

Page 202: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 203: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-173-

RESULTS V

Contraposant els efectes de les baixes temperatures de cultiu

durant el desenvolupament temprà, el creixement i la maduració

en el llobarro Europeu. Limitacions i oportunitats per a la

producció d‘estocs formats exclusivament de femelles

Laia Navarro-Martín, Mercedes Blázquez, Jordi Viñas i Francesc Piferrer

En moltes espècies de peixos cultivats, les proporcions de sexes es troben molt esbiaixades a

favor dels mascles, sobretot en la fase d’engreix. Això és un problema, ja que els mascles

normalment creixen més lentament que les femelles. La visió actual és que generalment les

altes temperatures (~21°C), utilitzades per accelerar el creixement durant els estadis larvals i

juvenils, causen la conversió de femelles genotípiques a mascles fenotípics. El llobarro

Europeu és una de les espècies afectades, i s’ha investigat la possibilitat de cultivar a

temperatures més baixes (<17°C) durant els primers estadis del desenvolupament, com a

possible solució. No obtant, disminuir les temperatures de cultiu implica una reducció en el

creixement. Per això, l'objectiu d'aquest estudi va ser trobar un règim tèrmic que pogués

maximitzar les proporcions de femelles sense comprometre el creixement. Es van fer créixer

per duplicat quatre famílies de llobarro a 15ºC durant 10 (grup de control), 30, 60, 90 ó 120

(grups tractats) dies post fertilització (dpf), moment en què es va pujar la temperatura a 21°C.

De forma similar al que passa a la indústria, el grup control donà un excés de mascles (69%

de mascles, 31% de femelles). Incrementant l’exposició a baixes temperatures augmentà el

número de femelles fins a un 59% (rang 24-95%) als grups tractats. A més, a l’any d'edat el

número de mascles precoços disminuí d’un 29% en el grup control a un 10-20% en els grups

tractats. Les temperatures baixes van retardar el creixement en aquells grups exposats durant

60 o més dies; malgrat això, el grup tractat durant 30 dies mostrà un creixement compensatori

als 150 dpf. Les femelles van assolir la mida de mercat (400 g) durant el segon any,

aproximadament 120 dies abans que els mascles. A més, malgrat el creixement inicial més

lent, en la època de comercialització, la biomassa del grup crescut a baixes temperatures

durant 60 dies va ser d’un 6.1% més alt que la del grup del control. Finalment, vam analitzar

Page 204: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-174-

totes les dades dels efectes de la temperatura sobre el llobarro i proposem un model que

mostra que, malgrat les interaccions G x E, les altes temperatures masculinitzen, de mitjana,

la meitat de les femelles genotípiques a mascles fenotípics. Els nostres resultats mostren que

no hi ha cap règim tèrmic capaç d’induir la completa feminització en el llobarro, però

nosaltres proposem el cultiu a 17°C a partir de la fertilització i fins a 840 graus dies, que a

aquesta temperatura te lloc als 53 dpf, ja que aquestes condicions de cultiu representen un bon

balanç entre els avantatges que suposa l’increment en la proporció de femelles i el

desavantatge del creixement inicial més lent. Combinat amb els programes de selecció

genètica, que permitin aumentar el nombre de femelles genètiques i disminuir la sensibilitat

d’aquestes a les altes temperatures, aquest mètode ofereix la oportunitat d’augmentar la

producció dels cultius de llobarros maximitzant la proporció de femelles.

Page 205: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-175-

Balancing the Effects of Rearing at Low Temperature During

Early Development on Sex Ratios, Growth and Maturation in the

European Sea Bass. Limitations and Opportunities

for the Production of All-female Stocks

Laia Navarro-Martín, Mercedes Blázquez,

Jordi Viñas & Francesc Piferrer*

Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig

matítim, 37-49, 08003 Barcelona, Spain

Subbmited to: Aquaculture

1 Correspondence to: Dr. Francesc Piferrer. Institut de Ciències del Mar, Consejo Superior de

Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003 Barcelona, Spain. e-mail:

[email protected]; Tel. +34-932309567; Fax: +34-93-2309555.

Page 206: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 207: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-177-

Abstract

In many species of cultured finfish, highly male-biased sex ratios are frequent during

on-growing. This is a problem because males usually grow slower than females. The current

view is that the high temperatures (~21°C) used to speed up growth during the larval and

early juvenile stages causes sex-reversal of genotypic females into phenotypic males. The

European sea bass is one such affected species, and rearing at lower temperatures (<17°C)

during early development has been investigated as a possible solution. However, besides

reducing growth, these low temperatures result in apparently contradictory results on sex

ratios when different studies are compared. The goal of this study was to find a thermal

regimen that could maximize female proportions without compromising growth. We reared in

duplicate four different sea bass families at 15ºC during 10 (control group), 30, 60, 90 or 120

(treated groups) days post fertilization (dpf) and then at 21°C. Similar to the situation in the

industry, the control group had an excess of males (69% males, 31% females). Increasing

exposures to low temperature increased the number of females to 59% (range 24–95%) in the

treated groups. Further, at one year of age the number of precocious males decreased from

29% in controls to 10–20% in the treated groups. Low temperature retarded growth in those

groups exposed for 60 or more days; however, the group treated for 30 days exhibited

compensatory growth by 150 dpf. Females reached the marketable size (400 g) during the

second year, about 100 days earlier than males. Moreover, despite initial slower growth, the

biomass in the group reared at low temperature for 60 days was 6.1% higher than that of the

control by the time of marketing. Finally, we analyzed all data on temperature effects on sea

bass and propose a model that shows that, despite G x E interactions, high temperature

masculinizes, on average, half of the genotypic females into phenotypic males. Together, our

results show that there is no thermal regimen capable of inducing complete feminization in

the sea bass, but we propose rearing at 17°C starting from fertilization and until 840 degree

days, which at that temperature occurs at 53 dpf, since that represents a good balance between

the advantages of increased female proportions and the disadvantage of initial slower growth.

Combined with genetic selection for high female number and low sensitivity to high

temperature, this method offers an opportunity for the routine culture of highly female-biased

sex ratios to benefit sea bass aquaculture.

Page 208: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-178-

Keywords: Temperature, Sex differentiation, Sea bass, Fish, Dicentrarchus labrax,

Precocity, Aquaculture.

1. Introduction

Phenotypic sex results from the interaction between genetic, environmental and/or

social factors in several amphibians, reptiles and fish (Devlin and Nagahama, 2002).

Temperature is considered the main environmental factor capable to modify sex ratios in

several fish species. Two major sex determining mechanisms are present in gonochoristic

fish: genotypic sex determination (GSD) and temperature-dependent sex determination (TSD)

(Penman and Piferrer, 2008). In addition, some GSD species can be influenced by

temperature effects (TE) on sex ratios (GSD + TE species), although sex determination

remains genotypic (Valenzuela et al., 2003). Recently, it has been shown that many species

previously considered to have TSD are in fact GSD+TE species and, contrary to what it was

previously believed, fish exhibit one single sex ratio response to temperature, with

progressively more males with increasing temperature (Ospina-Álvarez and Piferrer, 2008).

The existence of genotype-temperature interactions in sex differentiation has been reported in

several fish including the Nile tilapia, Oreochromis niloticus (Baroiller and Clota, 1998) or

the European sea bass, Dicentrarchus labrax (Saillant et al., 2002; Gorshkov et al., 2004b;

Piferrer et al., 2005; Saillant et al., 2006; Vandeputte et al., 2007). These G x E interactions

imply that within a given population some animals have the tendency of producing more

progeny with more abundance of one sex than others, specially if the sex determining

mechanism is not of a simple system such as XX/XY or ZW/ZZ, and that depending of the

genetic make up of the progeny, differences in sensitivity to the effects of high temperature

may exist.

In general, females growth faster and achieved higher sizes than males in fish species

(Yamamoto, 1999; Luckenbach et al., 2003). For that reason, the industry is interested in

develop methods to produce female monosex cultures to improve the productivity

(Luckenbach et al., 2003). Treatments with sex streroids have been a common practice to

alter gonadal differentiation in fish in the last decades. Particularly, feminization by estrogens

administration is known to be a good method to produce all-female stocks (Piferrer, 2001).

However, this traditional but non-environmentally friendly hormonal manipulation of fish is

Page 209: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-179-

not well accepted for the consumers. On the other hand, thermal treatments have been

demonstrated that in fish species with chromosomal sex determination, like the hirame,

Paralichthys olivaceus, the goldfish, Carassius auratus auratus, the Nile tilapia,

Oreochromis niloticus, or the medaka, Oryzias latipes, high temperatures are capables to sex

reverse genotypic females into phenotypic males (Yamamoto, 1999; Goto-Kazeto, 2006;

Tessema et al., 2006; Hattori et al., 2007). For that reason, and since female percents has

been demonstrated to higher at low rearing temperatures in the majority of thermosensitive

species (Baroiller and D'Cotta, 2001), one of the interests of the industry is to develop

feminizing methods only with temperature manipulations.

The sea bass is an economically important species for marine aquaculture in Southern

Europe. A common practice is to perform the larval and nursery stages at high water

temperatures (~21°C), to speed-up early growth and thus reduce production cycles. However,

recent studies demonstrated that the elevated numbers of males found in culture are

consequence of these high rearing temperatures during early development (reviewed by

Piferrer et al., 2005). Sometimes sex ratios are so skewed that there are populations with

100% males (Bruslé and Roblin, 1984; Blázquez et al., 1998; Piferrer et al., 2005). These

high proportion of males pose a problem for sea bass aquaculture, since males grow about 25-

67% less than females during the first 20 months (Saillant et al., 2001). In addition, about

30% of these males mature precociously by the end of the first year (Carrillo et al., 1995),

resulting in a decrease in growth performance by the time of marketing, at the end of the

second year, with precocious males weighing about 18% less than non-precocious males at

that time (Felip et al., 2006). Thus, female monosex cultures are viewed as an attractive

option to optimize sea bass production. Although female-dominant populations can be

obtained by administration of sex steroids (Piferrer, 2001; Saillant et al., 2001; Gorshkov et

al., 2004a), consumers reject the use of chemicals in food. Therefore, the manipulation of the

water temperature becomes the best option to obtain female-dominant cultures.

The sea bass is a gonochoristic fish which sex is determined by a polygenic system

with environmental influences (Vandeputte et al., 2007), where sex ratios are the result of

interaction between parental and temperature influences (Piferrer et al., 2005; Saillant et al.,

2006; Vandeputte et al., 2007). The thermolabile period of sex differentiation in the sea bass

has been located from the stage of half-epiboly to the middle of metamorphosis

Page 210: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-180-

(Koumoundouros et al., 2002b). In this regard, low rearing temperatures during the

thermolabile period, including the larval stage, resulted in an increase in the number of

females (Pavlidis et al., 2000), whereas high temperatures induced an excess of males

(Saillant et al., 2002). Resulting sex ratios in the sea bass also depend on the genetic origin of

the fish (Mylonas et al., 2005) or on the parental influences, as evidenced by deliberate

crossings (Saillant et al., 2002; Gorshkov et al., 2003; Saillant et al., 2003b). In addition, both

dame and sire have a significant additive effect in the number of females with no interaction

between the two parents (Saillant et al., 2003b). This allows for the existence of combined

effects between temperature and parental influences or genetic origin on sex ratios (Saillant et

al., 2003b; Mylonas et al., 2005).

The aim of this study was to find an optimal thermal regimen that maximizes female

proportions and optimizes fish growth. To the best of our knowledge, no experiment has been

carried out by rearing sea bass at constant 15ºC for more than 100 days since it results in

growth retardation. However, during the grow-out phase no significant differences in weight

were found between groups previously reared at different temperatures, suggesting the

existence of compensatory growth (Pavlidis et al., 2000). In addition, it was important to

consider the possibility that a genetic component could modulate the effects of temperature on

sex ratios.

2. Materials and Methods

2.1. Animals and rearing conditions

Four batches of freshly fertilized eggs (< 1 day post-fertilization; dpf) were collected

from two different locations, a commercial hatchery (St. Pere Pescador, Girona, Spain; 3

batches) and the Institute of Aquaculture (Castellón, Spain; 1 batch) at different dates during

the spawning season of two consecutive years. Eggs were immediately transported to our

facilities at the Institute of Marine Sciences using PVC containers with a 1:3 mixture of water

and pure oxygen. Egg incubation, larval and juvenile rearing stages were performed according

to Moretti et al. (1999). Floating eggs (200-2000 eggs·l-1, depending upon total number of

eggs in each batch) were reared in 19 l PVC cylindrical containers fitted with a 400 µm nylon

mesh (incubation and hatching), or a 250 µm mesh (larval rearing). Eggs and yolk-sac larvae

were maintained in total darkness until first feeding. Photoperiod was progressively increased

Page 211: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-181-

from 4 to 16 h light at a rate of 1 h·day-1 to acclimate larvae to light for feeding. After mid-

metamorphosis (standard length; SL > 18mm), juveniles were transferred to 650 l fiberglass

tanks and reared under natural photoperiod and standard conditions of pH (~7.9), salinity

(~37.8 ppt), dissolved oxygen (85–100%), and water renewal (30% vol·h-1) until the end of

the study. To maintain similar stocking densities in all groups, and thus to avoid possible

distorting effects of rearing density on growth sex ratios, the number of fish per tank was

adjusted at 195 dpf, taking extra care to maintain the original size distribution to preserve any

possible size-related sex distribution. Larvae were fed first with Artemia AF and then

enriched Artemia EG (INVE Aquaculture, Belgium). Juveniles were fed with pelleted dried

food (ProAqua S.A., Spain) ad libitum and feeding ration was adapted to differences in

growth rates caused by the thermal regimens.

2.2. Experimental groups

The present study makes use of a multifactorial design to assess the effect of possible

interactions between genotype and environment (temperature) in sea bass sex ratios. The

broodstock that provided the gametes that generated the four batches of fertilized eggs used in

this study was not known. However, since the four batches used were the result of spawning

at different dates, originated from two different facilities, and were from different tanks within

the same facility, from here onwards the set of fish originated from the same batch is referered

to as family. Thus, these four families were used to test the influence of the genetic (parental)

component, previously shown in the sea bass (Gorshkov et al., 2003; Saillant et al., 2003b;

Mylonas et al. 2005). The influence of temperature was studied in a single-shift design

(Valenzuela and Lance, 2004) as follows: egg incubation until hatching (~3 dpf) was carried

out at the same temperature at which spawning took place, usually 14–15°C. Hatching

occurred in March (families 1, 3 and 4) or April (family 2). Newly hatched larvae were reared

at 15 ± 1ºC, a “natural” temperature considered not to have any distorting influence on sea

bass sex ratios (Piferrer et al., 2005) for five different periods of increasing duration: 10

(G10), 30 (G30), 60 (G60), 90 (G90) or 120 (G120) days. Thereafter, fish were reared at ≥

21ºC and left to follow the natural fluctuations until the end of autumn, when temperature was

maintained at 18 ± 1ºC (Fig. 1A). Changes from low to high temperature were gradual and

never exceeded 0.5ºC·day-1. Because of the short time at 15ºC, the G10 group was considered

to be the control or reference group, since it was reared under conditions of temperature

similar to those used in sea bass hatcheries, whereas the remaining groups were considered as

Page 212: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-182-

the experimental or thermally treated groups. Each combination of family-temperature

treatment was intended to be carried in duplicate (4 families x 5 temperature regimens or

treatments x 2 duplicates = 40 tanks). However, due to space limitation in our facilities, one

randomly selected treatment per family could not be carried out in duplicate. In addition, due

to an accidental failure of the support system, one tank was lost during the course of the

experiment. Thus, the actual total number of fish tanks used in this study was 35 instead of 40

(the missing replicates are indicated in Table 1).

2.3. Gonadal samplings: sex ratio, percent maturation and GSI

Samplings were performed when fish reached a minimum size of 12 cm, when they

were around one year old (330 dpf) in families 1, 3 and 4 and at 400 dpf in family 2), at the

time when sex differentiation is completed and irreversible in the sea bass (Piferrer et al.,

2005). Phenotypic sex was histologically determined with a mean sample size of 36 fish per

tank. Gonads were fixed in 2% paraformaldehyde in PBS, embedded in paraffin, cut at 7 µm,

and stained with haematoxylin-eosin. In addition, testis were classified according to their

stages of development (Begtashi et al., 2004). Briefly, males in stages I/II had immature testis

arranged in seminiferous lobules containing essentially only spermatogonia A; males in stage

III had testis dominated by primary and secondary spermatocytes; males in stage IV had testis

in recrudescence, with all types of germ cells ranging from spermatogonia to spermatozoa,

but with the sperm not completely dominating the testis. Finally, males in stage V had mature

testis containing sperm ready for spermiation (running males). Males with testes in stages I-III

were considered as non-precocious males, whereas males under two years of age with testis in

stage IV and V were considered as precocious males.

The effects of the different thermal regimens on gonadal development were also

assessed in families 2, 3 and 4 (gonad weight was not recorded in family 1), by the calculation

of the gonadosomatic index (GSI) according to the following formula:

GSI = (Gonad weight (g)/Body weight (g)) * 100

2.4. Growth

Standard length (SL; precision to 0.1 mm) and body weigh (BW; precision to 0.01 g)

were periodically assessed in all groups during the first three years. During the first year,

Page 213: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-183-

samplings took place at three different times: 1) at the end of each temperature treatment at

15°C, i.e., at 10, 30, 60, 90 and 120 dpf in groups G10 and G30, G60, G90 and G120,

respectively; 2) at the end of pre-growing or nursery period, when fish reached 2-10 g (around

150 dpf), coinciding with the time when they are transferred to on-growing facilities in

commercial farms; and 3) at the end of the first year, when sex differentiation is completed. In

all cases, differences in BW between the control group (G10) and the different experimental

groups (G30, G60, G90, G120) were determined according to the formula:

Relative Body Weight (BW)i = 100 – [100*(BW Gi (g)/ BW G10 (g))] with i = 30, 60, 90 or

120.

At the end of the first year comparative growth between non-precocious males,

precocious males and females was assessed. Moreover, the sexual growth dimorphism (SGD)

was calculated at according to Saillant et al (2001) as:

SGD = [(females mean weight-males mean weight)/males mean weight]*100.

In addition, to determine sex-related growth differences, excess fish after the

samplings at the end of the first year (45 fish from family 3 and 29 fish from family 4, with a

total of 21 males and 53 females) were individually PIT-tagged and monitored during the

second and third years of life (from 330 to 1055 dpf).

To determine the gain in production during the grow-out phase brought by an increase

in the proportion of females as a consequence of thermal treatment, the mean proportion of

females in G10 (current thermal practice in the industry), G60 (recommended; see

Discussion) and G120 (maximum number of females obtained) and the weight attained by

males when females reached the marketable size of 400 g was used to calculate the resulting

biomass (in g per 100 fish).

2.5. Deformities and survival

Deformities in column, jaw or operculum were assessed at the end of the first year.

Survival from egg incubation throughout the larval period and beyond was determined by

comparing the number of fish at 90 dpf, when all groups completed weaning to pellets food,

with the initial number of eggs in each group. Survival during the juvenile stage was

Page 214: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-184-

determined by comparing the number of fish at 90 dpf with the number of fish at the end of

the first year.

2.6. Microsatellite analysis

The amount of genetic variability and the genetic differentiation test among the four

families was determined in samples of 26, 39, 48, and 33 fish from families 1, 2, 3, and 4,

respectively. Total DNA was isolated from a dried fin clipping using a slightly modified

phenol chloroform extraction protocol described in (Sambrook et al., 1989). Genotypes of six

microsatellite loci (Dla11, labrax-3, labrax-6, labrax-8, labrax-13, labrax-17) (Garcia De Leon

et al., 1997; Castilho and McAndrew, 1998) were determined in two multiplex reaction

primers with the following combinations: Dla11/ labrax-3/labrax-6 (MicrosA) and labrax-

8/labrax-13/labrax-17 (MicrosB). The reaction cocktail for both multiplex was performed in a

20 µl final volume containing 1 µl of the extracted DNA, 1X PCR buffer, 1.5 mM of MgCl2,

500 nmol of each dNTP and 0.5 U of Hot start Polymerase (Quiagen). For the MicrosA

primer combination, 1 pmol of primers Dla11 and labrax-3 was added to the reaction,

whereas 1.4 pmol for the labrax-6 primer was used. For the primer combination MicrosB, 1

pmol of all primers was added to the reaction. All PCR reaction shared the same thermal

profile: an initial denaturing step of 95ºC for 15 min, followed by 25 cycles of 95ºC for 1 min,

annealing at 58ºC for 30 s and extension at 72ºC for 30 s, with a final extension step of 5 min

at 72ºC. After amplification, PCR products were diluted 1/10 with formamide at a final

volume of 10 µl and genotypes determined by length polymorphism in an Applied

Biosystems ABI 377 DNA sequencer. Alleles were scored using GeneMapper 3.7 software.

Microsatellite data, indices of genetic variability per locus and family and

polymorphism information content were calculated using Cervus 3.0.3 (Kalinowski et al.,

2007). Hardy-Weinberg expectations at each locus and for each family and genetic

differentiation between family pairs were estimated with GENEPOP 3.4

(http://genepop.curtin.edu.au/). Pairwise multilocus comparisons between samples were

calculated by Nei genetic distance (Nei, 1972) and a Neighbor-Joining tree (Saitou and Nei,

1987) was constructed with 1000 bootstrap replications using PHYLYP version 3.67

(Felsenstein, 1989).

Page 215: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-185-

2.7. Pattern of sex ratio response to temperature in the sea bass

The information obtained in the present study was combined with that of previous

studies to furnish a robust pattern of sex ratio response to temperature in the sea bass.

Previous studies considered include those of (Pavlidis et al., 2000; Chatain, 2001;

Koumoundouros et al., 2002b; Abdel et al., 2003; Mylonas et al., 2005). Since earlier studies

used slightly different experimental temperatures, for our analysis, a “low” temperature was

considered any temperature below 17ºC, because temperatures of 18°C and above are capable

to masculinize some genetic females in the sea bass (Piferrer et al., 2005). Regarding

treatment duration, only those studies where rearing at 15°C started before 10 dpf and lasted a

maximum of 120 days were considered, since they resulted in significant increases in the

number of females (Pavlidis et al., 2000). Thus, those studies where low temperatures were

applied starting during the juvenile period (Blázquez et al., 1998b) or for periods much longer

than 120 dpf (Saillant et al., 2002) were not included. Thus, using this criterion, and to unify

previous published results with those of the present study, the time (in days) that fish were

reared at similar but not identical low temperatures were adjusted, when necessary, to time

reared at temperatures ≤17ºC, which are considered low temperatures, before the increase to

20-22ºC, considered as the high temperatures. The different treatment durations were grouped

into five categories around the treatment durations tested in this study, i.e., until 10, 30, 60, 90

and 120 dpf: 1) from 0–15 dpf, 2) from 16–45 dpf, 3) from 46–75 dpf, 4) from 76–105 dpf,

and 5) from 106–120 dpf.

2.8. Data analysis

The normality of data was checked with the Kolmogorov-Smirnov test and

logarithmic transformations were applied when necessary. The homocedasticity of variances

was verified with the Levene’s test. A one-way analysis of variance (ANOVA) was used to

test for statistical differences between treatments in length, weight and GSI. Two-way

ANOVA was performed with temperature treatment and family as the independent variables

and sex ratio as the dependent variable. Data on sex ratios were arcsin transformed before any

statistical analysis. For computational purposes, sex ratios for a missing replicate in a

particular family-treatment combination (i.e., the 5 missing tanks out of 40) were calculated

according to the method of randomized block designs (Berenson et al., 1983). For post hoc

multiple comparisons, the Tukey’s test (for all group comparisons) and the bilateral Dunnett

Page 216: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-186-

test (for comparisons against the G10 control group) were used to check for statistical

differences between temperature treatment or families. On the other hand, the Student’s t-test

was used to determine differences between males and females growth during the second and

third year of life. Male precocity, survival and incidence of deformities were analyzed with

the Chi-square test. All statistical analyses were performed using the SPSS v11.5. Data are

expressed as mean ± SEM. In all tests, differences were accepted as significant when P <

0.05.

3. Results

3.1. Sex ratios

The percent females according to family and treatment at the end of the first year is

shown in table 1. The mean number of percent females increased significantly (P<0.05) with

increasing durations of initial rearing at 15ºC, doubling its value from 30.6±8.0% (G10) to

59.1±12.8% (G120). When replicates were averaged, the highest female percent obtained in

this study (90±5%) was observed in G60 of family 3. Two-way ANOVA with family,

temperature treatment and replicate as independent factors indicated that family and

temperature had a significant (P <0.001) influence on the resulting sex ratios whereas

replicate did not. These factors explained 65.8, 25.2 and 9.0% of the variance, respectively.

Moreover, a significant interaction between sex and temperature (F = 2.67; P < 0.05)

evidenced the existence of genotype-environment interactions in the sea bass used in this

study. Thus, for families 1–4, the difference between the maximum and minimum percent

females within each family was 26.8, 13.4, 33.7 and 51.0%, respectively (mean 31.2 ± 7.8%),

indicating differences of sensitivity to temperature among families.

3.2. Gonadal development and male precocious sexual maturation

Because the eggs of the four families used in this study hatched at different times, the

sampling at the end of the first year coincided with the spawning season for family 1 but past

this season for family 2. In addition, the low number of males in family 3 and the slower

growth of family 4, with no stage V males present, made the calculation of the number of fish

with testes at different stages with sufficient confidence only possible for family 1.

Page 217: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-187-

At 330 dpf, the proportion of precocious males (males in stages IV and V) in G10 of

family 1 was ~30% (Table 2). Exposure to low temperature for 30, 90 or 120 (G30, G90 and

G120) resulted in a significant decrease in the proportion of precocious males to one half or

one third of the value recorded in G10. Furthermore, the number of males in stage III showed

an steadily increase from 5.9% in G10 to 42.3% in G120 (P<0.05). Regardless of temperature

treatment, mean BW and SL were determined for females (BW, 83.0 ± 2.88 g; SL, 169.6 ±

1.86 mm), precocious males (BW, 67.5 ± 2.69 g; SL, 160.0 ± 2.01 mm) and non-precocious

males (BW, 55.0 ± 1.22 g; SL, 150.8 ± 1.02 mm). Thus, females were significantly bigger

(P<0.05) than precocious males, which, in turn, were also bigger (P<0.05) than non-

precocious males, both in SL and in BW.

The GSI at the end of the first year in families 2, 3 and 4 is shown in Figure 2.

Regardless of the thermal regimen, females exhibited significantly higher GSIs than males (P

< 0.001). In addition, females from G60, G90 and G120 had lower GSIs than females from

G10 and G30 (P < 0.01), whereas G10 males had higher GSIs than G30, G90 and G120 males

(P < 0.01).

3.3. Temperature- and sex-dependent growth and estimation of biomass

Low temperatures during early development resulted in growth retardation, with fish

in G30, G60, G90 and G120 reaching the end of the larval stage (17-18 mm) 15-30 days later

than fish in G10. By the end of their respective periods of rearing at 15°C, all groups already

exhibited lower BW when compared to the corresponding BW of G10 at the same sampling

time (P < 0.001) (Fig. 3A). At the end of the pre-growing or nursery period (BW range 2-10

g; age around 150 dpf) while G30 had significantly (P < 0.001) 36.9% higher BW than G10,

in contrast G60, G90 and G120 showed significantly (P < 0.001) lower BW with respect to

G10. Thus, compensatory growth was observed only in G30. However, this size advantage in

BW was reduced to 9.4% at the end of the first year, with values not statistically different

from those of G10. At this time, growth in G60, G90 and G120 was still significantly (P <

0.001) lower (15.2%, 35.4%, 32.4%, respectively) than G10 (Figure 3A). During the second

and third year of life, growth was monitored only considering the sex of the fish, regardless of

previous history of temperature treatment (Figure 3B). Significant differences (P < 0.001)

between sexes were found at all sampling times. A robust, positive linear correlation between

age and BW was also observed during this time for both sexes (r2 = 0.99; P < 0.001). Using

Page 218: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-188-

this correlation, the time at which fish reach the marketable size (taken as 400 g, according to

common sea bass production practices) was estimated and found to be 605 dpf for females

and 725 dpf for males. Thus, by the time females reached 400 g, males weight was estimated

to be only 292 g. Resulting biomasses from different thermal manipulations were calculated

according to the final sex ratios of each group and weight of males and females at time when

females reached 400 g (Table 4). An increase of 6.1% in biomass could be achieved with a

thermal regimen such as G60, whereas an increase of 9.2% with that of G120.

In this study, and regardless of temperature treatment, the average SGD was 40.5 ±

3.68%. No differences in SGD were observed between the different treatments, (data not

shown), although a certain downward trend was observed and values in G120 were always

lower than those of the remaining groups.

3.4. Survival and teratology

Overall, and regardless of the developmental period considered, survival was

unrelated to temperature treatment. However from fertilization to 90 dpf, survival in families

1, 2 and 3 increased after longer periods at 15°C, whereas this trend was not observed in

family 4 (data not shown). Considering all families and treatments, between 90 and 120 dpf

survival ranged between 26.3 and 99.1. From the end of the longest temperature treatment at

120 dpf until the end of the first year, survival ranged between 59.2 and 99.0%.

When fish were examined at the end of the first year, an increasing trend in the

incidence of opercular malformations was found with increasing rearing time at 15°C (G10 =

6.6%; G30 = 3.3%; G60 = 17.3%; G90 = 15.9%; G120 = 24.5%), regardless of family.

However, due to variations among families, no statistically differences between groups were

recorded. On the other hand, the incidence of vertebral column deformities (lordosis but not

coliosis or kyphosis) was always very low and only present in groups G10 (1.2%) and G30

(0.3 %). Likewise, the presence of jaw malformations (prognathia) was very low with

decreasing values at increasing rearing time at 15ºC (3.2% in G10, 0.9% in G30, 0.4% in

G60, 1.0% in G90 and 0% in G120).

Page 219: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-189-

3.5. Genetic variability

All microsatellites analyzed were polymorphic with a number of alleles per loci when

the four families were analyzed as a single sample ranging from 5 for the locus labrax-6 to 27

for the locus labrax-13, and an average of 14.5 alleles per locus (Table 4). Four of the six loci

studied displayed a significant deviation of the Hardy-Weinberg equilibrium, with an overall

deficiency of heterozygotes. Despite that, in all cases the polymorphism content (PIC) was

lower than the expected heterozygosity (He) (Table 5). When the four families were

compared, the genetic differentiation test gave highly significant different FST values across

all families and between all pairwise comparisons (P < 0.001), with similar distances between

them (Figure 4).

4. Discussion

The present study was undertaken to clarify the relationship between temperature and

sex differentiation in the sea bass and to attempt to establish a rearing protocol based on

thermal manipulation that would ensure the production of the highest possible number of

females. In previous studies, either low temperatures (15ºC) during the alevin stage (57-137

dpf) (Blázquez et al., 1998) or from early development but administered throught the first

year (Saillant et al., 2002) resulted in an all-male population. An increase in the number of

males is thought to be the consequence of growth-dependent sex differentiation brought by

slower growth after prolonged exposure to low water temperature (Ospina-Álvarez and

Piferrer, 2008). Thus, in the sea bass so far the best results have been found by rearing at low

temperature from early development (reviewed by Piferrer et al., 2005). Our results also show

that low rearing temperatures during early development (0-120 dpf) result in an increase of

females.

The present study reports the highest proportions of females ever obtained with

temperature manipulations in the sea bass, up to 90% females in G60 family 3, higher than

72-74 % females previously reported by Pavlidis et al (2000). It is important, however, to

point out that in family 3 the proportion of females in G10 group was 56.7%. Therefore, the

actual increase in female numbers in this particular family is about 34%, but when average the

difference between the minimum and maximum number of females within a family was

31.2%. Because neither in the present study nor in previous ones low temperature achieved

Page 220: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-190-

all-female populations, we support the view that there is one fraction of the genotypic females

that are temperature-insensitive. Nevertheless, previous and present results led us to

hypothesize that high water temperatures during larval development, typically used in

aquaculture, are capable to modify the genetically-programmed pathway of sex

differentiation, therefore inducing genetic females to develop as phenotypic males (Figure 5).

However, if larval development occurs at low temperatures, as it happens in nature, (Fig. 1B),

it is possible that the genetically-programmed pathway of sex differentiation progresses,

therefore allowing genetic females to develop as phenotypic females.

Sex ratios in the European sea bass are influenced by dame and sire, and therefore,

both parents are responsible for the genetic variability found within the different progenies

(Saillant et al., 2002; Gorshkov et al., 2003; Saillant et al., 2003b; Vandeputte et al., 2007).

Microsatellite analysis revealed a significant deviation of the Hardy-Weinberg equilibrium,

with an overall deficiency of heterozygotes. These results seem to be a consequence of the

inbreeding that reduces the effective population size commonly observed in farmed species.

All families are significantly genetic equidistant among them which support the different

genetic origin of the parents that, in turn, could explain the different response of each family

reared under the same thermal conditions. Furthermore, the similar levels of genetic

variability in al families can be explained by a each family was founded by the similar

number of parents, and therefore reducing the impact of the founder effect to the genetic

variability.

Moreover, from the results obtained by thermal manipulations in this and other studies

(summarized in figure 5A), it can be seen that an elevated variability in female proportions

exists among experiments carried out under the same or similar thermal conditions. Thus, we

support that a strong genetic influence in the final sex ratios of a given population, regardless

of temperature treatments, operates in the sea bass, as evidenced by our observation that the

family component accounts for about two thirds of the total variation in sex ratio observed. In

addition, interactions between parents and temperature have also been detected in several

studies (Saillant et al., 2002; Gorshkov et al., 2003; Saillant et al., 2003b). Altogether, it can

be concluded that final sea bass sex ratios of a given population are the result of the

interaction between the genotype (parental) and the environment (temperature) (Figure 5B).

We suggest that regardless of the genetic females present in a population, rearing fish at high

Page 221: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-191-

or low temperatures determine the final number of phenotypic females present. Further, when

this and past studies are put together it becomes evident that high temperature masculinizes

precisely about half of the genotypic females.

High temperatures (>19ºC) during larval and post larval stages promote growth and

thus accelerate development (Ayala et al., 2001). Our results show that at the end of the

different thermal regimens low temperatures induced growth retardation in all groups.

However, as previously found (Pavlidis et al., 2000; Koumoundouros et al., 2002b; Mylonas

et al., 2005), a compensatory growth at the end of the first year was found in G30, but not in

G60, G90 and G120, with fish of G30 showing even higher BW values than those of G10

(9.4% higher). Although BW in G60 at the end of the first year was lower than G10, this

difference decreased respect towards the end of the thermal treatment from 62.5% to 15.2%,

demonstrating the existence of compensatory growth and suggesting that these differences

may disappear during the second year. Moreover, sexually dimorphic growth patterns have

been found around the first year in the sea bass (Blázquez et al., 1999; Gorshkov et al., 1999;

Saillant et al., 2003b), suggesting that growth is dependent on phenotypic sex in this species

(Saillant et al., 2001; Gorshkov et al., 2004b). The present study shows that already at the end

of the first year females exhibited significantly higher sizes than males.

In addition, and coinciding with the time of marketing at the end of the second year,

sea bass females reached marketable size, taken as 400 g, according to common sea bass

production practices, 120 days earlier than males. In this regard, the increase of 6.1 and 9.2%

in biomass in G60 and G120 respect to G10, that as observed in the present study is based on

the increase of percent females and the fact that there are the fastest growing sex, indicates the

probable economic advantage of the increase of female proportions in sea bass cultures.

Male predominance in sea bass aquaculture is not a problem only because males are

the slowest growing sex, but also because 25-30% of them mature precociously at the end of

the first year (Carrillo et al., 1995). This poses an even worse problem, in that precocious

males usually exhibit stunned growth and poor food conversion efficiency during the rest of

their life. High rearing temperatures not only resulted in a decrease in the number of females

but also in advanced gonadal development. Our results show that precocious males were

bigger than immature males by the first year of life, similar to what has been found in a

Page 222: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-192-

previous study (Begtashi et al., 2004). However, at the end of the second year, precocious

males were about 18% smaller in weigh and 5% in length (Felip et al., 2006). From our

results we can conclude that low temperatures resulted in a decrease from 30% to 10–20% in

the number of precocious males. In addition, the number of males in stage IV-V (testis in

maturing stage) decreased with increasing durations at low temperature. GSI values at the end

of the first year were highest in males from G10. Altogether, these results indicate that low

temperatures during early development delay male maturation resulting in higher growth

especially by the time of marketing (end of the second year).

Several studies in the sea bass report the incidence on survival of the rearing

temperature during early development (0-90 dpf) with not consistent results. Thus, three

different trends have been reported: 1) a decrease in survival rates in low (13-15ºC) versus

high (20ºC) temperatures (Saillant et al., 2002; Papadakis, 2003); 2) the opposite pattern

(Pavlidis et al., 2000) and 3) similar survival rates between both high and low temperatures

(Koumoundouros et al., 2002b). We found higher survival rates at low temperature in two

families whereas survival was essentially the same in the other two. Also, rearing at high

temperature during nursery and pre-growing stages increased survival (Saillant et al., 2002).

Conversely, no differences between treatments were observed in other studies (Pavlidis et al.,

2000; Koumoundouros et al., 2002b). Moreover, survival during the on-growing phase was

high (85-96%) and similar in all studies. Sex-related mortality does not seem to occur in the

sea bass since regardless of the variability in survival found among different studies the

effects of temperature on sex ratios were essentially similar in all of them. Experiments of

temperature manipulation in genetic female goldfish also support that the masculinizing effect

of high rearing temperature is not a result of sex-related mortality (Goto-Kazeto, 2006).

Nevertheless, as previously suggested (Johnson and Katavic, 1984; Johnson and Katavic,

1986; Saillant et al., 2003a) larval rearing should be performed at lower salinities that those

commonly used in sea bass aquaculture in order not to compromising survival.

Bone malformations pose a problem for intensive sea bass aquaculture. The presence

of fish with malformations has been correlated with the rearing methods and affects the final

quality of the fish at the same time that increases mortality (Koumoundouros et al., 2002a).

The increment in the number of sea bass exhibiting malformations and cranial deformities

when reared at high temperatures is due to a decoupling effect on development (Abdel et al.,

Page 223: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-193-

2004) probably induced by a nutritional imbalance (Georgakopoulou et al., 2007a).

Moreover, body shape and several meristic characters in the sea bass can also be affected by

the environmental temperature during embryonic and larval stages (Georgakopoulou et al.,

2007a; Georgakopoulou et al., 2007b). In the present study, the presence of fish with lordosis

was very low and restricted to those groups reared at high temperatures for longer periods

(G10 and G30) including larval development and weaning. Similar resulta had previously

been found in this (Sfakianakis et al., 2006) and other species such as the Atlantic cod

(Fitzsimmons and Perutz, 2006). Our results also show an increase in opercular alterations

after rearing fish at low temperatures during 90-120 dpf suggesting that a delay in growth

might also be responsible for this effect. In addition, high rearing temperatures could also

account for the decrease in muscle cellularity, one of the most important indicators of the

flesh quality (Ayala et al., 2001). Since muscle cellularity in wild sea bass is higher than in

farmed fish (Periago et al., 2005), we suggest that rearing fish at low temperatures during

early development, therefore mimicking the natural conditions in the open sea, could also be

advantageous in terms of flesh quality.

The present study raises several important issues aimed to improve sea bass

aquaculture by increasing the number of females. The impossibility to obtain all-female

populations after low temperature manipulations led us to suggest that high rearing

temperatures during early development can masculinize genetic females, whereas low

temperatures do not affect genetic males. Since sex differentiation in the sea bass is

determined by genotype-environment interactions (Piferrer et al., 2005), we demonstrate that

an increase of up to 90% females after low temperature treatments is feasible if broodstock

that naturally gives high percent females is used, thus emphasizing the need for genetic

selection in this species. In this regard, broodstock genotyping should be implemented in all

sea bass farms. In addition, the present study shows that the initial growth retardation due to

low temperature regimens is compensated by the time of marketing. A compromise should

also be reached between temperature and survival rates, in this regard (Mylonas et al., 2005)

showed similar results in the number of females obtained at 17ºC than those obtained at 15ºC.

In addition, changes in temperature from 15 to 17ºC at embryonic and vitelline phases,

positively influence muscle growth, development rates and survival (Ayala et al., 2000;

Lopez-Albors et al., 2003). Therefore, we suggest rearing the fish at 17ºC during early

development to obtain similar female proportions than those at 15ºC and thus improving

Page 224: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-194-

growth and survival. This will in turn allow to reduce the duration of the treatments from 60

dpf, when reared at 15ºC, to 53 dpf,, when reared at 17ºC since the number of degree days

accumulated in both cases will be 840 and therefore the developmental stage of the thermally

treated fish will be identical.

5. Conclusion

The present study provides valuable information for the optimization of sea bass

production by increasing the number of females with appropriate thermal regimens. Under

laboratory conditions, the highest number of females was achieved after rearing fish at 15°C

for 60 days starting at fertilization, although a toll in the form of growth retardation cannot be

avoided. However, since rearing sea bass at 17ºC improves survival and growth without

altering sex ratios, we suggest rearing at 17°C from fertilization until 53 dpf (corresponding to

840 degree days) to maximize both female content and growth. The proposed protocol should

result in an increase of female numbers, without retarding growth, and also a decrease in the

number of precocious males. This would allow reaching the time of marketing at an earlier

age because females grow more than males, thus presumably decreasing production costs.

Combined with the genetic selection of broodstock aimed at obtaining progenies with high

female number and low sensitivity to high temperature, this rearing method should contribute

to the routine culture of highly female-biased sex ratios for the benefit of sea bass

aquaculture.

Acknowledgments

Thanks are due to Dr. Antonio Mateos (Base Viva, S.L., Girona) and Dr. Silvia Zanuy

(Institute of Aquaculture, Castellón) for kindly providing the sea bass eggs used in this study;

to Elvira Martínez and Dr. Maxi Delgado for fish rearing assistance and to Silvia Joly for

technical support. Funded by Spanish government project “SEXRATIO” to FP, and Spanish

government pre- and post-doctoral scholarships to LN and JV, respectively and a “Ramon y

Cajal” contract to MB.

References

Abdel, I., Abellán, E., Ayala, M.D., García-Alcázar, S., Lopez-Albors, O., García-Alcázar, A., 2003. Datos biométricos y de composición en lubina (Dicentrarchus labrax L.) de

Page 225: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-195-

tamaño comercial cultivada a diferentes temperaturas, Libro de Actas del IX Congreso Nacional de Acuicultura, Cádiz, pp. 333-336.

Abdel, I., Abellan, E., Lopez-Albors, O., Valdes, P., Nortes, M.J., Garcia-Alcazar, A., 2004. Abnormalities in the juvenile stage of sea bass (Dicentrarchus labrax L.) reared at different temperatures: types, prevalence and effect on growth. Aquaculture International 12, 523-538.

Ayala, M.D., Lopez-Albors, O., Gil, F., Latorre, R., Vazquez, J.M., Garcia-Alcazar, A., Abellan, E., Ramirez, G., Moreno, F., 2000. Temperature effect on muscle growth of the axial musculature of the sea bass (Dicentrarchus labrax L.). Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C 29, 235-241.

Ayala, M.D., Lopez-Albors, O., Gil, F., Garcia-Alcazar, A., Abellan, E., Alarcon, J.A., Alvarez, M.C., Ramirez-Zarzosa, G., Moreno, F., 2001. Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 202, 359-370.

Baroiller, J.F., Clota, F., 1998. Interactions Between Temperature Effects and Genotype on Oreochromis Niloticus Sex Determination. The Journal of Experimental Zoology 281, 507.

Baroiller, J.F., D'Cotta, H., 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 130, 399-409.

Begtashi, I., Rodriguez, L., Moles, G., Zanuy, S., Carrillo, M., 2004. Long-term exposure to continuous light inhibits precocity in juvenile male European sea bass (Dicentrarchus labrax, L.). I. Morphological aspects. Aquaculture 241, 539-559.

Berenson, M.L., Levine, D.M., Goldstein, M., 1983. Two-Way ANOVA: Randomized Complete Block Design. In: Pretince-Hall (Ed.), Intermediate Statistical Methods and Applications. A computer Package Approach, Englewood Cliffs, New Jersey, pp. 118-130.

Blázquez, M., Zanuy, S., Carillo, M., Piferrer, F., 1998. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 281, 207-216.

Blázquez, M., Carrillo, M., Zanuy, S., Piferrer, F., 1999. Sex ratios in offspring of sex-reversed sea bass and the relationship between growth and phenotypic sex differentiation. Journal of Fish Biology 55, 916-930.

Bruslé, J., Roblin, C., 1984. Sexuality of sea bass (Dicentrarchus labrax) in controlled fish farm conditions. L’Aquaculture du bar et des Sparides, 33–43.

Carrillo, M., Zanuy, S., Blázquez, M., Ramos, J., Piferrer, F., Donaldson, E.M., 1995. Sex control and ploidy manipulation in sea bass, Environmental Impacts of Aquatic Biotechnology. OCDE, Paris, pp. 125-144.

Castilho, R., McAndrew, B., 1998. Two polymorphic microsatellite markers in the European sea bass, Dicentrarchus labrax (L.). Animal Genetics 29, 151-152.

Chatain, B., 2001. Mise au point d’un process de controle du sexe-ratio par la temperature dans les elevages de bar Dicentrarchus labrax, Projets ‘soutien a l’innovation’. Synthese de resultats. IFREMER.

Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-364.

Felip, A., Zanuy, S., Carrillo, M., 2006. Comparative analysis of growth performance and sperm motility between precocious and non-precocious males in the European sea bass (Dicentrarchus labrax, L.). Aquaculture 256, 570-578.

Page 226: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-196-

Felsenstein, J., 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164-166.

Fitzsimmons, S.D., Perutz, M., 2006. Effects of egg incubation temperature on survival, prevalence and types of malformations in vertebral column of Atlantic Cod (Gadus morhua) larvae. Bulletin of the European Association of Fish Pathologists 26, 80-86.

Garcia De Leon, F.J., Chikhi, L., Bonhomme, F., 1997. Microsatellite polymorphism and population subdivision in natural populations of European sea bass Dicentrarchus labrax (Linnaeus, 1758). Molecular Ecology 6, 51-62.

Georgakopoulou, E., Angelopoulou, A., Kaspiris, P., Divanach, P., Koumoundouros, G., 2007a. Temperature effects on cranial deformities in European sea bass, Dicentrarchus labrax (L.). Journal of Applied Ichthyology 23, 99-103.

Georgakopoulou, E., Sfakianakis, D.G., Kouttouki, S., Divanach, P., Kentouri, M., Koumoundouros, G., 2007b. The influence of temperature during early life on phenotypic expression at later ontogenetic stages in sea bass. Journal of Fish Biology 70, 278-291.

Gorshkov, S., Gorshkova, G., Knibb, W., Gordin, H., 1999. Sex ratios and growth performance of European sea bass (Dicentrarchus labrax L.) reared in mariculture in Eilat (Red Sea). Israeli Journal of Aquaculture-Bamidgeh 51, 91-105.

Gorshkov, S., Gorshkova, G., Colorni, B., Gordin, H., 2004a. Effects of natural estradiol-17 beta and synthetic 17 alpha-ethynylestradiol on direct feminization of European sea bass Dicentrarchus labrax. Journal of the World Aquaculture Society 35, 167-177.

Gorshkov, S., Gorshkova, G., Meiri, I., Gordin, H., 2004b. Culture performance of different strains and crosses of the European sea bass (Dicentrarchus labrax) reared under controlled conditions at Eilat, Israel. Journal of Applied Ichthyology 20, 194-203.

Gorshkov, S., Meiri, I., Rosenfeld, H., Ben-Atia, S., Lutzki, S., Peduel, A., Ron, B., Skvortzov, A., Gorshkova, G., Tandler, A., 2003. Parental effects on sex ratios in progeny of the European sea bass (Dicentrarchus labrax). Israeli Journal of Aquaculture-Bamidgeh 55, 265-273.

Goto-Kazeto, R., 2006. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture 254, 617-624.

Hattori, R.S., Gould, R.J., Fujioka, T., Saito, T., Kurita, J., Strüssmann, C.A., Yokota, M., Watanabe, S., 2007. Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and Dmrt1 expression profile. Sexual development 1, 138-146.

Johnson, D.W., Katavic, I., 1984. Mortality, growth and swim bladder stress syndrome of sea bass (Dicentrarchus labrax) larvae under varied environmental conditions. Aquaculture 38, 67-78.

Johnson, D.W., Katavic, I., 1986. Survival and growth of sea bass (Dicentrarchus labrax) larvae as influenced by temperature, salinity, and delayed initial feeding. Aquaculture 52, 11-19.

Kalinowski, S.T., Taper, M.L., Marshall, T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099-1106.

Koumoundouros, G., Maingot, E., Divanach, P., Kentouri, M., 2002a. Kyphosis in reared sea bass (Dicentrarchus labrax L.): ontogeny and effects on mortality. Aquaculture 209, 49-58.

Koumoundouros, G., Pavlidis, M., Anezaki, L., Kokkari, C., Sterioti, K., Divanach, P., Kentouri, M., 2002b. Temperature sex determination in the European sea bass,

Page 227: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-197-

Dicentrarchus labrax (L., 1758) (Teleostei, Perciformes, Moronidae): Critical sensitive ontogenetic phase. Journal of Experimental Zoology 292, 573-579.

Lopez-Albors, O., Ayala, M.D., Gil, F., Garcia-Alcazar, A., Abellan, E., Latorre, R., Ramirez-Zarzosa, G., Vazquez, J.M., 2003. Early temperature effects on muscle growth dynamics and histochemical profile of muscle fibres of sea bass Dicentrarchus labrax L., during larval and juvenile stages. Aquaculture 220, 385-406.

Luckenbach, J.A., Godwin, J., Daniels, H.V., Borski, R.J., 2003. Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture 216, 315-327.

Moretti, A., Pedini Fernandez-Criado, M., Cittolin, G., Guidastri, R., 1999. Manual on Hatchery Production of Seabass and Gilthead Seabream. FAO, Roma, 194 pp.

Mylonas, C.C., Anezaki, L., Divanach, P., Zanuy, S., Piferrer, F., Ron, B., Peduel, A., Ben Atia, I., Gorshkov, S., Tandler, A., 2005. Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. Journal of Fish Biology 67, 652-668.

Nei, M., 1972. Genetic Distance between Populations. American Naturalist 106, 283-&. Ospina-Álvarez, N., Piferrer, F., 2008. Temperature-dependent sex determination in Fish.

Prevalence, existence of a single sex ratio response pattern, and possible effects on climate change. Public Library of Science One (in press).

Papadakis, I., J, 2003. Effect of the early ontogenetic temperature of the biological performance of larval and juvenile European sea bass (Dicentrarchus labrax).

Pavlidis, M., Koumoundouros, G., Sterioti, A., Somarakis, S., Divanach, P., Kentouri, M., 2000. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 287, 225-232.

Penman, D.J., Piferrer, F., 2008. Fish Gonadogenesis. Part1. Genetic and environmental mechanisms of sex determination. Reviews in Fisheries Science 16 S1, in press.

Periago, M.J., Ayala, M.D., Lopez-Albors, O., Abdel, I., Martinez, C., Garcia-Alcazar, A., Ros, G., Gil, F., 2005. Muscle cellularity and flesh quality of wild and fanned sea bass, Dicentrarchus labrax L. Aquaculture 249, 175-188.

Piferrer, F., 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197, 229-281.

Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). General and Comparative Endocrinology 142, 102-110.

Saillant, E., Dupont-Nivet, M., Haffray, P., Chatain, B., 2006. Estimates of heritability and genotype-environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139-147.

Saillant, E., Fostier, A., Menu, B., Haffray, P., Chatain, B., 2001. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202, 371-387.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Chatain, B., 2003a. Saline preferendum for the European sea bass, Dicentrarchus labrax, larvae and juveniles: effect of salinity on early development and sex determination. Journal of Experimental Marine Biology and Ecology 287, 103-117.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Thimonier, J., Chatain, B., 2002. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 292, 494-505.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Laureau, S., Thimonier, J., Chatain, B., 2003b. Effects of rearing density, size grading and parental factors on sex ratios of the sea bass (Dicentrarchus labrax L.) in intensive aquaculture. Aquaculture 221, 183-206.

Page 228: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-198-

Saitou, N., Nei, M., 1987. The Neighbor-Joining Method - a New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution 4, 406-425.

Sambrook, J., Fritsch, E.J., Maniatis., T., 1989. Molecular Cloning. A Laboratory Manual. Cold spring Harbor, Laboratory Press, New York.

Sfakianakis, D.G., Georgakopoulou, E., Papadakis, I.E., Divanach, P., Kentouri, M., Koumoundouros, G., 2006. Environmental determinants of haemal lordosis in European sea bass, Dicentrarchus labrax (Linnaeus, 1758). Aquaculture 254, 54-64.

Tessema, M., Müller-Belecke, A., Hörstgen-Schwark, G., 2006. Effects of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture 258, 270-277.

Valenzuela, N., Lance, V., 2004. Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washinton.

Valenzuela, N., Adams, D.C., Janzen, F.J., 2003. Pattern does not equal process: Exactly when is sex environmentally determined? American Naturalist 161, 676-683.

Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Chatain, B., 2007. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176, 1049-1057.

Yamamoto, E., 1999. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 173, 235-246.

Page 229: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-199-

Tables

Table 1. Percent females in the different families and temperature regimens determined

histologically in fish of min. 12 cm (330-400 dpf) Family 1 Family 2 Family 3 Family 4 All families Treatment

group R1 R2 R1 R2 R1 R2 R1 R2 Mean ± SEM

G10 10.5 (19) 13.91 10.7 (28) 35.7 (14) 67.5 (40) 45.0 (40) 31.6 (38) 35.31 31.3 ± 8.0a

G30 34.1 (44) 30.0 (40) 25.0 (40) 41.5 (41) 70.0 (40) 65.01 24.3 (37) 33.3 (39) 40.4 ± 9.1ab

G60 44.0 (25) 31.6 (38) 17.4 (46) 25.91 85.0 (40) 95.0 (40) 48.7 (39) 53.2 (47) 50.1 ± 14.6bc

G90 37.5 (40) 32.7 (49) 25.0 (40) 27.5 (40) 82.5 (40) 80.0 (40) 47.6 (21) 54.5 (33) 48.4 ± 12.1bc

G120 35.0 (40) 43.01 40.0 (40) 30.0 (40) 85.0 (40) 80.0 (40) 82.6 (23) 76.9 (13) 59.1 ± 12.8c

Two replicates per family (R1 and R2) were used. Numbers within parenthesis indicate the sample size. 1Estimated values based on randomized block designs (Berenson et al., 1983). Different superscript letters indicate significant differences between groups (P < 0.05).

Table 2. Percent of non-precocious and precocious males at 330 dpf

Non-precocious males Precocious males Temperature

treatment Stage I Stage II Stage III Total Stages IV and V

G10 52.9 11.8 5.9 70.6 29.4

G30 52.7 26.3 7.0 86.0 14.0**

G60 45.0 22.5 12.5 80.0 20.0

G90 51.7 22.4 15.5 89.7 10.3**

G120 26.9 15.4 42.3* 84.6 15.4*

P < 0.05; ** P < 0.01 after a Chi-square test

Page 230: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-200-

Table 3. Mean body weight and estimated biomass when females reach the marketable size of

400 g

Current industry

treatment

(21ºC from the firsts dpf)

Recommended thermal

treatment

(60 first days at 15°C)

Maximum female

treatment

(120 first days at 15°C)

Sex % Bw (g) Biomass1 % Bw (g) Biomass1 % Bw (g) Biomass1

Males 68.7 292 20.1 49.9 292 14.6 40.9 292 11.9

Females 31.3 400 12.5 50.1 400 20.0 59.1 400 23.6

Sum 100.0 32.6 100.0 34.6 100.0 35.6

Gain (%) 6.1 9.2

Sex ratios correspond to G10, G60 and G120 group averages of all families from present studies 1Biomass in kg per 100 fish.

Table 4. Genetic diversity by locus.

All families Locus k He PIC HW

Dla11 9 0.820 0.799 ns

Labrax-3 18 0.877 0.862 *

Labrax-6 5 0.555 0.495 *

Labrax-8 15 0.903 0.892 ns

Labrax-13 27 0.926 0.918 *

Labrax-17 13 0.800 0.770 *

Average 14.5 0.813 0.789 *

k, number of alleles per locus He, expected heterozigosity PIC, polymorphism information content HW, Hardy-Weinberg test value Asterisk indicates significant differences (P < 0.05) ns = not significant differences

Page 231: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-201-

Figures

Figure 1. Temperature regimens used in the present study. A. Experimental design. Five groups of sea bass were reared under low temperature (15 ± 1ºC) during the first 10 , 30, 60, 90 or 120 dpf (G10, G30, G60, G90 and G120, respectively). At the end of each treatment, water temperatures were raised to ≥21ºC, and left to follow the natural fluctuations until the end of autumn, when temperature was maintained at 18 ± 1ºC. The period of histological gonadal sex differentiation is indicated by a solid line. B. Typical natural seawater temperatures from January to December registered in our facilities. The solid bar indicates the natural spawning season.

Days post fertilization (dpf)0 30 60 90 120 150 180 210 240 270 300 330

Tem

pera

ture

(ºC

)

10121416182022242628

G10G30G60G90G120

Month of the year

ene may sep ene may sep ene 10121416182022242628

A

Sex Differentiation

JanJan JanJun JunJanJan JanJun Jun

B

Page 232: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-202-

Figure 2. Gonadosomatic index (GSI) of one-year-old sea bass from the different experimental groups. Data corresponds to families 2-4 and are shown as mean + SEM of three families with two replicates per group. Different letters indicate significant (P < 0.05) differences among groups within a given sex (females, lowercase; males, uppercase). Average sample size: n = 31 fish per group and per sex. Group abbreviations as in Fig. 1.

Treatment group

G10 G30 G60 G90 G1200,00

0,05

0,10

0,15

0,20

0,25 Females Males

GSI

(%)

0.25

0.20

0.15

0.10

0.05

0.00

Treatment group

G10 G30 G60 G90 G1200,00

0,05

0,10

0,15

0,20

0,25 Females Males

GSI

(%)

0.25

0.20

0.15

0.10

0.05

0.00

a a

b

b b

BAB

B B

A

Page 233: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-203-

Figure 3. Body weight (BW) in sea bass during the first three years of life. A. Percent variation in BW relative to G10 at three different sampling times during the first year: 1) At the end of each period of rearing with cold water (ECW) at 15°C, i.e., at 30, 60, 90 and 120 dpf in G30, G60, G90 and G120, respectively; 2) At the end of the pre-growing or nursery period (ENP; 150 dpf), when fish typically have a mean BW of around 5 g (range 2-10 g); and 3) At the end of first year (EFY; 330 dpf), when fish were sexually differentiated. Data represent the average of the four families with average sample sizes of 15, 120 and 35 for ECW, ENP and EFY, respectively. Asterisks indicate significant differences (P <0.001) between each group and G10. Group abbreviations as in Fig. 1. B. Sex-related growth during the second and third year. BW from 21 males and 53 females was monitored from 330 to 1055 dpf. Significant differences (P < 0.001) between sexes at each sampling point are symbolized by ***. The BW (in g) as a function of age (in dpf) is shown for males (BWm) and females (BWf). From the linear correlation, the time of marketing (set at 400 g) was estimated to be 605 dpf for females and 725 dpf for males and are indicated by vertical arrows. Sample size was 21 and 53 for males and females, respectively. Data are shown as mean ± SEM.

Treatment group

G30 G60 G90 G120

BW (%

)

-100-80-60-40-20

0204060

Days post fertilization (dpf)

400 600 800 1000

BW (g

)

0

200

400

600

800

1000Females Males

A

B

BWf = -326.1 + 1.2 * dpf

BWm= -252.3 + 0.9 * dpf

***

***

r2 = 0.994 P<0.0001

r2 = 0.988 P<0.0001******

*** ***

***

****** ***

***

***

******

*** ***

***

ECW ENP EFY

Page 234: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

C. Aquaculture applications

-204-

Figure 4. Unrooted tree constructed using the Neighbour-Joining method based on Nei’s distance among the four sea bass families used in this study. Only Bootstrap values (after 1000 resamplings) higher than 60% are depicted. The bar indicates the genetic distance and the number by the node the boostrap value.

Lot 3

Lot 2

Lot 4

Lot 5

5e+02

700

Family 2

Family 1

Family 3

Family 4

Lot 3

Lot 2

Lot 4

Lot 5

5e+02

700

Family 2

Family 1

Family 3

Family 4

Page 235: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Results V

-205-

Figure 5. Effects of temperature on sea bass sex ratios. A. Observed effect of rearing at low temperature (< 17°C) for different lengths of time within the thermolabile period starting at fertilization. Data are from previous studies as well as from the present study (see section 2.7) and are shown as box plots. The thick line, margins of the box, whiskers and an open circle represent the median, the lower and upper quartile, the range, and an outlier, respectively. The number of different treatments are indicated within parenthesis. Groups with different letters were statistically different (ANOVA; P < 0.05). B. Illustration of genotype (parental) and environmental (temperature) interaction on sea bass sex ratios. Parental influences are evidenced by a wide variation in sex rations among broods, compatible with a polyfactorial sex determining mechanism. When many broods from different broodstocks are taken together, the average number of genotypic females shoud be ~50%, females that would be expected to develop as ~50% phenotypic females, provided there is no influence of temperature. The thermal regimen currently used, i.e., < 15 days at temperature < 17°C, maculinizes about half of the genotypic females into phenotypic males. This shifts ~25% the proportion of phenotypic males from ~50% to ~75% and results, on average, in the 3:1 male:female sex ratio typically observed in sea bass farming. This working model matches both the available data available so far, as evidenced by similar sex ratio response patterns (compare panels A and B), as well as the average sex ratio shift of 31.2% observed in the families used in this study.

TEMPERATURE EFFECT

Thermal regime currently used in sea

bass farming

Thermal regime that does not

affect sex ratio

Female percent

A

B

Day

s re

ared

at <

17ºC

st

artin

g at

0 d

pf

106-120

76-105

46-75

16-45

? 15

(n=4)

(n=7)

(n=10)

(n=8)

(n=11)a

ab

ab

ab

b

100806040200

100806040200

Females masculinized by high temperature

Females not affected by temperature

+

-

Day

s re

ared

at <

17ºC

st

artin

g at

0 d

pf

Arrows indicate sex ratio variation due to G x E interactions.

Average ~25% phenotypic females

Arrows indicate sex ratio variation due to parental

influences. Average ~50% phenotypic females

+

-

TEMPERATURE EFFECT

Thermal regime currently used in sea

bass farming

Thermal regime that does not

affect sex ratio

Female percent

A

B

Day

s re

ared

at <

17ºC

st

artin

g at

0 d

pf

106-120

76-105

46-75

16-45

? 15

(n=4)

(n=7)

(n=10)

(n=8)

(n=11)

106-120

76-105

46-75

16-45

? 15

(n=4)

(n=7)

(n=10)

(n=8)

(n=11)a

ab

ab

ab

b

100806040200

100806040200

Females masculinized by high temperature

Females not affected by temperature

+

-

+

-

Day

s re

ared

at <

17ºC

st

artin

g at

0 d

pf

Arrows indicate sex ratio variation due to G x E interactions.

Average ~25% phenotypic females

Arrows indicate sex ratio variation due to parental

influences. Average ~50% phenotypic females

+

-

Page 236: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 237: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of results and Discussion

Page 238: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 239: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-207-

SUMMARY OF RESULTS AND DISCUSSION

As explained in the introduction, fish posses several sex determining and sex

differentiation mechanisms. For that reason, and although researchers have done a big effort

to investigate those processes, many aspects remain unknown. The present studies have been

carried out with the objective to answer some of these questions, including:

How some genes are related with sex differentiation in fish?

Which pathway drives males to differentiate their gonad into testis?

Are sex determining/differentiating genes interacting directly or indirectly with

cyp19a gene in fish, and how?

Is transcription of these genes or some of them under estrogen control?

How does temperature intervene in these processes?

Are epigenetic events related with this temperature influence on sex differentiation?

Is there any rearing protocol based on temperature capable to feminize sea bass?

Although some, but not all, of these questions can be addressed after the results obtained in

the present thesis, at least for the case of sea bass, other interesting new questions have arisen

and further investigations are required to achieved a complete understanding of the situation.

Expression profiles of some genes involved in sea bass gonadal differentiation

Sea bass cyp19a expression is related to ovarian differentiation

As it has been demonstrated in lower vertebrates, this thesis has also demonstrated the

involvement of cyp19a gene on sea bass, Dicentrarchus labrax, ovarian differentiation. Our

studies, as well as those of by Blázquez et al. (2008), show that mean cyp19a gene expression

levels during the sex differentiation period (at 150 and 200 dpf) were clearly bimodal, with

significantly (P<0.001) higher levels in females than in males. Also, cyp19a exhibited a

consistent pattern of expression between 120 and 330 dpf, with differences (females > males)

before the first signs of histological sex differentiation at 150 dph. In addition, the observation

that sea bass first cyp19a sex differences were found at 120 dpf, coinciding with the period of

rapid proliferation of primordial germ cells in the undifferentiated gonad (Roblin and Bruslé,

Page 240: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-208-

1983), suggests that increases of cyp19a expression levels are one of the firsts molecular signs

of female sex differentiation.

It is also interesting to notice that cyp19a expression levels in males during the period

comprised between 150 and 330 dph are roughly similar to those of females at 120 dph. This

suggests that the cyp19a levels that are typical of males at 150-330 dph in fish 50-225 mm SL

are sufficient to drive female sex differentiation in fish around 50 mm SL at 120 dph. Thus,

we hypothesize that by the beginning of sex differentiation in the sea bass, the fish that reach

a critical cyp19a expression above a threshold are the ones that start ovarian differentiation,

whereas the rest, that posses lower expression values, remain undifferentiated and later

differentiate into males.

Testicular development is independent of androgens

Results from an experiment carried out in undifferentiated sea bass treated from 90 to

150 dpf with cyproterone acetate (CPA), an androgen receptor (AR) agonist, showed no

effects on sex ratios and on cyp19a and ar gene expression, when administrated at the dose

and developmental period tested (see Results I section). In teleosts CPA is capable to bind AR

in brain, testes and ovary (Wells and van der Kraak, 2000); however the action of the anti-

androgen CPA is complex and are very variable and depending on the species or even the

developmental stage or the tissue target within a single species. Although CPA in the

Japanese medaka, Oryzias latipes, seems to inhibit transcriptional events because AR cannot

bind to androgen-responsive element (Kiparissis et al., 2003), no effects were found on the

sea bass when administrated at the doses and developmental window of time. Stated above in

a preliminary trial, where CPA administration was at the same dose but later in development

(130-190 dpf), the number of males was significantly reduced, presumably eliciting the

expected antiandrogenic effect. Piferrer and Donaldson (1989) first demonstrated in coho

salmon, Oncorhynchus kisutch, that the sensitive windows of time for estrogenic and

androgenic effects are not identical. In this species androgens maximum response was

observed to be one week later that for estrogens. This suggests that also in the sea bass,

androgen sensitivity during gonadal development may occur later. Moreover, other studies

have shown that, in the sea bass, androgen synthesis occurred only once testis development

was underway (Papadaki et al., 2005). Together, all these observations, suggest that, as it has

Page 241: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-209-

been proposed generally in fish (Nakamura et al., 2003), androgens are not needed for the

initial stages of sea bass testicular differentiation.

A CDA can be used to assign gonadal sex to histologically undifferentiated fish

In the present thesis, to check for sea bass sex-related differences in gene expression

during the first year of life, when many fish are sexually undifferentiated, the sex of each

individual fish was determined following a two-step procedure. In the first step, and to ensure

that the whole process of sex differentiation was entirely represented, fish ranging between 8–

225 mm SL were classified as either sexually undifferentiated, males or females based on

their age, SL and cyp19a expression levels in their gonads. Typical cyp19a mRNA values of

several one-year-old males and females, whose sex was histologically verified, were used as

reference to aid in the classification and also included in the resulting dataset. In the second

step, canonical discriminant analysis (CDA) was used to analyze the dataset. CDA has been

used in many areas, including numerical ecology applied to fisheries management to

categorize the exploitation of a given ecosystem (Tudela et al., 2005) or in forensics to

estimate the sex of unknown skeletal remains (Kemkes-Grottenthaler, 2005). However, to the

best of our knowledge, this is the first time that it is used for the study of sex differentiation.

In the present study, SL and cyp19a mRNA levels were used as the two predictors and

sex the grouping variable. The rationale for using CDA was based on two well established

observations: 1) relationship between size, age and the process of sex differentiation in the sea

bass, where this process is more dependent on length than on age (Blázquez et al., 1999), and

2) cyp19a expression is a suitable marker of ovarian differentiation, with higher expression

levels in developing females (Blázquez et al., 2008). Our results showed that CDA was

capable of correctly classifying 93.1% of the original data. Moreover, both variables, cyp19a

and SL, contributed to explain the CDA model as shown by Wilks’ lambda test values (F =

239.8 λ= 0.23; F= 520.2, λ= 0.12, respectively), demonstrating the contribution of both

variables in discriminating between the three categories, along the statistical significance of P

< 0.001, demonstrating also its statistical robustness.

Page 242: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-210-

Function 1

5,02,50,0-2,5-5,0

Func

tion

2

4

2

0

-2

Male

Female

Undifferentiated

Group CentroidMaleFemaleUndifferentiated

Sex

Figure 12 Canonical discriminant functions. Discriminant analysis based on cyp19a expression levels and body standard length (SL). Data from fish ranging between 8–225 mm, representing the whole process of sex differentiation, was divided into undifferentiated, males and females

Sex-related differences in expression profiles of key genes related to steroid synthesis and

action during sea bass sex differentiation

In the present studies and based on the results obtained after CDA classification (see

Results II section), the deduced phenotypic sex of each individual fish was used to check for

possible sex-related differences in the expression of cyp11b, arb, era, erb1 and erb2. From

those, the cyp11b gene was the only one that presented clearly consistent differences between

sexes. In contrast, this study showed that there were no sex-related differences in the levels of

arb, era, erb1 or erb2, indicating that sex-related differences in their expression are not

apparent at least within the studied size range.

Cyp19a and cyp11b as molecular markers of sea bass ovarian and testicular differentiation,

respectively

Although the first signs of sex-related differences in cyp19a were found around 50

mm SL, complete sex segregation in cyp19a values was not observed until 60 mm SL, with

Page 243: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-211-

all fish with high cyp19a expression being classified as females, and all fish with low cyp19a

levels as males. These results demonstrated that the initial stages of sex differentiation at the

molecular level start once fish reach 50 mm SL, i.e., well before the first histological signs

become evident in the sea bass (at 80 mm SL). In this regard, previous studies demonstrated

that cyp19a expression can be used as a molecular marker for ovarian differentiation in fish

species, including the rainbow trout, Oncorhynchus mykiss (Luckenbach et al., 2005;

Matsuoka et al., 2006; Vizziano et al., 2007), and the sea bass (Blázquez et al., 2008). In

addition, cyp11b has also a clear grouping distribution, although in this case males had higher

levels than females, with similar values for undifferentiated fish and the smallest males and

females. However, in this case, the first complete sex segregation in cyp11b values between

males and females appeared in fish with SL ≥ 87 mm. Several studies have been also shown

that cyp11b is implicated in testicular differentiation in fish (Liu et al., 2000; Wang and

Orban, 2007; Sreenivasan et al., 2008), with highest cyp11b expression levels found in sea

bass males by the onset of testicular differentiation (Socorro et al., 2007). In summary, all

these results allow to propose that cyp19a and cyp11b can be used as an early molecular

marker of ovarian and testicular differentiation, respectively. Nevertheless, from our results

(see Results II section) we can conclude that of these two markers, cyp19a seems the most

robust and allows for the determination of sex in fish ~30 mm smaller and one month earlier

(50 mm SL and 120 dpf) than it would have been required based on the first signs of

histological differentiation (80 mm SL and 150 dpf). Thus, we conclude that the novel use of

CDA is a useful tool to predict phenotypic sex in histologically undifferentiated sea bass.

Aromatase as a key-determining gene responsible for ovarian differentiation in fish (I):

Studies on transcription regulation of its promoter.

Because of the involvement of cyp19a in fish sex differentiation, a wide interest exists

to better understand how this gene can be regulated. Fish cyp19a promoters of several fish

species have been analyzed and similar transcription binding sites found (Piferrer and

Blázquez, 2005).

Page 244: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-212-

SF-1 and Foxl2 activate cyp19a transcritpion in a sinergically manner

Analysis of the sea bass cyp19a promoter analysis revealed, as in other species, the

presence of conserved binding sites for SF-1 (Galay-Burgos et al., 2006). These authors

showed that SF-1 could specifically bind to the consensus sequence identified in the

promoter, demonstrating that SF-1 can directly regulate sea bass cyp19a transcription. In

addition, SF-1 as well as Foxl2 was found to be correlated with cyp19a expression in tilapia,

both spatially and temporally (Wang et al., 2007), suggesting that also Foxl2 may be related

with cyp19a transcription regulation. In this regard, the transcription factor FoxL2 has been

found to bind to the cyp19a promoter and to be capable of directly activating aromatase

transcription in several fish species (Nakamoto et al., 2006; Wang et al., 2007; Yamaguchi et

al., 2007). However, it has been suggested that Foxl2 best works with the involvement of

other cofactors (Nakamoto et al., 2006; Pannetier et al., 2006). Form the co-transfection

assays realized in this thesis (see Results IV section), we demonstrated that SF-1 and Foxl2

alone were capable to activate sea bass cyp19a transcription and that both factors, as it was

previously demonstrated by Nakamoto (2007), act sinergically.

Methylation as a mechanism of cyp19a regulation

Gorelick (2003) proposed that sex differences are initially determined by different

patterns of methylation on nuclear DNA of females and males. Also, DNA methylation was

demonstrated to mediate the control of Sry gene expression in mouse development (Nishino et

al., 2004), suggesting that changes in methylation levels regulate genotypic sex

determination. Particularly in fish, an epigenetic regulation of cyp19a and estrogen receptors

(ers) transcription has been postulated in the Japanese medaka (Contractor et al., 2004). Our

studies show clear differences between males and females in cyp19a promoter methylation

levels (39.4% vs 83.9%) in one year-old sea bass. In addition, in females a correlation

between cyp19a expression and methylation levels was observed (r2= 0.2922 and P<0.05).

We conclude that regulation of sea bass cyp19a expression can be mediated through

methylation levels of its promoter. For that reason, we suggest that cyp19a methylation can be

a cause of sex differentiation, since during development methylation is known to be involved

in the differentiation of stem cells to specific cells in different tissues (Shiota, 2004). Results

indicate that low methylation levels of the cyp19a promoter are required for normal ovarian

development, suggesting that cyp19a promoter methylation is the mechanism by which

cyp19a transcription is silenced in developing males during sex differentiation, preventing the

Page 245: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-213-

development of an undifferentiated gonad into an ovary. In addition, it has been found that

DNA methylation of sea bass cyp19a promoter is capable to repress promoter activation by

SF-1 and Foxl2 transcription factors in vitro, suggesting that methylation is a mechanism that

prevents interactions between the transcription factors and the target promoter gene.

CpGs present in the sea bass cyp19a promoter were found differentially methylated

according to sex. Particularly, CpG in position –13 showed the highest sex-related

differences, suggesting that this site is important for aromatase gene transcription. Thus, a

significant correlation between methylation of the CpG in position –13 and cyp19a expression

levels was found. This position is near to a TATA box and a Sox binding site, so we suggest

that it could be important for transcription initiation. Also, to determine whether the number

and position of CpGs was conserved in other species, the promoter region of both

phylogenetically-related and -distant piscine species were aligned. Overall sequence similarity

was 53%, with a clear conservation of some of the transcription factors binding sites

including the TATA box. Interestingly, the CpG island located at position -13 was the most

conserved among all species, with three of the promoters presenting this CpG island exactly

at this position. This observation suggests that this epigenetic mechanism may be indeed

present in many species.

Aromatase as a key-determining gene responsible for ovarian differentiation in fish (II):

The transcription factor Sox17.

Is the transcription factor Sox17 implicated in sea bass sex differentiation?

The interesting observation about the conserved and sex-related CpG position –13

near to a Sox binding site and the fact that this transcription factor family binding site is

found in the cyp19a promoters of the majority of fish species analyzed (Piferrer and

Blázquez, 2005), and particularly in the sea bass (Galay-Burgos et al., 2006), makes us to

hypothesize that Sox genes might be involved in cyp19a regulation in fish. Sox genes are

known to be involved in several developmental processes and especially in organogenesis,

including sex differentiation (Pevny and Lovell-Badge, 1997; Wegner, 1999). Because Sox17

was found to be involved in mouse spermatogenesis (Kanai et al., 1996) and in rice field eel

Page 246: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-214-

sex change (Wang et al., 2003), one of the aims of this thesis was to identify and characterize

sea bass sox17, trying to elucidate its involvement in sea bass sex differentiation.

Sea bass sox17 genomic structure is similar to other species

The existence of sea bass sox17 gene had previously been found by PCR

amplification using primers based on Sox9-related gene sequences (Galay-Burgos et al.,

2004). The genomic structure of Sox genes is known for several species of vertebrates, from

fish to mammals (see Bowles et al., 2000 for review). However, the genomic structure of

Sox17 genes was previously known only in two species: the mouse (Kanai et al., 1996) and

the rice field eel (Wang et al., 2003). Here we report the sea bass (sb) sox17 genomic

structure (see Results III section). The gene sequenced region spanned 3,233 bp. This

included 1,168 bp of promoter upstream the predicted transcription start site, 205 bp of 5′

untranslated region, 1,191 bp of the open reading frame, and 305 bp of partial 3′ untranslated

region. A putative canonical poly-A signal, AATAAA, was found in the 3′ UTR. Similar to

other Sox17 genes, the presence of an intron inside the HMG boxes sb sox17 was confirmed.

This intron divides the ORF in two exons of 299 bp and 892 bp. The intron was found to be

inserted at exactly the same position as found in mouse, puffer fish, Takifugu rubripes, rice

field eel and sturgeon, Acipenser sturio, and its size was similar to its fish counterparts and

smaller than the mouse one.

Three different isoforms obtained by two promoters and by alternative splicing

In total, we identified three sea bass sox17 transcripts: the largest, retaining the intron

region (sb i-sox17), one formed by the combination of the two exons (sb sox17) and a last

one, the shortest, with a partial deletion of the HMG box region (sb t-sox17). Two of the

transcripts, sb sox17 and sb t-sox17, were structurally equivalent to the two Sox17 transcripts

previously identified in mouse (m) by Kanai et al. (1996): one which encodes a functional

protein with a single HMG box domain near the amino acid terminus (m Sox17), and another

encoding a truncated protein lacking most parts of the HMG box (m t-Sox17), respectively. m

Sox17 was highly expressed in spermatogonia and mRNA levels decreased in spermatocytes

and subsequent stages, whereas m t-Sox17 first appeared in spermatocytes and latter

accumulated in spermatids (Kanai et al., 1996). This suggests that the different transcripts

seem to have different roles during the spermatogenesis progression. Consistent with the

situation in mouse, sb sox17 was found expressed in spermatogonia (Viñas and Piferrer,

Page 247: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-215-

2008), suggesting that the role of Sox17, at least in some essential biological functions such

as the regulation of spermatogenesis, have been well conserved throughout vertebrate

evolution.

This study found two alternative transcription start sites (TSS) in the sb sox17: the

first TSS (TSS1) was located downstream of the TATA box predicted motif, whereas the

other (TSS2) was found inside the intron region. This suggests the existence of a second

promoter (P2), inside the intron region, in addition to the region upstream of TSS1 (P1).

Also, the sequence of the sb sox17 intron possessed very conserved consensus splice-site

motifs, such as the 5′ splice site (5′ss), a potential branch point (BP), a polypyrimidine track

(PT) and the 3′ splice site (3′ss), indicative of the presence of a mechanism for alternative

splicing (defined by Smith and Valcárcel, 2000). Also, the existence of seven stop codons in

the intron region suggests the possibility that sb i-sox17 transcript may generate a non-

functional protein. Intron retention has been pointed out as a regulatory system in tissue- or

stage-specific splicing mechanisms by which expression may be regulated. These results

suggest that alternative splicing mechanism, as well as the differential use of the two

promoters, may be responsible for sb sox17 gene expression regulation.

High similarity between protein sequences suggest that Sox17 genes are evolutionary

conserved

High identity (88-92%) was observed between the sb Sox17 protein and other piscine

Sox17 available protein sequences, especially in the HMG box, but also in other areas,

particularly around the N- and C-terminal regions. Sb Sox17 protein has a similar structure to

m Sox17 (see Bowles et al., 2000). Nevertheless, m Sox17 possesses a Pro-Glu rich region

(Kanai et al., 1996) which is absent in the sea bass sequence. A high identity has been also

observed between Xenopus, mouse and human Sox17 proteins, indicating that these proteins

can be considered evolutionary conserved (Wang et al., 2003). However, sb Sox17 or, for

that matter, any other piscine Sox17 sequence has more in common to the Sox17 sequence of

tetrapods than to the corresponding one of zebrafish (only 39.4% identity with the sea bass

protein sequence), reinforcing the idea that the latter is very different from the rest.

Page 248: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-216-

Sb sox17 gene expression profiles

Results obtained in two-year adult sea bass, showed that sb sox17 was expressed in

every tissue studied and usually at higher levels than sb i-sox17. The latter, however, clearly

predominated in some tissues, particularly in the skin, but also in brain. The high expression

of sb i-sox17 may be indicative of a role of Sox17 in these tissues. Similarly to other Sox

genes, the redundancy of Sox17 gene expression and the fact that Sox genes can recognize and

bind to the same consensus sequences, suggests that their specificity may be achieved through

changes in their temporal and spatial expression (Pevny and Lovell-Badge, 1997). Although

in the present studies a clear sexually dimorphic expression of sox17 was observed during sea

bass sex differentiation (with females exhibiting increasing and higher levels than males), our

results do not support sox17 as being the sex-determining gene in the sea bass, because

expression appeared when gonadal sex differentiation was already well underway. However,

both cyp19a and sox17 showed a similar pattern of expression in the gonads during sea bass

gonadal differentiation, with a weak but statistically significant correlation, suggesting that

both genes may participate in the same processes. To the best of our knowledge, this

constitutes the first that shows that sb sox17 expression is clearly sex-dependent in any

vertebrate during the critical time of sex differentiation. Since its sex differential expression

coincided with the end of the period of ovarian differentiation, Sox17 gene in sea bass is

suggested to be more related to the end of sex differentiation period and to ovarian

development and function than to the first stages of early sex differentiation. However, the

exact role of sb sox17 in this process remains to be determined.

Alterations of sea bass sex differentiation (I). Influence of sex steroids and endocrine

disruptors

Treatments with sex steroids have been a common practice to alter gonadal

differentiation in fish in the last decades. Trying to study the mechanisms implicated in fish

sex differentiation and particularly in sea bass, stimulating and inhibiting compounds of the

steroidogenic pathway were used in the present studies (see Results I section for more details)

to modify natural male and female sea bass sex differentiation. Results showed that

meanwhile the control group resulted in a 67.5% of females, MDHT and E2 resulted in all-

male and all-female stocks, respectively, Tx induced 100% females and Fz increased the

number of males to 95% (all with P < 0.001), whereas no significant differences in sex ratios

Page 249: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-217-

were found after CPA administration. However, the mechanism that is implicated in this

alterations and how this compounds act in sex differentiation pathway remains unknown.

Estrogenic effect of E2 on ovarian differentiation is not drive by an aromatase over

expression.

Feminization by estrogens has been shown in many fish species (Piferrer, 2001;

Kajiura-Kobayashi et al., 2003; Minamitani and Strussmann, 2003; Hahlbeck et al., 2004;

Grandi et al., 2007), including sea bass (Saillant et al., 2001; Gorshkov et al., 2004a). In

addition, oral administration of estradiol had been successfully to sex change in several

hermaphrodite fish, the protandrous 2-year-old black porgy, Acanthopagrus schlegeli (Du et

al., 2003) and the protogynous Halichoeres trimaculatus and Thalassoma duperrey

(Nakamura et al., 2003). Our studies also show the feminizing effect caused by administration

of exogenous estrogens (see Results I section). Estrogens can influence gonadal

differentiation through a direct activation of cyp19a gene. In this regard, it has been suggested

in reptiles that some transcription factors of masculinizing and feminizing genes are under the

control of estrogens, masculinizing genes being down-regulated whereas feminizing genes are

upregulated by estrogens (Pieau et al., 1999). However, our studies show that, in the sea bass,

cyp19a expression levels were unaffected by E2 treatment, suggesting that feminizing effect

of exogenous E2 is not directly related to cyp19a regulation. In addition, the fact that estrogen

response element (ERE) binding sites are not found in the majority of piscine cyp19a genes

(Piferrer and Blázquez, 2005), suggests that the estrogenic effects of E2 administration may be

acting pathway upstream, by regulating some transcription factors that in turn regulate cyp19a

gene transcription, or downstream of the cyp19a gene.

Fully sea bass masculinization can be achieved by both MDHT and FZ administration

Previous studies in sea bass has been demonstrated that critical period of androgen-

inducible masculinization is located between 96-126 dpf and coincides with the proliferation

of primordial germ cells in the sexually undifferentiated gonad (Blázquez et al., 2001). All

these previous results were very helpful to choose the most adequate androgen, doses and

administration period that allowed to fully masculinize sea bass in the present studies (see

Results I section).

Page 250: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-218-

On the other hand, aromatase inhibitors (AI) administration in a high number of

species has reinforced the importance of Cyp19a, and in consequence estrogens involvement,

in fish sex differentiation. Our results also show that in the sea bass cyp19a and E2 are

essential for ovarian differentiation, since Fz treatment inhibited cyp19a expression and

resulted in a nearly complete masculinization.

Masculinization effects of MDHT and Fz act thorough different mechanisms

Results from our studies (see Results I section) showed that Fz and MDHT

differentially affected gene expression of cyp19a and ar. In this regard, significant differences

in cyp19a levels at 200 dpf were found, with Fz-treated males showing higher levels than

MDHT-treated ones. In contrast, ar gene expression levels increased during sex

differentiation period (from 150 to 200 dpf) in all but the MDHT group, suggesting that early

exposure to an androgen down-regulates ar gene expression levels in males. Likewise, the

regulatory elements present in the 5’-flanking region of ar in fish are not known. In rats,

however, it possesses a half-androgen response element or ARE (Song et al., 1993). If that

applied also to fish it would explain the observed inhibition of ar after androgen treatment. In

addition, the 5’-flanking region of sea bass cyp19a contains one androgen responsive element.

(Galay–Burgos et al., 2006), suggesting that perhaps, androgens can influence in sex

differentiation through an inhibition of cyp19a, as it was observed after androgen treatment in

the present studies (see Results I section). Together, the results of the present thesis indicate

that of the two options, considered so far to explain masculinization brought by androgen

treatment, i.e., a direct effect of androgens on testicular sex differentiation activation or the

passive male differentiation caused by estrogen disponibility below a threshold, the second

one is likely to occur in the sea bass. However the masculinizing effect of Fz is not be due to

a direct interaction with ar, but most likely due to the combination of androgen accumulation

and lack of estrogen. In addition, experiments carried out with androgen treatments in the

rainbow trout induce the complete down-regulation of female specific genes, but not the

complete restoration of the male-specific gene expression pattern (Baron et al., 2007). These

authors suggested that androgen masculinization could act through an early inhibition of

female’s development rather than through a direct induction of testicular differentiation. In

contrast, treatment with Fz, in our studies, not only reduced females from an average of

67.5% in the controls to 5%, indicating that estrogen is essential for female sex

differentiation, but also inhibited cyp19a gene expression during sex differentiation period,

Page 251: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-219-

possibly by reducing an E2-mediated positive feedback loop on cyp19a mRNA synthesis,

allowing male sex differentiation. In this regard, in hermaphroditic fish it has been

demonstrated also that sex change is induced by a decrease of E2 below a threshold level and

not by a direct androgenic effect (Nakamura et al., 2003). Also, AI administration represses

the expression of some early female specific genes such as cyp19a in the rainbow trout,

tilapia, Oreochromis niloticus and Japanese flounder, Paralichthys olivaceus (Kitano et al.,

1999; Govoroun et al., 2001; Bhandari et al., 2006; Vizziano et al., 2008). This suggests that

the inhibition of cyp19a is necessary to induce male differentiation. In addition, some

evidences further supported the observation that masculinization with AI is more

physiological than with androgen treatment (Vizziano et al., 2008).

Long-term effects of Fz on proper testicular function in precocious and non-precocious males

The results obtained in the present thesis illustrate also the importance of E2 for proper

testicular function in fish (see Results I section). Other experiments carried out in

undifferentiated fish, found that no morphological differences were observed between the

testis of control and AI-treated fish and that fish were capable to complete spermatogenesis

(Piferrer et al., 1994; Bhandari et al., 2004b; Bhandari et al., 2004a). In addition, the

incidence of male precocity was not different between AI-treatment and the control fish,

indicating that AI treatment not only masculinizes by inhibiting estrogen synthesis, but also

that the resulting males have normal testes in terms of structure and function. However, the

GSI in precocious males was significantly reduced in the MDHT group and increased, but

without statistical significance, in the Fz group, suggesting that, although the incidence of

precocity males was not altered, masculinization by both treatments produced lasting effects

on testis development in one-year old males.

Alterations of sea bass sex differentiation (II). Influence of temperature

Temperature is the main environmental factor capable of modifying sex ratios in fish

Results from our experiments, as well as other carried out by several authors, have been

demonstrated that in the sea bass rearing temperatures during early development can also

affect sex differentiation, and consequently sex ratios. Following the same pattern described

by Ospina-Álvarez and Piferrer (2008), it has been shown that in the sea bass high rearing

Page 252: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-220-

temperatures (~21ºC) result in an increasing number of males and that increasing periods of

low rearing temperatures (~15ºC) during early development (from 0 to 120 dpf) increase

female proportions (see Results V section). In addition, differences among the different

families used in the present studies and reared at the same thermal regime range around 45%,

and account for the differences in the genetic origin of the parents as evidenced by the

analysis of microsatellites. Also, statistical analysis showed that temperature as well as the

genetic origin (or family) significantly (P<0.001) influences the resulting sex ratios in the sea

bass. Altogether, these results allowed to confirm that, as it has been demonstrated by other

studies (reviewed by Piferrer et al., 2005), the resulting sex ratios in sea bass populations

depend on parental and environmental (temperature) influences.

Low rearing temperatures are not capable of feminizing sea bass

Although our experiments (see Results V section) achieved a maximum of 90% of

females in one family reared at low temperature during the first 60 days (the highest

proportion of females ever achieved by temperature manipulations in the sea bass so far),

results shown that low temperature treatments to increased female proportions around 20-30

with respect to the high temperature groups in all families tested. This indicates that the

changes in the genetically sea bass sex ratios mediated by temperature are not from 0 to

100%, and that temperature is only modifying sex differentiation in a restricted proportion of

fishes. Tacking into account these and other experimental results, summarized in Paper V, it

seems clear that temperature rearing protocols are not able to produce sea bass feminization,

since after many attempts no rearing method with temperature manipulation did achieve

100% females. However, as explained above high temperatures are known to produce a

complete or nearly complete masculinization of fish populations. Taking into account all the

results available until now, our hypothesis is that high temperatures are inducing

masculinization of genetic females, whereas low temperature rearing protocols (that are

similar to natural rearing conditions in the field) allow the development of each sex, resulting

on a population with a sex ratios that only depends on parental influences. In this regard, our

hypothesis implies that phenotypic males found in groups reared at high temperatures during

early development are the result of the sum of the genotypic males plus some sex-reversed

genotypic females. In this regard it has been demonstrated in species with chromosomal sex

determination, like the flounder, Paralichthys olivaceus, that possess male heterogametic sex

determination, that genotypic and phenotypic sex often do not match due to sex differentiation

Page 253: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-221-

alterations caused by rearing temperatures (Yamamoto, 1999). In addition, same effects have

been observed in the goldfish, where high temperatures masculinize the genotypic females

into phenotypic males (Goto-Kazeto, 2006).

Temperature influence on gene expression

Among the different candidate genes known to be affected by temperature, cyp19a has

been widely studied, particularly in fish. In this regard, high temperatures during early

development resulted in low cyp19a expression and/or enzymatic activity, inducing testicular

differentiation in the pejerrey, Odontesthes bonariensis (Karube et al., 2007), the Japanese

flounder (Kitano et al., 1999), the tilapia, (D'Cotta et al., 2001) and the Atlantic halibut,

Hippoglossus hippoglossus, (van Nes and Andersen, 2006). Also, in the common carp,

Cyprinus carpio, decreases in cyp19a expression caused by high temperature during

embryonic and larval development have been recently found (Barney et al., 2008). In

addition, and although temperature did not significantly affect sex ratios in the halibut,

cyp19a levels in fish reared at low (7ºC) temperature showed significantly higher expression

than those reared at high (13ºC) (van Nes and Andersen, 2006). These results indicate that

temperature is able to affect cyp19a expression also in species that follow a strong genotypic

sex determination. Particularly in the sea bass, analysis of cyp19a expression using

semiquantitative PCR showed a decreasing trend in one-year old fish reared at high

temperatures during early development (from 0 to 90 dpf) when compared to those reared at

low, although statistical differences were only found in males (fig 13, unpublished results).

The lack of differences observed in those females could be due to methodological constraints

derived from the technique used, since in a parallel study using the more sensitive real-time

PCR, significantly higher levels were found in females reared at both high and low

temperatures (see paper IV). Together, these results in the sea bass reinforce the fact that

temperature modulates cyp19a expression in fish.

Page 254: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-222-

Figure 13. Cyp19a expression levels in females and males of one year old (330dpf). Expression levels were computed using semiquantitative PCR analysis. Black bars represent females whereas white bars represents males. Significant differences are symbolized by lowercase letters (P = 0.005) (unpublished results)

Tacking into account all previous results, the remaining question is how temperature,

which is applied during early development (in our study from 0-90 dpf), is affects gene

expression and sex ratios in one-year old sea bass. For that reason, we were expecting that

temperature could also be affecting cyp19a gene expression during early sea bass

development. However, no effects of temperature on sea bass cyp19a expression during larval

development (0-60 dpf) were found in the present and previous studies (Socorro et al., 2007).

Analysis realized in the present thesis (see Results II section) show no consistent relationship

between water temperature and gene expression for any of the studied genes, including

cyp19a during larval development and metamorphosis (between 30-120 dpf). Nevertheless,

all genes could already be detected during larval rearing (30 dpf), indicating that the

machinery involved in sex steroid production and action is present at early developmental

stages in the sea bass. In this regard, in the Japanese flounder temperature-related differences

in cyp19a expression were also not detected prior to histological sex differentiation (Kitano et

al., 1999). In addition, Strussmann and Nakamura (2002) pointed that, although cyp19a

expression is sexually and temporally dimorphic in the pejerrey its expression was also not

temporally related with sex differentiation, suggesting that temperature may differentially

affect other genes involved in sex differentiation. However, no clear differences between

groups reared at low or high temperatures were observed in other genes like the sea bass

cyp11b (Socorro et al., 2007) or the Atlantic halibut, Hippoglossus hippoglossus, ers (van Nes

and Andersen, 2006).

0

2

4

6

8

10

12

14

HT LT

Temperature group

cyp1

9a/1

8S

FemalesMalesa

c

a

b

Page 255: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-223-

Our results show that the effect of high rearing temperature during early development

was reflected in a decrease in the number of fish with high cyp19a expression levels by the

time of sea bass sex differentiation (195 dpf) (see Results II section). Is important to notice,

that as explained above, sex-related differences in sea bass cyp19a expression levels can not

be observed until 120 dpf, when the firsts fish (putative females) start to increase its cyp19a

levels. By this developmental time, also an elevated proportion of fish remain undifferentiated

with cyp19a levels very low. This could explain that no differences between temperature

treatments could be observed by this time, since probably regulatory mechanisms involved in

cyp19a activation remain inactive, waiting the signals responsible for initiate sex

differentiation during development. For that reason, and because temperature effects on

cyp19a expression can be detected in one-year old sea bass (as explained above), we speculate

that if cyp19a levels could be measured during the sex differentiation period (120-200 dpf), in

males and females reared at high and low temperatures during early development,

temperature-related differences would be observed. But if this is true, how temperature, which

is applied during early development, can affect cyp19a expression latter? In this regard, and

since TSD is a widely studied mechanism in reptiles, researchers in this field are also trying to

understand how a two-degree difference in temperature during the TSP can initiate the

molecular cascade that determines whether the indifferent gonad develops as an ovary or a

testis (Lance, 2008). The same author also pointed that from the current theories that could

explain TSD phenomena, the involvement of cyp19a and estrogen production, more than the

yolk steroids or the brain, is the one that posses more evidences as the driver for TSD.

However, Lance (2008) remarked that new thinking and new experimental approaches are

needed to resolve this enigmatic phenomenon.

Trying to answer these questions we thought that temperature might exert its lasting

effects on cyp19a gene expression through an epigenetic mechanism. In this regard, Gorelick

(2003) hypothesized that different methylation patterns of virtually identical sex

chromosomes in species with TSD could be altered by small environmental changes

determining the sex of individuals. This new thinking reinforced our suspicion that an

epigenetic mechanism involved in sex differentiation might be affected particularly by

temperature. In addition, we found sex differences in sea bass cyp19a promoter methylation

levels that also where related to differentially gene expression. For that reason, methylation

levels of the cyp19a promoter of sea bass reared at different temperatures was analyzed trying

Page 256: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-224-

to elucidate if temperature could exerts its effect on sea bass sex differentiation by modifying

methylation levels of a gene that is highly related with fish sex differentiation.

Temperature modulates cyp19a promoter methylation levels and alters sea bass sex ratios

The results presented in this thesis (see Results IV section) showed that, methylation

levels in one-year old females reared at high temperatures showed a clear and significant

increase in cyp19a promoter methylation levels respect to the females reared at low (from

37.1 to 53.9%, respectively; t test, P=0.005). Levels in one-year old males cultured, during

early development (0-90 dpf), at high (21ºC) temperatures were higher than the ones cultured

at low (15ºC) (77.70 vs 85.2%, respectively; t-test P=0.062). The lack of significant

differences between males can be explained probably because levels in males were already

very high. From these results we suggest that during early development high temperatures

could exert an effect on sex differentiation, and consequently on sea bass sex ratios, through

changes in cyp19a promoter methylation levels. We propose that sea bass exposure to

abnormally high temperatures during the thermolabile period can be able to modify

methylation patterns of the cyp19a promoter, resulting in a significant increase in the average

methylation level of the cyp19a promoter. Genetic females exposed to high temperature

increase them cyp19a promoter methylation levels past a certain threshold, approaching the

values characteristic of genotypic males. This decreases cyp19a gene expression levels,

differentiating as phenotypic males instead of phenotypic females. This could alter population

sex ratios, as observed in many species when animals are exposed to high temperatures.

It has been suggested that the molecular mechanisms underlying sex ratio responses to

temperature must be conserved throughout vertebrates (Janzen and Krenz, 2004). In this

regard, and as exposed above, conserved CpGs positions may suggest that this epigenetic

mechanism may be present in many species. Importantly, it has been suggested that in species

with GSD such as mammals, where sex determination depends on the inheritance of the sex-

determining gene SRY, sex is a threshold dichotomy mimicking a single gene effect

(Mittwoch, 2006). Our results indicate that such a threshold dichotomy also applies to a

completely distinct scenario: cyp19a promoter methylation levels of males vs females,

implying that the two major sex determining mechanisms of vertebrates, GSD and TSD, can

be unified into a single common proximate mechanism. Thus, temperature modulates sex

ratios through changes in the proportion of animals whose cyp19a promoter methylation level

Page 257: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-225-

is above or below a threshold. Together, these results demonstrate an epigenetic mechanism

by which changes in environmental temperature can affect an essential biological function

such as sex differentiation, with consequences in resulting population sex ratios. Finally, we

suggest that the epigenetic mechanism described herein is not exclusive of GSD species easily

influenced by temperature, as is the sea bass, but most likely is the long sought after

mechanism connecting environmental temperature and sex ratios in species with TSD,

including both fish and reptiles. However, further investigations, using other fish model that

posses a genetic sex marker that permit to identify genetic sex, could help to develop this

hypothesis.

Estrogen regulation of sex differentiation

Estrogens may to regulate ovarian differentiation by acting upstream cyp19a in fish

Supplementation of AI-treated animals with E2 inhibits sex change in the

hermaphroditic protogynous fish Halichoeres trimaculatus (Higa et al., 2003). In addition, in

several species of reptiles with TSD, exogenous administration of E2 to embryos had

overrides the masculinizing effect of male producing temperatures, resulting in all-females

hatchlings (Bull et al., 1988; Crews et al., 1991; Dorizzi et al., 1991; Wibbels et al., 1991;

Lance and Bogart, 1992; Pieau et al., 1994; Dorizzi et al., 1996; Chardard and Dournon,

1999; Pieau et al., 1999). With this results is easy to suggest that estrogen and temperature act

via a common pathway (Crews et al., 1994; Crews et al., 1995; Dorizzi et al., 1996), with

aromatase directly responding to temperature, and estrogen producing a positive feedback

control on cyp19 gene (Pieau, 1996). However, another possibility is that the thermosensitive

process might be located upstream of the cyp19 gene controlling the female developmental

pathway, including the enhanced expression of the cyp19 gene (Merchant-Larios et al., 1997).

In this regard, the results of this thesis (see Results I section) show no significant

differences in cyp19a gene expression levels between control and E2-treated females,

suggesting that the estrogenic effect of exogenous E2 does not involve direct cyp19a

regulation. In addition, some studies have been demonstrated that sensitivity of reptiles sex

differentiation to E2 varies with temperature incubation (Wibbels et al., 1991), and that the

Page 258: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-226-

effects of steroids in sex differentiation can vary depending on the temperature used (Wibbels

and Crews, 1995). These authors showed that effects of E2 were greater in temperatures that

produce mixed sex ratios populations than in temperatures that produce all males (Wibbels

and Crews, 1995). In this regard, temperature and estrogen had been demonstrated also to act

with a marked synergism between these two factors in medaka, with decreasing percentages

of E2-feminized genotypic males with increasing rearing temperatures (Minamitani and

Strussmann, 2003).

Trying to elucidate the effects of temperature, estradiol (E2) and Fz on fish gonadal

differentiation, a preliminary study carried out in larval and juvenile sea bass was performed.

Undifferentiated sea bass were reared at two temperatures, 15ºC (low temperature; LT) and

21ºC (high temperature; HT) during the thermolabile period from 0 to 60 days post

fertilization (dpf). At the end of this period, the LT group was divided into four groups: one

was given a control diet (group LT-CT) whereas the remaining three were orally exposed

form 90 to 150 dpf to E2 at 10 mg/kg (LT-E2), Fz, at 100 mg/kg (LT-Fz), or to a combination

of E2 and Fz at 10 and 100 mg/kg, respectively (LT-E2+Fz). The HT group was divided into

two groups, a control group (HT-CT) and other one exposed to E2 at 10 mg/kg during the

same period (HT-E2). E2 administration increased the number of females from 2.5% in the

LT-CT group to 90% in the LT-E2 group, whereas in the HT group E2 could only increase the

number of females to 8.1% (HT-E2) when compared to 0% in the HT-CT group (see figure

14). This shows that E2 could not override the masculinizing effect of previous exposure to

high temperature in the sea bass. In addition, when E2 was given in combination with Fz in

the LT group, the number of females increased to 36% in the LT-Fz+E2 group when

compared to 0% in the LT-Fz group, but never reached the 90% females obtained after E2

treatment alone (LT-E2). These results suggest that temperature, E2 and Fz could be affecting

the regulation and the expression of different genes implicated in gonadal differentiation. To

elucidate this, future gene expression studies of gonadal aromatase and estrogen receptors,

key players of sex differentiation, are needed.

Page 259: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-227-

Treatment

Control E2 Fz Fz+E2 HT HT+E2

Fem

ales

(%)

0

20

40

60

80

100***

**

Figure 14. Effects of different compounds and temperature on sea bass sex ratios. The sample size was n=40 per group. Asterisks indicate significant differences with respect to the control group (Chi-square test; ***=P<0.001; **=P<0.005

Some authors have proposed that although temperature and AI treatments masculinize

fish populations, the mechanism involved is different (Chardard et al., 1995). They suggest

that whereas AI acts on enzyme activity, reducing estrogen disponibility and inactivating

cyp19a gene transcription by feedback, high temperatures, acts on enzyme synthesis by

repression of cyp19a transcription. In this regard, and because E2 treatments were not capable

to suppress high temperature effect on sea bass sex ratios, we suggest that E2 may act

regulating the expression of a transcription factor that can not exert its influence on cyp19a

expression due to the cyp19a methylation caused by high temperatures. In this regard, the

transcription factor foxl2 has been proposed as a key element in a positive feed back loop to

maintain high cyp19a expression (Vizziano et al., 2008), so we suggest that can be a

candidate for E2 regulation.

Applications to sea bass aquaculture

In general, females growth faster and achieve higher sizes than males in many fish

species (Yamamoto, 1999; Luckenbach et al., 2003). For that reason, aquaculture is

interested in to develop methods to produce monosex female stocks to improve the

productivity (Luckenbach et al., 2003). Treatments with sex steroids have been a common

practice to alter gonadal differentiation in fish in the last decades. Particularly, feminization

by estrogens administration is known to be a good method to produce all-female stocks

LT-CT HT-E2 LT-E2 LT-Fz HT-CTLT-Fz +E2

Page 260: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-228-

(Piferrer, 2001). However, this traditional but non-environmentally friendly hormonal

manipulation of fish is not accepted by many consumers. On the other hand, thermal

treatments have been demonstrated that in fish species with chromosomal sex determination,

like the Japanese flounder, the goldfish, Carassius auratus auratus, the Nile tilapia or the

medaka, Oryzias latipes, high temperatures are capable to sex reverse genotypic females into

phenotypic males (Yamamoto, 1999; Goto-Kazeto, 2006; Tessema et al., 2006; Hattori et al.,

2007). For that reason, and since female percent has been demonstrated to be higher at low

rearing temperatures in the majority of thermosensitive species (Baroiller and D'Cotta, 2001),

one of the interests of the industry is to develop feminizing methods only with temperature

manipulations.

As it can be seen from the results obtained in the present thesis, low rearing

temperatures during early development allow the development of genetic females. In

addition, the influence of the rearing temperature on resulting sea bass sex ratios may also

depend on the genetic origin of the fish used (Mylonas et al., 2005) and also on the parental

influences, as evidenced by deliberate crossings (Saillant et al., 2002; Gorshkov et al., 2003;

Saillant et al., 2003). Thus, it can be concluded that final sex ratio of a given population is the

result of the interaction between the genotype (parental) and the environment (temperature)

(Piferrer et al., 2005). For that reason, one of the objectives of this thesis was to establish a

rearing protocol based on thermal manipulation that would ensure the production of the

highest possible number of females. We demonstrate that an increase of up to 90% females

after low temperature treatments during the first 60 dpf is feasible if broodstock that naturally

gives high percent females is used, thus emphasizing the need for genetic selection in this

species. Thus, broodstock genotyping should be implemented in all sea bass farms.

Compensatory growth in fish initially maintained at low temperatures and sexual growth

dimorphism in favour of females support the advantage of growing fish at low temperature

until 60 dpf

However, although low temperatures maximize the number of females, these

treatments are known to negatively affect growth. Our results show that at the end of the

different thermal regimens growth retardation was observed in all groups reared with low

temperatures during the first 0-120 dpf. However, as previously found (Pavlidis et al., 2000;

Page 261: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-229-

Koumoundouros et al., 2002; Mylonas et al., 2005), a compensatory growth at the end of the

first year was found in G30, but not in G60, G90 and G120, with fish of G30 showing even

higher BW values than those of G10 (9.4% higher). Although BW in G60 at the end of the

first year was lower than G10, this difference decreased with respect towards the end of the

thermal treatment from 62.5% to 15.2%, demonstrating the existence of compensatory

growth and suggesting that these differences may disappear during the second year.

Moreover, sexually dimorphic growth patterns have been found around the first year in the

sea bass (Blázquez et al., 1999; Gorshkov et al., 1999; Saillant et al., 2003), suggesting that

growth is dependent on phenotypic sex in this species (Saillant et al., 2001; Gorshkov et al.,

2004b). The present study shows that already at the end of the first year females exhibited

significantly higher sizes than males.

In addition, and coinciding with the time of marketing at the end of the second year,

sea bass females reached marketable size, taken as 400 g, according to common sea bass

production practices, 120 days earlier than males. In this regard, the increase of 6.1 and 9.2%

in biomass in G60 and G120 respect to G10, that as observed in the present study is based on

the increase of percent females and the fact that there are the fastest growing sex, indicating

the probable economic advantage of increasing females in sea bass culture.

Male precocity is reduced in low temperature protocols

Male predominance in sea bass aquaculture is not a problem only because males are

the slowest growing sex, but also because 25-30% of them mature precociously at the end of

the first year (Carrillo et al., 1995). This poses an even worse problem, in that precocious

males usually exhibit stunned growth and poor food conversion efficiency during the rest of

their life. High rearing temperatures not only resulted in a decrease in the number of females

but also in advanced gonadal development. Our results show that precocious males were

bigger than immature males by the first year of life, similar to what has been found in a

previous study (Begtashi et al., 2004). However, at the end of the second year, precocious

males were about 18% smaller in weigh and 5% in length (Felip et al., 2006). From our

results we can conclude that low temperatures resulted in a decrease from 30% to 10–20% in

the number of precocious males. In addition, the number of males in stage IV-V (testis in

maturing stage) decreased with increasing durations at low temperature. GSI values at the end

Page 262: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Summary of Results and Discussion

-230-

of the first year in female and males significantly increased (P<0.01) with decreasing the

period reared at low temperatures, indicating that low rearing temperatures during early

development also caused a delay in gonadal development. Altogether, these results indicate

that low temperatures during early development delay male maturation resulting in higher

growth, especially by the time of marketing (end of the second year).

A protocol in which fish are exposed to 17ºC during 53 days is proposed as the way to

improve sea bass culture productivity

The present thesis provides valuable information for the optimization of sea bass production

by increasing the number of females with appropriate thermal regimens. Under laboratory

conditions, the highest number of females was achieved after rearing fish at 15°C for 60 days

starting at fertilization, although a toll in the form of growth retardation cannot be avoided.

However, since rearing sea bass at 17ºC improves survival and growth (Ayala et al., 2000;

Lopez-Albors et al., 2003) without altering sex ratios (Mylonas et al., 2005), we suggest

rearing the fish at 17ºC from fertilization until 53 dpf (corresponding to 840 degree day) to

maximize both female content and growth. The proposed protocol should result in an increase

of female numbers, without retarding growth, and also a decrease in the number of precocious

males. This would allow reaching the time of marketing at an earlier age because females

grow more than males, thus presumably decreasing production costs. Combined with the

genetic selection of broodstock aimed at obtaining progenies with high female number and

low sensitivity to high temperature, this rearing method should contribute to the routine

culture of highly female-biased sex ratios for the benefit of sea bass aquaculture.

Page 263: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Conclusions

Page 264: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 265: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Conclusions

-231-

CONCLUSIONS

1 Role of androgens during male sex differentiation — Treatment of sexually

undifferentiated sea bass with an androgen receptor antagonist did not alter sex ratios

when administered during the period of highest androgen sensitivity, suggesting that

androgens are not required for initial testicular differentiation.

2 Effects of exogenous estrogen — Treatment with the natural estrogen estradiol-17ß

(E2) did not affect cyp19a gene expression, yet it resulted in 100% of the fish

differentiating as females. Since cyp19a expression and aromatase activity are

essential for ovarian differentiation and, like that of other fish, the sea bass cyp19a

promoter does not possess estrogen response elements (ERE), we conclude that the

estrogenic effect of exogenous E2 does not involve direct cyp19a regulation, and that

exogenous E2 must exert its feminizing effects indirectly by regulating other genes.

Based on observations made on other species, the transcription factor foxl2 is a good

candidate as a target for E2 action during ovarian differentiation.

3 Induced masculinization pathways — Treatment of sexually undifferentiated sea

bass with a potent synthetic androgen (MDHT) or by a specific non-steroidal

aromatase inhibitor (Fz) has the same phenotypic consequences: complete or nearly

complete masculinization. However, because important differences in the temporal

and specific changes in gene expression observed, we conclude that the molecular

pathways involved are different. Fz suppresses cyp19a expression but does not interact

with the androgen receptor (arb). Thus, Fz-induced masculinization is the consequence

of inhibited ovarian differentiation rather than of a direct androgenic effect. In

contrast, MDHT not only suppressed cyp19a expression but also the ontogenetic

increase in ar expression, indicating that early exposure to an androgen down-

regulates subsequent arb expression in males. Thus, MDHT-induced masculinization

is due to a inhibition of female development rather than to a direct androgenic effect.

4 Molecular markers — In the sea bass, cyp19a and, to a lesser extent, cyp11b

expression levels faithfully reflect ovarian and testicular differentiation, respectively.

Page 266: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Conclusions

-232-

When used together, the phenotypic sex of sexually differentiated juveniles can be

unambiguously discriminated in 100% of the cases, making it unnecessary the use of,

or the search for, other molecular markers. On the other hand, no clear association

between sex and gene expression of arb or any of the three estrogen receptors

analyzed could be found, suggesting that although these genes are necessary for

gonadal development, they do not contribute to the differentiation of a particular sex.

5 Prediction of sex — We applied Canonical Discriminant Analysis (CDA) for the first

time to aid in the study of sex differentiation in animals, by combining biometric and

gene expression data. The use of CDA with length (SL) and cyp19a expression as

predictors is a useful method to distinguish between sexually undifferentiated, males

and females with > 90% accuracy in sea bass whose histological sex was not

previously known. This allows to determine sex in fish of 50 mm SL and 120 dpf , i.e.,

~30 mm smaller and one month earlier than what was formerly required based on the

first signs of histological differentiation (80 mm SL and 150 dpf). We propose this

approach to be used in other animals in which genotypic sex cannot be established at

fertilization due to the lack of simple sex determining systems —as it is the case of

many fish and reptiles with TSD— to assist in the study of various aspects of sex

differentiation.

6 Regulation of cyp19a expression — Prior to the first signs of sex differentiation,

future females already had much higher levels of cyp19a than presumptive future

males. Further, sea bass males have double the amount of methylation of the cyp19a

promoter than females, and there is an inverse relationship between the level of

methylation and the expression levels of this gene. Together, this strongly indicates

that low methylation levels of the cyp19a promoter are required for normal ovarian

development, and that cyp19a promoter methylation is the mechanism by which

cyp19a transcription is silenced in developing males during sex differentiation,

preventing the development of an undifferentiated gonad into an ovary.

7 Consequences of cyp19a promoter methylation — Methylation of seven CpG

dinucleotides in the sea bass cyp19a promoter completely suppressed the

transcriptional activation of this gene by SF-1 and Foxl2 in vitro, indicating that

Page 267: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Conclusions

-233-

methylation acts by preventing the physical interactions between these transcription

factors and specific binding sites of the cyp19a promoter.

8 The CpG in position -13 in the cyp19a promoter is relevant — In the cyp19a sea

bass promoter, the CpG position –13 not only was differentially methylated in males

and females but also was the most conserved among several species examined, both

phylogenetically-related and distant. This position is located near the TATA box and a

Sox binding-site, suggesting that is important for cyp19a transcriptional regulation and

that a similar epigenetic mechanism is likely present in other species.

9 The sea bass sox17 gene — We provide an analysis of the genomic structure of the

sea bass sox17, the third known in vertebrates after that of the mouse and rice field eel.

The high identity observed between the sea bass Sox17 protein and other piscine

Sox17 available protein sequences, suggests that the role of Sox17, at least in some

essential biological functions, may be conserved in vertebrates. In addition to two

transcripts similar to those found in mouse, we found the first evidence of the

existence of a mechanism of alternative splicing by intron retention in a Sox17 gene

that produces a third, novel transcript. This, along with the existence of two different

promoters suggests that the regulation of sox17 transcript levels is complex. sox17

expression appeared when gonadal sex differentiation was already well underway,

indicating that this gene is not a sex-determining gene in the sea bass; however, we

provide the first evidence of sex-related differences in expression in sox17,

implicating this gene in ovarian development, at least in the sea bass.

10 Effects of temperature on sex ratios — Exposure to abnormally high temperatures

during early development results in masculinization in the sea bass and many other

species, regardless of the sex determining mechanism, and it was suspected that

cyp19a was involved in mediating temperature effects on sex ratios. However, the

molecular mechanism remained elusive. Here, we show that high water temperature

increases methylation of the cyp19a promoter, suppressing cyp19a expression and

resulting in presumptive genetic females undergoing testicular differentiation. We

conclude that environmental temperature influences sex ratios through changes in the

methylation pattern of the cyp19a promoter. Since no differences were observed in

Page 268: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Conclusions

-234-

cyp19a expression during the thermolabile period between fish exposed to low vs high

temperature, specifically we suggest that high temperatures irreversibly increase the

methylation of the cyp19a promoter. Later, when sex differentiation starts,

methylation inhibits cyp19a transcriptional activation, suppressing estrogen

production and, consequently, forcing testicular differentiation. We suggest that the

epigenetic mechanism described herein is not exclusive of the sea bass but, rather, that

most likely is the long-sought after mechanism connecting environmental temperature

and sex ratios in species with TSD, including both fish and reptiles.

11 Sex as a threshold dichotomy — We propose the following thesis: in non-

mammalian vertebrates sex is a threshold dichotomy of cyp19a promoter methylation

levels. Since a similar proposition has been made regarding SRY (the sex-determining

gene) effects in mammals, this implies that the two major sex determining systems,

GSD and TSD, can be unified into a single common proximate mechanism.

12 Applications to aquaculture — The proportion of resulting females as a function of

rearing at low temperature from fertilization follows an inverted U-shape curve, with a

positive and essentially linear response, at least until 120 days post-fertilization (dpf).

There is no protocol based on thermal manipulation alone that is capable of inducing

complete feminization in the sea bass, since exposure to low temperature merely

allows the development genotypic females into phenotypic males. Low temperature

during the larval period retards growth but if fish are switched to high temperature at

the appropriate time then they exhibit catch-up growth. We propose that rearing larvae

at 17°C from fertilization until 53 dpf and then switching to 21°C avoids the

masculinizing effects of higher temperatures, allowing compensatory growth to occur,

with an increase of produced biomass of ~10% with respect to the current practice.

Combined with the genetic selection of broodstock aimed at obtaining progenies with

high female number and low sensitivity to high temperature, this rearing method

should contribute to the routine culture of highly female-biased sex ratios for the

benefit of sea bass aquaculture.

Page 269: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum de la tesi en Català

Page 270: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 271: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-235-

RESUM DE LA TESI EN CATALÀ

PRÒLEG

Aquesta tesi ha estat realitzada en el Grup de Biologia de la Reproducció (GBR) del

departament de Recursos Marins Renovables de l’Institut de Ciències del Mar (ICM-CSIC) de

Barcelona, sota la tutoria del departament de Fisiologia de la Universitat de Barcelona, durant

el període 2003-2008. En aquesta tesi es pretén estudiar la diferenciació sexual del llobarro a

diversos àmbits: endocrí, analitzant l’influencia de diferents esteroides sexuals i compostos

agonistes i antagonistes de la diferenciació ovàrica i testicular; d’expressió d’alguns gens que

ens donaran pistes sobre quins són els factors que actuen a les gònades durant la diferenciació

cap a ovaris o testicles; i, fins i tot, mitjançant estudis en el camp de la mecanismes de la

regulació epigenètica, per esbrinar si hi ha algun mecanisme, com ara la metilació,

responsable en aquest complex procés de desenvolupar un teixit bipotencial, com és el cas de

la gònada indiferenciada, en una gònada diferenciada (ovari o testicle). A més a més, el

mecanisme mitjançant el qual la temperatura pot afectar la diferenciació sexual, i en

conseqüència la proporció de sexes en vertebrats no mamífers, com es el cas de peixos,

amfibis i rèptils, ha esdevingut una gran incògnita en les últimes dècades. En la present tesi

s’ha emprat el llobarro com a espècie model, ja que és una espècie molt estudiada i coneguda

degut al seu interès comercial. Els resultats obtinguts en aquesta tesi, permeten plantejar una

hipòtesi sobre com pot estar influint la temperatura en la diferenciació d’un sexe o un altre i

quin mecanisme en pot ser el responsable. La importància d’aquests estudis deriva en que els

resultats són novedosos per al llobarro, i fins i tot, alguns resultats poden tenir una rellevància

generalitzada en peixos i altres vertebrats. No obstant i encara que aquests estudis han ampliat

el nostre coneixement en aquest camp, altres preguntes sense resoldre, i que han estat

breument esmentades a la discussió general, han derivat dels resultats obtinguts.

Aquesta memòria està estructurada en tres blocs generals dividits en cinc estudis

específics o articles:

Bloc A. Endocrinologia molecular de la diferenciació sexual del llobarro

Article I. La masculinització del llobarro, mitjançant tractaments amb un androgen o un

inhibidor de l’aromatasa, implica diferències en la expressió gènica i té efectes persistents en

la maduració dels mascles.

Page 272: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-236-

Article II. Perfils d’expressió de gens relacionats amb la diferenciació gonadal del llobarro

Europeu aclimatat a dues temperatures diferents.

Bloc B. L’aromatasa com a gen clau i responsable de la diferenciació ovàrica en peixos.

Estudis del seu promotor i del factor de transcripció Sox17.

Article III. Diferents trànscripts de sox17 en la diferenciació sexual del llobarro,

Dicentrarchus labrax.

Article IV. Participació d’un mecanisme epigenetic en els canvis de les proporcions de sexes

induïts per la temperatura en les poblacions de peixos

Bloc C. Aplicacions a la aqüicultura

Article V. Contraposant els efectes de les baixes temperatures de cultiu durant el

desenvolupament temprà, el creixement i la maduració en el llobarro Europeu. Limitacions i

oportunitats per a la producció d’estocs formats exclusivament de femelles.

Durant el transcurs d’aquests estudis dos articles no inclosos en aquesta memòria, però

directament relacionats amb ella, han estat publicats:

1. Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genètic, endocrine, and

environmental components of sex determination and differentiation in the European sea bass

(Dicentrarchus labrax L.). General and Comparative Endocrinology 142, 102-110.

2. Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S., Sweeney, G.E.,

2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and

identification of single nucleotide polymorphisms. Comparative Biochemistry and

Physiology. Part A, Molecular and Integrative Physiology 145, 47-53.

Els resultats obtinguts en aquesta Tesi han estat presentats en diferents congressos: 4º

Congreso de la Asociación Ibérica de Endocrinología Comparada. Córdoba (Setembre 2003);

Fish Growth and Reproduction. Keelung, Taiwan (Octubre 2003); 5th International

Symposium on Fish Endocrinology. Castelló (Setembre 2004); Aquaculture Europe 2004.

Barcelona (Octubre 2004); Tropical Biodiversity Okinawa 2005: Asia-Pacific studies on coral

reefs and islands. Okinawa, Japó (Març 2005); IX Jornades de Biología de la Reproducció.

Barcelona (Maig 2005); 5º Congreso de la Asociación Ibérica de Endocrinología Comparada.

Faro, Portugal (Setembre 2005); Frontiers in Molecular Endocrinology. Hyderabad, India

Page 273: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-237-

(Desembre 2005); Genetics in Aquaculture IX. Montpellier, França (Juny 2006); 8th

International Symposium on Reproductive Physiology of Fish. Saint Malo, França (Juny

2007); 6º Congreso de la Asociación Ibérica de Endocrinología Comparada. Cadiz (Setembre

2007); I Simposi d’Aqüicultura de Catalunya. Barcelona (Febrer 2008); Sex Determination

and Gametogenesis in Fish: Current Status and Future Directions. Honolulu, Hawaii (Juny

2008) i 6th International Symposium on Fish Endocrinology. Calgary, Canadà (Juny 2008).

Laia Navarro-Martín, Mercedes Blázquez i Francesc Piferrer van obtenir el premi al

millor pòster per “Effects of temperature on sea bass sex differentiation” exposat a

“Aquaculture Europe 2004 meeting” a Barcelona, l’octubre de 2004.

Durant la realització d’aquesta Tesi, m’han estat concedides tres beques per gaudir de

tres estades breus, de 9 setmanes cadascuna, al departament de Biosciències de la Universitat

de Cardiff, a la Gran Bretanya. D’elles en deriven alguns dels resultats presentats aquí, com el

clonatge del gen sox17 (veure apartat de resultats, bloc 2, article III) així com l’estudi del

promotor del gen aromatasa gonadal i els seus polimorfismes.

Els diferents estudis presentats en aquesta Tesi van ser realitzats dins el marc de tres

projectes de recerca:

“Análisis de los tipos de reproducción en los peces del mundo y estudio de los efectos de la

temperatura sobre la proporción de sexos”, (Gener 2003-Desembre 2005). Financiació:

Ministeri de Ciència i Tecnologia. Entitats participants: Institut de Ciències del Mar de

Barcelona. Investigador principal: Dr. Francesc Piferrer.

“Manipulation del ciclo reproductor, control de la puesta y control ambiental de la

diferenciación sexual en especies de interés en acuiculture (lubina, lenguado, anguila)”,

(Gener 2004-Desembre 2007). Financiació: Centre de Referència en aquicultura de de la

Generalitat. Entitats participants: Institut de Ciències del Mar de Barcelona, Universitat de

Barcelona i Centre d’aqüicultura (IRTA) de Tarragona. Investigador principal: Dr. Josep

Planas

Page 274: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-238-

“Determinación de la proporción de sexos en los peces: regulación ambiental, mecanismos

moleculares implicados en la diferenciación sexual y pruebas para su control en acuicultura”,

(Gener 2007-Desembre 2010). Financiació: Ministeri de Ciència i Tecnologia. Entitats

participants: Institut de Ciències del Mar de Barcelona. Investigador principal: Dr. Francesc

Piferrer.

Aquesta Tesi ha estat realitzada gràcies al suport de la beca FPI (BES-2003-0006) concedida

pel Ministeri d’Educació i Ciència a Laia Navarro Martín.

INTRODUCCIÓ

1. Tipus de reproducció sexual en peixos.

En comparació amb altres vertebrats , els peixos es caracteritzen per tenir, entre altres

particularitats, una gran diversitat de mecanismes de determinació sexual i reproducció

(Godwin et al., 2003). Existeixen tres tipus principals de reproducció en peixos: gonocoristes,

hermafrodites i unisexuals En les espècies gonocoristes cada sexe està separat en individus

diferents. Una vegada que el sexe ja està determinat, les gònades es diferencien a ovaris o

testicles, i el sexe de l’individu es manté invariable. Aquesta és una de les estratègies de

reproducció més abundant i representa al voltant d'un 90% del total de les espècies piscícoles

(Sadovy de Mitcheson i Liu, 2008). En el cas de les espècies hermafrodites el sexe no està

separat en individus; els testicles i ovaris es troben en el mateix individu al llarg de la seva

vida. Per últim, les espècies unisexuals són les que només es desenvolupen com a femelles i

es reprodueixen per partenogènesi. Aquest darrer tipus és el menys abundant en els peixos.

2. La proporció de sexes

En molts peixos, rèptils i amfibis el sexe és el resultat d'una interacció entre factors

genètics, ambientals i/o socials (Devlin i Nagahama, 2002). Així, segons les condicions que

es trobi l’individu, aquest es desenvoluparà cap un dels dos sexes, la qual cosa té una

incidència directa a la proporció de sexes de la població a que pertany. Aquesta proporció de

sexes es defineix com la relació entre el número de mascles i femelles d’una població.

Normalment s’expressa com a proporció d'un sexe respecte al total d'individus, però també

pot ser descrita com la relació entre el nombre de mascles i femelles (mascles:femelles)

(Hardy i Hardy, 2002). Una proporció de sexes adequada és fonamental per garantir la

Page 275: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-239-

conservació de les poblacions (Parker, 1985), ja que té implicacions importants en el

potencial reproductiu, és a dir, en la capacitat de produir individus nous per a la generació

següent que conservin la població al llarg del temps (Hardy i Hardy, 2002).

Els dos processos biològics responsables del sexe en un individu són: la determinació

sexual i diferenciació sexual. En general, encara que els peixos mostren processos de

diferenciació sexual conservats, els mecanismes de determinació del sexe són molt diversos

(Devlin i Nagahama, 2002).

3. La determinació del sexe

Segons Bull (1983), la determinació del sexe “és el procés pel qual s’estableix el

gènere d'un individu, ja sigui genèticament o ambientalment" (Bull, 1983).

Als vertebrats la determinació del sexe pot ser de dos tipus: genètica (GSD) o

ambiental (ESD). En la GSD, el sexe d'un individu depèn exclusivament del seu genotip,

mentre que en la ESD els factors externs són els moduladors i responsables de la determinació

sexual. La temperatura és un dels factors més decisius capaços de conduir la determinació

sexual i és la responsable en el mecanisme de determinació sexual dependent de temperatura

o TSD. En peixos estan representats tots els mecanismes de determinació sexual, des de la

determinació sexual ambiental a la determinació del sexe cromosòmica clàssica (XX/XY) o la

WZ/ZZ (Baroiller i D'Cotta, 2001; Volff i Schartl, 2001; Devlin i Nagahama, 2002; Penman i

Piferrer, 2008).

3.1. La determinació del sexe genotípica (GSD)

En el procés de determinació sexual genotípica, el sexe es fixa en el moment de la

fertilització i depèn exclusivament del contingut genètic que cada individu hereta. En molts

vertebrats, el sexe està determinat per la presència o absència d'un factor genètic crític. Per

exemple, en mamífers el cromosoma Y és determinant del sexe i la determinació sexual és

dependent del presència/absència d'un gen anomenat SRY (Regió determinant del Sexe al

cromosoma Y) (Gubbay et al., 1990; Sinclair et al., 1990). L’expressió d’aquest gen és capaç

d’iniciar la diferenciació dels precursors de les cèl·lules de Sertoli, considerat el primer pas de

la determinació sexual (Kim i Capel, 2006). També en mamífers, s'ha demostrat que SRY és

necessari i suficient pel desenvolupament dels testicles (Wilhelm et al., 2007). A part

Page 276: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-240-

d’aquests sistemes monofactorials, els mecanismes de determinació sexual genotipics poden

ser multifactorials, o polifactorials, on el sexe està determinat per una suma de diferents

factors genètics presents als autosomes que activen o reprimeixen la ruta cap a un sexe

determinat. Altres estratègies són totalment oposades a on s’inclouen mecanismes que es

gestionen per un únic factor dominant, que influeix de forma decisiva en el desenvolupament

d’un sexe determinat. Malgrat que el gen SRY no és present en peixos (Nagahama, 2000), s’ha

identificat un gen determinant del sexe homòleg en la medaka, Oryzias latipes (Matsuda et

al., 2002; Nanda et al., 2002). Aquest gen, que és coneix com DMY, es localitza en

cromosoma Y i es derivava del factor de transcripció DM1 amb el que comparteix una

homologia alta (Matsuda et al., 2003). Aquest gen, però només s’ha localitzat en un parell

d’espècies i fins i tot és absent en espècies properes a la medaka com ara O. celebensis.

Aquest fet mostra que el DMY no és el gen master de la determinació del sexe en peixos

(Kondo et al., 2003; Veith et al., 2003; Volff et al., 2003).

En la majoria d’espècies de peixos no s’han descobert cromosomes sexuals i tampoc

marcadors genètics del sexe. En algunes espècies de salmònids com el salmó, Onchorhynchus

tshawytscha, o la truita irisiada, Oncorhynchus mykiss, sí que ha sigut possible identificar-los

(Penman i Piferrer, 2008). Per altra banda, aquesta gran varietat de sistemes genètics

determinants del sexe, es poden veure afectats per factors ambientals, com la temperatura. És

el cas de la determinació sexual genotípica modulada per la temperatura (GSD+TE), que es

pot observar en espècies de peixos com el llobarro o la medaka (Ospina-Álvarez i Piferrer,

2008).

3.2. La determinació del sexe ambiental (ESD)

En la determinació del sexe ambiental (ESD) el factor més influent és la temperatura.

La determinació sexual per temperatura (TSD) és molt comuna en rèptils (Valenzuela i Lance,

2004) i també es troba en algunes espècies de peixos (Conover, 2004; Ospina-Álvarez i

Piferrer, 2008). En rèptils la temperatura pot fer variar les proporcions de sexes totalment (de

100% femelles a 100% de mascles) (Valenzuela i Lance, 2004). En els peixos la resposta és

més moderada, i segueix un patró generalitzat on l’increment de temperatura implica un

augment en la proporció de mascles (Ospina-Álvarez i Piferrer, 2008).

Page 277: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-241-

4. Diferenciació sexual

4.1. Definició, tipus i formació de les gònades

La diferenciació sexual és el procés mitjançant el qual la gònada indiferenciada, que

encara posseeix la capacitat bipotencial, es diferencia i desenvolupa en ovari o testicle. El

sexe resultant s’anomena sexe fenotípic o sexe gonadal (Piferrer, 2008).

Malgrat la gran diversitat de mecanismes de determinació sexual que es troben en les

espècies de vertebrats, la diferenciació sexual és un procés força conservat en tots els

vertebrats (Western i Sinclair, 2001). Yamamoto (1969) va postular que la diferenciació

gonadal en peixos gonocoristes pot seguir dues vies diferents. El primer cas, el

desenvolupament de les gònades s’inicia amb la formació d’un primordi gonadal bipotencial,

a partir de cèl·lules primordials germinals, el qual té la capacitat de diferenciar-se en ovari o

testicle. En el segon, en canvi, tots els animals diferencien primer la seva gònada cap a una

gònada de tipus ovari, i després la meitat dels peixos continuen aquesta diferenciació gonadal

cap a ovaris, mentre que la resta ho fa cap a testicles. Els peixos que segueixen la primera via

s’anomenen peixos diferenciats, mentre els que es desenvolupen per la segona via són els

indiferenciats. Alguns estudis han demostrat que el desenvolupament gonadal en peixos, igual

que en alguns rèptils i amfibis (Mittwoch, 1992; Mayer et al., 2002), és asincrònic entre

femelles i mascles, sent les femelles les que, a talles més petites, es diferencien abans que els

mascles (Chang et al., 1995; Patiño et al., 1996; Hendry et al., 2002; Park et al., 2004).

En peixos gonocoristes diferenciats, durant el desenvolupament gonadal i amb

l’aparició dels esteroides sexuals, les cèl·lules primordials germinals es van transformant en

oogonies o espermatogonies i la gònada es diferencia cap a un dels dos sexes (Fostier et al.,

1983). El primer signe de la diferenciació sexual en femelles és la entrada de les oogònies a

meiosi i/o la proliferació de les cèl·lules somàtiques per formar la cavitat ovàrica (Nakamura

et al., 1998). D´altra banda, la diferenciació sexual en mascles normalment té lloc més tard

que en les femelles i està caracteritzada per l'aparició d´espermatogònies, l´agrupació de

cèl·lules germinals i somàtiques en lòbuls i la diferenciació del sistema vascular dels testicles,

que inclou la vena testicular, l´artèria testicular i els espermiductes (Nakamura et al., 1998).

Com en altres vertebrats, les gònades de peixos es caracteritzen per la presència de dos tipus

cel·lulars essencials que determinen la seva estructura i funció (Devlin i Nagahama, 2002): les

cèl·lules germinals, que tenen la capacitat de dividir-se per mitosis i entrar en meiosis; i les

Page 278: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-242-

cèl·lules somàtiques, responsables de donar suport a la estructura gonadal (cèl·lules de Sertoli

i granulosa en mascles i femelles, respectivament) i de proporcionar les necessitats endocrines

de la gònada (cèl·lules de Leydig i teca a mascles i femelles, respectivament). En els teleostis,

les cèl·lules germinals interactuen amb les cèl·lules somàtiques de la gònada per què es

produeixi la diferenciació sexual. La principal funció d´aquestes cèl·lules somàtiques és

permetre el desenvolupament del teixit germinal a més de proporcionar el medi hormonal

adequat pel desenvolupament dels ooccits o espermatòcits. En els testicles dels peixos, les

cèl·lules intersticials, concretament les cèl·lules de Leydig són el principal lloc de síntesi

d´andrògens, mentre que en els ovaris, les dues capes somàtiques de cèl·lules del folicle, capa

teca ovàrica i capa granulosa, juguen papers separats en la biosíntesi d´esteroids (Nagahama

et al ., 1982). La capa de la teca ovàrica conté tots els enzims necessaris per la producció de

testosterona, mentre que la capa granulosa no sintetitza esteroides de Novo, però és capaç de

convertir la testosterona a estrenes via l´enzim citocrom P50aromatasa (Cyp19) (Nagahama,

1997). Així, la síntesi d´estradiol és un procés en el que hi ha implicades tant les cèl·lules de

la teca com les de la granulosa. Aquest és un factor important pel control de la producció

d´esteroids sexuals durant la maduració sexual (Nagahama i Yamashita, 1988).

4.2. Gens candidats a participar en la diferenciació sexual de peixos: sox9, dax1, dmrt1, sf-1,

cyp19 i cyp11b

El desenvolupament d'una gònada bipotencial indiferenciada cap a un ovari o un

testicle, exigeix la participació de molts factors, comuns o específics, que determinen

l’aparició d’una ruta de diferenciació cap a femelles o cap a mascles. Els factors de

determinació sexual inicien una cascada d’elements que al final regulen el desenvolupament

del sexe fenotípic (Schartl, 2004b). En aquest procés del desenvolupament, els diferents gens

reguladors dels que depèn la determinació sexual estan conectats amb factors reguladors de la

diferenciació gonadal que són iguals o molt semblants en espècies ben diferents (Schartl,

2004a). Per exemple en mamífers, s’han identificat alguns gens que estan implicats en la

diferenciació gonadal, i que actuen per sota de SRY; alguns d’aquests gens són Sox9, Dax1,

Dmrt1, Sf-1, Cyp11b i Cyp19 (Swain i Lovell-Badge, 1997; Koopman, 1999; Capel, 2000).

Gens ortòlegs d’aquests gens de mamífers també estan implicats en el mateix procés en altres

vertebrats no mamífers, com és el cas dels peixos. La figura 2 exemplifica la implicació

d’aquests gens a diferents nivells durant la seva determinació i diferenciació sexual de la

medaka i la tilapia, Oreochromis niloticus.

Page 279: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-243-

El Sox9 és un gen que es troba molt conservat en vertebrats i que en els mamífers està

regulat per l’SRY,. Aquest gen està implicat en el procés de la diferenciació testicular (Morais

da Silva et al., 1996). La seva expressió és específica en les gònades de mascles durant el

desenvolupament en moltes espècies (Kent et al., 1996; Morais da Silva et al., 1996; Spotila

et al., 1998; Western et al., 1999; Wilhelm et al., 2007), fins i tot es troba en espècies que no

pertanyen al grup dels mamífers i que per tant no poseeixen l’SRY (Wilhelm et al., 2007). Per

aquests motius, el Sox9 es considera un gen candidat del control dels mecanismes de

diferenciació del sexe en mamífers i fins i tot en vertebrats no mamífers com ocells i rèptils

(Foster et al., 1994; Wagner et al., 1994; Kent et al., 1996; Morais da Silva et al., 1996;

Meyer et al., 1997; Western et al., 1999). Malgrat tot, el paper concret de sox9 en el procés de

determinació i diferenciació del sexe en peixos encara no és del tot conegut (Nakamoto et al.,

2005). A part de la implicació de sox9 en la diferenciació sexual dels peixos, altres gens de la

família dels sox també semblen estar implicats en la diferenciació i desenvolupament de les

gònades.

Un altre gen implicat en la determinació i diferenciació gonadal en humans és el DAX-

1. Aquest gen és el responsable de la supressió de l’expressió de gens típics de mascles durant

el desenvolupament de les femelles (revisat per Clarkson i Harley, 2002). Contràriament a la

situació observada en humans, en amfibis el Dax-1 sembla estar involucrat en la diferenciació

testicular (Sugita et al., 2001), el que indica que la funció d’aquest no està conservada en

vertebrats. Per exemple en peixos, encara que dax-1 sembla estar relacionat amb el

desenvolupament gonadal, no està directament relacionat amb la diferenciació sexual (Wang

et al., 2002; Martins et al., 2007; Nakamoto et al., 2007).

Pel que fa al Dmrt-1, s’ha demostrat diferents estudis que aquest gen està sobreregulat

durant el desenvolupament gonadal temprà, més concretament en mascles d’humans, ratolins,

ocells i rèptils, el que indica que probablement jugui un paper important en la diferenciació

testicular (Raymond et al., 1999; Smith et al., 1999; Lu et al., 2007). No obstant això, en

peixos l‘expressió de dmrt-1 depèn de l‘estadi de desenvolupament i té un compartiment

espècie-depenent. També cal dir que sembla estar més implicat en el desenvolupament

gonadal que en la diferenciació del sexe per se (Guan et al., 2000; Marchand et al., 2000;

Brunner et al., 2001; Veith et al., 2003; Fernandino et al., 2006). A més a més, s’han

identificat dues isoformes del gen en varies espècies de peixos (Guo et al., 2005; Huang et al.,

Page 280: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-244-

2005; Fernandino et al., 2006), i només una d’elles és important per a la diferenciació dels

oòcits en femelles (Winkler et al., 2004).

Un altre factor que es relaciona amb la diferenciació sexual és el receptor nuclear Sf-1.

Aquest gen, es troba expressat tant en mascles com en femelles en peixos com el pejerrey,

Odonthestes bonariensis (Fernandino et al., 2003), i té una funció essencial per a la

diferenciació d’ambdós sexes (Parker 1999, Morohashi 1996). En canvi, en la tilàpia

s’expressa en un sexe o un altre, depenent de l’estat de desenvolupament en que es troba

l’animal (Ijiri et al., 2008). L’Sf-1 també se sap que regula un número elevat de gens implicats

en la ruta esteroidogènica, el que indica que més que estar relacionat directament amb la

diferenciació gonadal, pot tenir una funció més directa amb l‘activitat esteroidogènica

necessària per a dur a terme el desenvolupament sexual de les gònades (revisat per Parker i

Schimmer, 1997).

Una de les diferències més importants entre la diferenciació gonadal en mamífers i

altres vertebrats és la implicació del gen citocrom P450aromatasa (Cyp19). L'enzim Cyp19 és

el responsable de l’abundància relativa entre andrògens i estrògens, ja que controla la

conversió d'andrògens, androstenediona (∆4) i testosterona (T), a estrògens, estrona (E1) i

estradiol (E2). La seva expressió i activitat, i per tant la presència i acumulació d’estrògens,

juga un paper clau en la diferenciació ovàrica d’una gran varietat de vertebrats, com amfibis,

rèptils i ocells (Elbrecht i Smith, 1992; Lance i Bogart, 1992; Crews et al., 1994; Wennstrom i

Crews, 1995; Hayes, 1998; Pieau et al., 2001; Vaillant et al., 2001; Kuntz et al., 2003a; Kuntz

et al., 2003b). També en peixos es pot observar la mateixa situació.

Per finalitzar, l’enzim 11b-hidroxilasa (Cyp11b), implicat en la ruta esteroidogènica,

també s’expressa de forma dimòrfica, sent més abundant en mascles, durant el procés de

diferenciació gonadal en peixos (Nakamoto et al., 2007), suggerint que aquest gen pot jugar

un paper clau en la diferenciació testicular.

4.3. El desenvolupament gonadal en peixos és depenent dels esteroides sexuals (enzims i

receptors)

En vertebrats no mamífers, al contrari que en mamífers, el desenvolupament gonadal

està sotmès a la influència d'esteroides sexuals i factors ambientals (Scherer, 1999). En

Page 281: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-245-

mamífers, els esteroides sexuals (andrògens i estrògens) es consideren productes gonadals

sintetitzats com a resultat de la diferenciació sexual, que actuen establint el sexe fenotípic

secundari (Saal, 1989). En canvi, en vertebrats no mamífers, l’esteroidogenesis és un procés

que esdevé actiu abans de la diferenciació gonadal histològica. Per exemple, la síntesis

d’estrògens es dona en les gònades de femelles morfològicament indiferenciades en pollastres

(Scheib, 1983) i tortugues (Dorizzi et al., 1991). Concretament en peixos, els esteroides

sexuals, encara que no són els iniciadors de la cascada d’events implicada en la diferenciació

gonadal ja que es troben en els darrers esglaons de la cascada, són elements clau en el control

d‘aquesta (Yamamoto, 1969). En peixos gonocoristes, els estrògens juguen un paper

important en la diferenciació ovàrica (Nakamura et al., 1998; Guiguen et al., 1999;

Nagahama, 2000; Nakamura et al., 2003), mentre que els andrògens estan més relacionats

amb la regulació de la gametogènesis, la inducció a l’espermatogènesis, més que en la

diferenciació sexual (Nagahama, 1994; Miura i Miura, 2003; Rodriguez et al., 2004; Papadaki

et al., 2005). No obstant, la manca d'esteroides, incloent-hi els andrògens sembla ser

responsable de la diferenciació testicular (Nakamura et al., 2003). Així doncs en peixos,

independentment del sexe genètic, el desenvolupament d’una gònada indiferenciada cap a

ovaris i testicles depèn de l'equilibri entre els andrògens i els estrògens, més que de l’acció

específica d'un esteroide en particular (Baroiller i D'Cotta, 2001). La ruta esteroidogènica és

la cascada de reaccions enzimàtiques que finalitza en la síntesi d’estrògens i andrògens,

necessaris en el procés de diferenciació gonadal. Aquesta síntesis depèn d’una conjunció de

multitud de rutes bioquímiques regulades endocrinament de forma complexa i per molts

factors diferents, proporcionant una gran plasticitat en el desenvolupament gonadal (Devlin i

Nagahama, 2002). Hi ha molts enzims implicats en la biosíntesi d´esteroids sexuals en peixos

(Nagahama, 1994). A grans trets la síntesis esteroides sexuals s’inicia amb la producció del

precursor pregnenolona, en una reacció en cadena a partir del colesterol, mitjançant l’enzim

P450scc i finalitza amb la síntesis d’estrona, estradiol (E2) o 11-cetotestosterona (11-KT)

(Piferrer, 2008).

L’acció dels esteroides es duu a terme a través de dos mecanismes diferents. En el

mecanisme clàssic, els esteroides exerceixen la seva influència sobre determinades cèl·lules a

través de la unió receptors nuclears específics (Griekspoor et al., 2007) provocant una reacció

genòmica en cosa d’unes hores o alguns dies (Cheshenko et al., 2008). La sèrie

d’esdeveniments que tenen lloc es poden dividir en quatre accions bàsiques: la unió als

Page 282: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-246-

esteroides, la formació de complexos multimèrics, les unions a seqüències específiques de

DNA i per finalitzar en la regulació transcripcional (Brandt i Vickery, 1997). Per altra banda,

s’ha descobert que els esteroides són capaços de produir efectes molt ràpidament (de segons a

alguns minuts) (Falkenstein et al., 2000) amb accions no genòmiques actuant a través de

receptors associats a membrana (Loomis i Thomas, 2000; Braun i Thomas, 2004).

4.4. Aromatasa gonadal i peixos

Com s’ha dit anteriorment, en vertebrats no mamífers i també de forma general en tots

els peixos, l‘expressió en gònades del gen cyp19 apareix abans de la diferenciació sexual

morfològica (revisat per Nakamura et al., 1998; Baroiller et al., 1999) dirigint el

desenvolupament de la gònada cap a ovari o testicle (Kwon et al., 2000). En peixos, la

diferenciació ovàrica es caracteritza per posseir nivells d’expressió i activitat elevats, la qual

cosa comporta un augment de la producció d’E2, mentre que la testicular necessita de la

repressió de cyp19 en gònades (Piferrer et al., 1994; Guiguen et al., 1999; Kwon et al., 2000;

Devlin i Nagahama, 2002).

4.4.1. Estructura del gen cyp19 i tipus existents en peixos

L’enzim citocrom P450 aromatasa en humans es troba codificat per un únic gen

(CYP19) que consta de 10 exons (Means et al., 1989) i té la capacitat d’expressar-se

diferencialment segons el teixit degut a un mecanisme de clivatge alternatiu dels diferents

exons (Clyne et al., 2004). En general el Cyp19 de mamífers també posseeix promotors

específics de teixits i la seva transcripció està també regulada per clivatge alternatiu

(Hinshelwood et al., 2000). No obstant, pel que fa als peixos, es troben dues copies del gen

(cyp19a i cyp19b) originades per la duplicació del genoma (Meyer i Schartl, 1999). Aquests

dos gens s’han identificat en varies espècies i presenten una expressió diferencial en gònades

(cyp19a) i cervell (cyp19b) (Piferrer i Blázquez, 2005).

4.4.2. Expressió gènica de l’'aromatasa gonadal durant la diferenciació sexual

Durant el procés de diferenciació sexual en peixos, el gen cyp19a es troba expressat

majoritàriament en gònades femenines (Guiguen et al., 1999; D'Cotta et al., 2001; Kwon et

al., 2001; Trant et al., 2001; Sudhakumari et al., 2003; Blázquez et al., 2008), mentre que pel

que fa a cyp19b no sembla tan clara la implicació en aquest procés (Blázquez et al., 2008).

Page 283: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-247-

Alguns estudis com en l'anguila japonesa, Anguilla japonica, han demostrat que cyp19a es

localitza únicament als fol·licles ovàrics (Ijiri et al., 2003).

4.4.3. Regulació del gen cyp19a

Sf-1 i Foxl2 són factors coneguts per regular cyp19a directa o indirectament en peixos.

S’ha demostrat que aquests gens segueixen uns patrons d’expressió similars als de cyp19a,

amb una expressió simultània en l’espai i el temps, (Yoshiura et al., 2003; Wu et al., 2005;

Kanda et al., 2006; Nakamoto et al., 2006; Wang et al., 2007) L’anàlisi del promotor de

cyp19a revela que en moltes espècies de peixos es poden identificar regions reguladores de

unió al promotor del factor de transcripció Sf-1 (revisat per Piferrer i Blázquez, 2005). A més,

s’ha demostrat que amb la unió d’aquest factor al promotor de cyp19a s’activa la seva

transcripció en rates, humans i peixos (Lynch, 1993; Michael et al., 1995; Galay-Burgos et

al., 2006; Kanda et al., 2006). Per altra banda, Foxl2 també s’uneix al promotor de cyp19a i

activa la transcripció en la medaka (Nakamoto et al., 2006), la palaia japonesa (Yamaguchi et

al., 2007) i la tilapia (Wang et al., 2007), evidenciant el seu paper en la diferenciació ovàrica.

A més, estudis recents han demostrat que Sf-1 i Foxl2 actuen de forma sinèrgica, de manera

que l’actuació conjunta de tots dos factors activa l’expressió del gen cyp19a unes 8 vegades

més que quan actuen per separat (Nakamoto et al., 2007). Un altre factor que regula

l’expressió del cyp19a és el Dax-1. Aquest gen regula negativament l’expressió de cyp19a en

medaka, inhibint l’activació de la transcripció per Sf-1 i Foxl2 (Nakamoto et al., 2007). A

més, Dmrt1 també ha estat suggerit com un altre factor complementari que de forma indirecta

regula l’expressió de cyp19a activada per Sf-1. El Dmrt1 forma un heterodímer amb el Sf-1,

la qual cosa impedeix que s’uneixi al promotor i que per tant activi la seva transcripció

(Nagahama, 2005).

4.5. Alteracions de la diferenciació sexual per l’actuació d’esteroides sexuals i altres

compostos, així com per factors ambientals com la temperatura

El desenvolupament gonadal en peixos es caracteritza per la seva plasticitat (Baroiller

et al., 1999). Des de que es coneix que els esteroides sexuals estan implicats en el procés de

diferenciació sexual, una de les manipulacions més clàssiques d’aquest procés en els peixos

ha estat l’administració d’esteroides sexuals exògens quan aquests encara estan sexualment

indiferenciats. Amb una teràpia apropiada d’esteroides sexuals és possible alterar el curs

normal de la diferenciació sexual (Piferrer, 2001). La sensitivitat de les gònades a compostos

Page 284: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-248-

exògens, depèn de la duració, la dosis i de l’estat del desenvolupament al que s’apliquen els

tractaments (Piferrer i Donaldson, 1993). En la majoria dels casos el període sensible es situa

just abans o al mateix temps que la diferenciació histològica de la gònada primitiva (Hunter i

Donaldson, 1983).

Tradicionalment l´administració d’estrògens i d´andrògens s’ha usat per a obtenir

poblacions exclusivament de femelles i de mascles, respectivament (Hunter i Donaldson,

1983; Piferrer, 2001; Devlin i Nagahama, 2002). A més, s’ha demostrat que l’administració

de fadrozole (Fz) és capaç d’alterar la diferenciació i el desenvolupament gonadal en moltes

espècies de peixos gonocoristes així com el canvi de sexe en alguns peixos hermafrodites

(Nakamura et al., 1989; Piferrer et al., 1994; Afonso et al., 1997; Afonso et al., 2000; Kitano

et al., 2000; Kwon et al., 2000; Afonso et al., 2001; Ankley et al., 2002; Lee et al., 2002;

Bhandari et al., 2003; Suzuki et al., 2004; Uchida et al., 2004).

La diferenciació del sexe en peixos gonocoristes i el canvi de sexe en peixos

hermafrodites també es pot veure alterada per factors ambientals, especialment per la

temperatura (Baroiller et al., 1999). Aquesta és capaç d’influir la diferenciació gonadal de una

gran varietat d’espècies amb TSD o GSD+TE. A més alguns estudis han demostrat que la

temperatura afecta alguns gens implicats en la diferenciació gonadal, demostrant

particularment una clara influència en la síntesis de Cyp19 i en conseqüència de la

disponibilitat d’estrògens. Alguns exemples es poden trobar en tortugues i peixos.

No obstant, i malgrat l’abundant informació sobre l’implicació d’alguns gens en la

diferenciació sexual en peixos i altres espècies amb TSD, el mecanisme pel qual la

temperatura aconsegueix alterar aquest procés roman desconegut.

5. Epigenetica

Segons Bradbury (2003), la ciència de l’epigenètica tracta “les modificacions

químiques dels gens que son heredables d’una generació cel·lular a un altre i que afecten la

expressió gènica, sense alterar la seqüència de DNA”.

La regulació gènica segueix patrons generals diferents en funció dels tipus de

organismes. Als organismes unicel·lulars, la major part de gens es troben actius, mentre que

Page 285: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-249-

una minoria es troben silenciats; però en canvi, en els organismes pluricel·lulars, més de la

meitat dels gens es troben silenciats (Lande-Diner i Cedar, 2005). L’epigenoma, que és el

conjunt de les modificacions químiques que es troben en el genoma (Bradbury, 2003),

col·labora amb la informació genètica per regular diferents events relacionats de manera

temporal, espacial i funcional.

5.1. La metilació

La metilació del DNA és una modificació post-transcripcional que consisteix en

l’addició d’un grup metil sobre una citosina en els grups de dinucleotids CG (CpGs). L’enzim

responsable d’aquest addició és una DNA-citosina-5 metiltransferasa (Dnmt) (Vassena et al.,

2005). Alguns estudis han demostrat que els diferents tipus de vertebrats mostren diferents

nivells de metilació en els seus genomes (Varriale i Bernardi, 2006b, a). A més, en animals

poiquiloterms existeix una relació inversa entre el grau de metilació del DNA i la temperatura

corporal (Jabbari i Bernardi, 2004; Varriale i Bernardi, 2006b). En mamífers, els patrons de

metilació s’estableixen durant la gametogènesi (Razin i Riggs, 1980) i van variant durant el

desenvolupament (Monk et al., 1987). Per això, es creu que la metilació és un mecanisme

molt important en la regulació del desenvolupament, i que la seva funció no és establir la

silenciació inicial d’un gen, sinó que més aviat és propagar i mantenir els gens que es troben

ja silenciats (Bird, 2002). Fins a la data, s’han trobat dos possibles mecanismes de repressió

de la transcripció per metilació del DNA. En el primer, la metilació bloqueja l’unió de factors

de transcripció responsables per a la activació d’un determinat gen, mentre que en el segon, és

l’actuació d’unes proteïnes d’unió al domini metil-CpG, les que provoquen una alteració en

l’accessibilitat de la maquinària de transcripció i, en conseqüència, es reprimeix la

transcripció de determinats gens (Lande-Diner i Cedar, 2005).

Durant el desenvolupament, alguns gens necessiten ser expressats d’una manera

específica i en una finestra de temps molt concreta. Així, la metilació ajuda a coordinar la

regulació gènica durant el desenvolupament i també en el control de l’expressió específica

segons les necessitats de cada teixit (Sasaki, 2005). Generalment els gens que es troben

hipometilats són gens que es troben actius, mentre que els gens hipermetilats romanen en

silenci i sense ser expressats (Klose i Bird, 2006). Alguns exemples de regulació d’expressió

gènica deguda a patrons de metilació diferencials es poden trobar en ratolins, com és el cas

del control de Sry durant el desenvolupament gonadal (Nishino et al., 2004). Un altre exemple

Page 286: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-250-

és la regulació del gen Rohx5, que segons el grau de metilació d’un dels promotors presenta

un patró d’activat diferent en ovaris o testicles (Rao i Wilkinson, 2006).

En peixos, particularment en el peix zebra, s’han arribat a identificar i caracteritzar

fins a 8 DNA metiltransferases (Dnmts) diferents (Mhanni et al., 2001; Shimoda et al., 2005).

Concretament, s’ha demostrat que una d’elles, la Dnmt7, metila exclusivament un sol gen, el

ntl. Aquest fet és rellevant ja que per primera vegada s’ha demostrat que aquests enzims

poden tenir especificitat per un sol gen en particular (Shimoda et al., 2005). A més, en altres

estudis de peixos, han demostrat que en embrions de medaka i Xiphophorus, l’enzim Dnmt1,

mostra un patró d’expressió regulada de manera espai-temporal, indicant que aquesta pot

jugar un paper clau en el desenvolupament dels peixos (Altschmied et al., 2000). A més,

s’han identificat altres enzims que semblen estar involucrats en els patrons de metilació, com

és el cas de les demetilases de histones. Una família de demetilases, les anomenades H3K27,

han estat identificades i relacionades amb el desenvolupament antero-posterior de peixos com

el peix zebra (Lan et al., 2007).

5.2. Metilació i expressió de cyp19

Com passa en altres gens, s’ha observat expressió diferencial de Cyp19 de manera

depenent del sexe i del teixit. En bestiar boví i oví l’expressió d’aquest gen és regulada, entre

altres factors, per diferències en els patrons de metilació del seu promotor (Fürbass et al.,

2001; Vanselow et al., 2001; Vanselow et al., 2005; Fürbass et al., 2007). Tanmateix, en la

medaka, es va trobar que el promotor de cyp19a també es trobava metilat segons el teixit i el

sexe (Contractor et al., 2004). Totes aquestes evidències fan pensar que és probable que

aquesta metilació diferencial del promotor del gen Cyp19 també reguli l’expressió en altres

espècies.

5.3. Alteracions dels nivells de metilació per interacció amb l’ambient

Els mecanismes epigenètics també són importants per permetre respondre a

l’organisme davant de canvis ambientals, produint diferents fenotips a partir del mateix

genotip (West-Eberhard, 1989). Alguns exemples es poden trobar en la influència de la dieta i

els nivells de metilació de determinats gens, en la incidència de diferents tipus de càncer en

humans (revisat per Jaenisch i Bird, 2003), així com en canvis en l’estatus reproductiu de les

abelles (Kucharski et al., 2008), entre d’altres. Un altre exemple que relaciona canvis

Page 287: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-251-

ambiental i epigenètica, es pot observar en determinades plantes, on les variacions de

temperatura són les responsables de canvis importants en els nivells de metilació del

transposó Tam3 (Hashida et al., 2003).

6. El llobarro europeu com a model.

6.1. Biologia general i importància d’aqüicultura de llobarro

El llobarro, o Dicentrarchus labrax, pertany a la Família Moronidae (Nelson, 1994) i

és una espècie gonocorista en la que la diferenciació sexual es produeix de manera directa

(Roblin i Bruslé, 1983). El llobarro que és comú al mar Mediterrani, al mar Negre i a

l’Atlàntic est (des de Gran Bretanya fins a Senegal), es troba tant al mar com en llacunes

costaneres i àrees estuàriques (Froese i Pauly, Editors. 2008). Generalment, els mascles

maduren abans que les femelles (Bruslé i Roblin, 1984). Normalment, les femelles maduren

als tres anys de vida mentre que els mascles ho fan durant el segon.

6.1.1. Mecanismes de determinació sexual i diferenciació gonadal del llobarro

Com és comú a moltes altres espècies de peixos, fins a la data no s’han pogut

identificar marcadors sexuals en el llobarro (Martinez et al., 1999). La seva dotació genètica

és de 48 cromosomes (2n) (Cataudella et al., 1978), però cap d’ells ha pogut estar identificat

com a cromosoma sexual (Aref'yev, 1989; Vitturi et al., 1990; Sola et al., 1993). La

determinació sexual de llobarro segueix un mecanisme poligènic (Vandeputte et al., 2007), on

el sexe resultant d‘un individu respon a un sèrie d’interaccions mediambientals i genètiques

(Piferrer et al., 2005; Saillant et al., 2006; Vandeputte et al., 2007).

La gònada roman indiferenciada durant bona part del primer any de vida. Llavors

comença la seva diferenciació, amb sentit caudo-craneal (Bruslé i Roblin, 1984). No obstant,

la diferenciació sexual del llobarro depèn més de la mida que de l’edat (Blázquez et al., 1999)

i no es fins a una mida mínima d’entre 8 i 12 cm, que la gònada comença a diferenciar-se

(Bruslé i Roblin, 1984; Saillant et al., 2003; Piferrer et al., 2005). Durant el procés de

diferenciació sexual el primordi gonadal es converteix en testicles o ovaris durant els estadis

post-larvaris i finalitza a finals del primer any de vida (Bruslé i Roblin, 1984).

Mentre la gònada està indiferenciada presenta una major sensibilitat per respondre als

estímuls externs (Piferrer et al., 2005), incloent-hi esteroides sexuals i factors mediambientals

Page 288: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-252-

(veure secció 6.2), però una vegada que el sexe està determinat, aquest queda fixat i roman

irreversible (Gorshkov et al., 1999; Zanuy et al., 2001).

6.1.2. Gens relacionats amb la diferenciació sexual del llobarro

Alguns dels gens coneguts per la seva implicació en la diferenciació sexual dels

peixos, s’han identificat i estudiat també en el llobarro per conèixer específicament el seu

paper en aquesta espècie. Entre ells trobem 13 gens de la família de gens sox (sox1.1, sox1.2,

sox2, sox3, sox14.1, sox14.2, sox31.1, sox31.2, sox4.1, sox4.2, sox9.1, sox9.2 i sox17). Encara

que la funció d’aquesta família en la diferenciació gonadal del llobarro, és encara

desconeguda, alguns d’ells, com és el cas de sox9.2, exhibeixen una expressió en les gònades

específica per sexe (Galay-Burgos, resultats no publicats). Pel que fa al gen dmrt1, s’ha trobat

que és un gen altament específic de mascles de llobarro, però la seva expressió es força

tardana i sembla que, com passa en altres espècies, la seva funció pugui estar més relacionada

amb l’últim període de desenvolupament gonadal, i amb la espermatogènesis que no pas amb

la determinació del sexe per se (Deloffre et al., 2008). Tanmateix, un altre gen que posseeix

un patró dimòrfic d’expressió en llobarro, amb nivells més elevats d’mRNA en mascles que

en femelles, és el cyp11b (Socorro et al., 2007). S’ha observat que el cyp11b té una expressió

significativament més elevada en mascles a partir dels 200 dph. És en aquest moment que es

produeix la diferenciació testicular, la qual cosa demostra que aquest gen està involucrat en

aquest procés.

En peixos, es troben molts estudis que han relacionat el gen cyp19, concretament la

seva forma gonadal cyp19a, amb la diferenciació ovàrica. Al igual que en altres peixos, en el

llobarro s’han identificat dues còpies del gen cyp19, una predominantment expressada en

l’ovari (cyp19a) (Dalla Valle et al., 2002) i l'altre predominantment expressada en cervell

(cyp19b) (Blázquez i Piferrer, 2004). La caracterització de les seves estructures promotors i

llocs d’unió de factors de transcripció, van ser caracteritzats per Galay-Burgos (2006) en la

forma gonadal i Blázquez, Navarro-Martin i Piferrer (resultats no publicats) en la cerebral. Pel

que fa a la seva expressió, encara que alguns estudis ja havien demostrat que en adults

l'expressió de cyp19a era més alta a ovaris que a testicles (Dalla Valle et al., 2002), estudis

recents han mostrat que es poden trobar diferències significatives en cyp19a entre mascles i

femelles de llobarro, fins i tot abans que es pugui identificar el sexe histològicament

(Blázquez et al., 2008). Aquests resultats han permès establir l'expressió de cyp19a com a un

Page 289: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-253-

bon marcador de diferenciació ovàrica en llobarro (Blázquez et al., 2008). Per altra banda, en

el cas de l’expressió de cyp19b, no s’han trobat diferències específiques per cada sexe en

cervell. Aquest resultat indica que aquest gen no deu estar involucrat directament en el procés

de diferenciació sexual (Blázquez et al., 2008) però que en canvi, sí que sembla estar

involucrat en la neurogènesi del cervell de llobarro (Blázquez i Piferrer, 2004).

6.1.3. Esteroides i receptors relacionats amb la diferenciació gonadal del llobarro

És ben coneguda la implicació dels esteroides sexuals en la diferenciació sexual dels

peixos. Concretament en el llobarro, s’ha demostrat també la clara implicació dels estrògens

en la diferenciació i el desenvolupament ovàric (Blázquez et al., 1998a; Papadaki et al.,

2005), mentre que s’ha apuntat que els andrògens semblen ser un producte de la diferenciació

testicular i es troben més relacionats amb la espermatogènesi (Papadaki et al., 2005). En el

llobarro s’han identificat i caracteritzat tres receptors d’estrogen: Era, Erb1 i Erb2 (Halm et

al., 2004); i un receptor d'andrògens: Arb (Blázquez i Piferrer, 2005). Referent al paper que

desenvolupen aquests receptors s’ha trobat que en adults de llobarro era s’expressa

predominantment en fetge i pituïtària, mentre que erb1 i erb2 s’expressen de manera més

extensa i en molts teixits, amb els nivells d'expressió més elevats a la pituïtària (Halm et al.,

2004). En l’anàlisi de la seva expressió durant la diferenciació sexual es va poder observar

que l’expressió de era s’incrementava significativament a gònades de 200 dph. En canvi,

durant el període final de la diferenciació, l’expressió de erb1 i erb2 és molt elevada en

gònades (Halm et al., 2004) i es troben més expresat en mascles que en femelles (Blázquez et

al., 2008). A més, erb1 i erb2 es troben expressats en tots els tipus cel·lulars de la línea

germinal del llobarro, però especialment en spermatogonies i espermatocits (Viñas i Piferrer,

2008), relacionant l’expressió d’aquests gens amb la maduració testicular i l’espermatogènesi

(Blázquez et al., 2008). Pel que fa l’expressió d’ar s’ha observat que es troba preferentment

expressat en testicles, ovaris i cervell (Blázquez i Piferrer, 2005). L’estudi de l’expressió

gènica d'ar durant desenvolupament, ha determinat que es troben diferències significatives

entre sexes, i a favor dels mascles i sobretot a partir de 250 dph (Blázquez i Piferrer, 2005),

indicant que ar pot estar implicat en la fase final de la diferenciació testicular del llobarro.

6.2. Les proporcions de sexes es troben esbiaixades en els cultius aqüicoles del llobarro

El llobarro és una de les espècies del Mediterrani més important per a la aqüicultura

marina, amb una producció total de 106.014 tonelades produides durant el darrer any (2007)

Page 290: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-254-

ha superat les 10000 Tm (APROMAR, 2008). Per aquesta raó, hi ha un gran interès en

entendre la seva fisiologia (desenvolupament larvari, diferenciació sexual, reproducció, etc.)

per poder controlar aquests processos i realitzar millores en la producció aqüícola. En

condicions de cultiu, la proporció de sexes obtingudes apareixen sempre esbiaixades a favor

dels mascles (Carrillo et al., 1995; Colombo et al., 1996), fet que ocasiona una reducció de la

biomassa final, ja que les femelles generalment creixen més ràpid i assoleixen talles més

grans que els mascles (Carrillo et al., 1995; Blázquez et al., 1999; Saillant et al., 2001). A

més, aproximandent un 30% dels mascles maduren de forma precoç al primer any de vida

(Carrillo et al., 1995). Això, té un gran impacte en la producció aqüicola pels problemes

associats que comporta. Per aquests motius, el sector de l’aqüicultura té un gran interès en

trobar protocols que produeixin lots amb predominància de femelles. Varis estudis han

demostrat que les proporcions de mascles elevades comunament trobades als cultius són

conseqüència de les elevades temperatures utilitzades durant les primeres etapes del

desenvolupament dels peixos (Blázquez et al., 1998b; Pavlidis et al., 2000; Koumoundouros

et al., 2002; Saillant et al., 2002; Mylonas et al., 2005; Piferrer et al., 2005). Aquests estudis

s’han centrat en obtenir un protocol, en el que manipulacions de temperatura maximitzin les

proporcions de femelles. La conclusió general que se’n deriva és reduint les temperatures de

cultiu de 21ºC a 15ºC durant el principi del desenvolupament, s’aconsegueix reduir el nombre

de mascles presents en els cultius, i en conseqüència augmentar el nombre de femelles. Fins a

la data, però, cap dels estudis realitzat amb manipulacions de temperatura ha pogut superar el

73% de femelles aconseguit per Pavlidis i col·laboradors (2000) en llobarro. Aquests resultats

suggereixen que és probable que fent servir només manipulacions tèrmiques no es puguin

produir lots exclusius de femelles. A més, i malgrat la quantitat d’estudis fets fins a la data en

llobarro i moltes altres espècies, el mecanisme pel qual la temperatura afecta el procés de

diferenciació sexual, i en conseqüència la proporció de sexes, encara es desconeix.

OBJECTIUS

Objectiu general:

L'objectiu global d'aquesta tesi és contribuir en la comprensió del procés de

diferenciació sexual en peixos teleostis. Amb aquest fi, hem utilitzat el llobarro, ja que es

tracta d’un model de recerca consolidat, alhora que és una espècie altament valuosa per la

aqüicultura europea. En particular, estàvem interessats en descobrir el mecanisme pel qual la

Page 291: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-255-

temperatura afecta l’expressió del gen cyp19a, explorant la possibilitat de la existència d’una

regulació epigenètica. Finalment, s’ha procurat realitzar un mètode per maximitzar el nombre

de femelles en els cultius, ja que suposen un benefici per la indústria de l’aqüicultura.

Objectius específics:

Una combinació d'eines fisiològiques, moleculars, bioinformàtiques i genòmiques, han

estat emprades per assolir els objectius següents:

Comprendre millor com funciona la diferenciació sexual del llobarro i estudiar el

mecanisme implicat en el desenvolupament ovàric de llobarro mitjançant el control del de

diferenciació gonadal a dos nivells:

Estimulant i/o inhibint el procés de diferenciació gonadal cap a testicles o ovaris

amb l’administració de diferents composts.

Utilitzant la temperatura per estudiar l’expressió diferencial de gens, coneguts per

estar implicats en la diferenciació sexual en peixos durant el principi del

desenvolupament.

Desenvolupar un mètode que permeti assignar el sexe abans de que ocorrin els primers

signes histològics de diferenciació sexual.

Dilucidar el mecanisme molecular pel qual la temperatura elevada, durant el principi del

desenvolupament en el llobarro, provoca la masculinització de femelles genètiques.

Caracteritzar el gen sox17 en el llobarro, un gen poc estudiat, per conèixer la seva

implicació en el procés de diferenciació sexual.

Determinar el protocol de cultiu de llobarro més adequat, intentant produir proporcions de

sexes esbiaxades en femelles que puguin ésser útils per a la producció aqüicola.

Page 292: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-256-

RESUM DE RESULTATS I DISCUSSIÓ

Com s’ha explicat a l’introducció, els peixos són organismes que posseeixen un rang molt

ampli de mecanismes de determinació i diferenciació sexual. Per aquesta raó, i encara que els

investigadors han fet un gran esforç en l’estudi d’aquests processos, molta informació

relacionada amb això es manté desconeguda. Els estudis presentats aquí s'han fet amb

l'objectiu de contestar unes quantes preguntes com les que segueixen:

Com alguns gens estan relacionats amb la diferenciació sexual en peixos?

Quin camí porta als mascles a diferenciar la seva gònada a testicle?

Els gens de determinació/diferenciació sexual interactuen directament o indirecta amb

el gen cyp19a en peixos, i si ho fan, com hi fan?

Està la transcripció d'aquests gens sota el control estrogènic?

Com intervé la temperatura en aquests processos?

Estan els esdeveniments epigenètics relacionats amb aquesta influència de

temperatura?

La temperatura de l’aigua durant el creixement és capaç de feminitzar el llobarro?

Encara que algunes d'aquestes qüestions es poden respondre a partir dels resultats

obtinguts en aquesta tesi, com a mínim en el cas del llobarro, s’han obert unes altres

preguntes, noves i interessants, que requereixen d’altres investigacions per aconseguir una

comprensió completa de la situació.

Perfils d'expressió d'alguns gens implicats en la diferenciació gonadal de llobarro

L'expressió de cyp19a de llobarro està relacionada amb la diferenciació ovàrica

Tal i com s'ha demostrat en vertebrats inferiors (veure Introducció), la present tesi

també ha demostrat la implicació de gen cyp19a en la diferenciació ovàrica de llobarro. Els

nostres estudis, de la mateixa manera com va ser trobat per Blázquez et al., (2008), havien

mostrat que els nivells mitjans d'expressió gènica de cyp19a durant el període de diferenciació

sexual (a 150 i 200 dpf) eren clarament bimodals, amb nivells significativament (P<0.001)

superiors en femelles que en mascles (Resultats secció I). cyp19a presentava també un patró

Page 293: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-257-

consistent d’expressió entre 120 i 330 dpf, amb diferències (mascles > femelles) abans dels

primers signes de diferenciació sexual histològica a 150 dph (Resultats secció II i Blázquez et

al., 2008). A més a més, el fet que les primeres diferències sexuals en el cyp19a de llobarro

eren trobades a 120 dpf, que coincideix amb el període de ràpida proliferació de cèl·lules

germinals primordials a la gònada indiferenciada (Roblin i Bruslé, 1983), suggereix que els

augments de nivells d'expressió de cyp19a són un dels primers signes moleculars de la

diferenciació sexual de la femella.

És també interessant adonar-se que els nivells d'expressió de cyp19a en mascles durant

el període comprès entre 150 i 330 dph són aproximadament similars a aquells de les femelles

a 120 dph. Això suggereix que els nivells de cyp19a que són típics en mascles de 150-330 dph

en peixos de 50-225 mm de SL, són suficients per a la diferenciació sexual a femelles en

peixos al voltant de 50 mm de SL a 120 dph. Per aquesta raó, nosaltres hipotetitzem que al

principi de la diferenciació sexual del llobarro, els peixos que assoleixen una expressió crítica

de cyp19a per sobre d’un llindar, són els que comencen la diferenciació ovàrica, mentre que la

resta, aquells que poseeixen, per aquest temps, uns nivells d’expressió inferiors, romanen

indiferenciats i més tard es diferencien a mascles.

El desenvolupament testicular és independent dels andrògens

Els resultats d'un experiment portat a terme en llobarros indiferenciats tractats dels 90

a 150 dpf amb acetat de ciproterona (CPA), un agonista del receptor d'andrògens (AR), no

mostraven cap efecte ni en les proporcions sexuals ni sobre l’expressió gènica de cyp19a i

d’ar, quan l’administràvem a la dosi i durant al període de desenvolupament testat (veure

Resultats secció I). El CPA és un esteroide de 21 carbonis sintètic que, com altres

antiandrògens, impedeix als andrògens expressar la seva activitat en els llocs diana. En

teleostis el CPA és capaç d’unir AR en cervell, testicles i ovari (Wells i van der Kraak, 2000),

tanmateix l'acció del CPA és complexa. Per exemple, actuava com a potent antiandrogen en

adults de Bufo bufo i provocava la feminització. laevis (Bögi et al., 2002). També, en la

medaka japonesa els tractaments amb CPA afectaven l’oogènesi i provocaven una inhibició

de l'espermatogènesi (Kiparissis et al., 2003). A més a més, el CPA inhibeix

l’espermatogènesi i l’espermiogènesi i indueix infertilitat en l’home (Namer, 1988), així com

altera el desenvolupament testicular i la maduració en el peix gat Clarias batrachus (Singh i

Joy, 1998), l’espinós de tres agulles, Gasterosteus aculeatus (Rouse et al., 1977) i a la truita

Page 294: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-258-

irisiada (Billard, 1982). D'altra banda, l'acció paradoxal dels antiandrògens també va ser

descrita en larves de granotes ja que provocaven una masculinització de les gònades (Rastogi

i Chieffi, 1975; Petrini i Zaccanti, 1998). Tots aquests casos il·lustren que, en general, els

efectes dels bloquejants de l’esteroid són molt variables i depenent de l'espècie o inclús de

l’estat de desenvolupament o del teixit diana dins d'una mateixa espècie.

En la medaka japonesa sembla que CPA inhibeix events transcripcionals perquè l’AR

no es pot unir a l’element de resposta als andrògens (Kiparissis et al., 2003), no es va trobar

cap efecte en el llobarro quan s’administrava a aquestes dosis (100 mg Kg-1 de menjar) i

durant aquest període de desenvolupament (90-150 dpf). De forma contrària en un prova

preliminar, on l’administració de CPA va ser a la mateixa dosi però més tard en el

desenvolupament (130-190 dpf), el nombre de mascles es reduïa significativament, provocant

així l'efecte antiandrogènic esperat. Piferrer i Donaldson (1989) van demostrar en el salmó,

Oncorhynchus kisutch, que els períodes de temps sensibles als efectes estrogènics i

androgènics no són idèntics. A O. kisutch la resposta màxima als andrògens va ser observada

una setmana més tard que pels estrògens. Això suggereix que també en el llobarro la

sensibilitat als andrògens durant el desenvolupament gonadal pot aparèixer en un període

posterior que la dels estrògens. A més, uns altres estudis han trobat que la síntesi d'andrògens

té lloc només una vegada que el desenvolupament testicular està en procés (Papadaki et al.,

2005). Juntes, aquestes observacions permeten suggerir que, tal i com s'ha proposat

generalment en peixos (Nakamura et al., 2003), els andrògens no són necessaris en les etapes

inicials de la diferenciació testicular en el llobarro. Aquesta hipòtesi podria explicar per què

no es va trobar cap efecte del CPA en les proporcions sexuals del llobarro quan és administrat

a 90-150 dpf, mentre que una reducció dels mascles, quan el CPA fou administrat als 130-190

dpf, pot ser deguda a la necessitat d'andrògens pel correcte desenvolupament testicular propi

en etapes posteriors. Malgrat això, ni l’expressió de cyp19a ni la d’ar no es van mesurar en

aquesta prova preliminar, pel que aquesta afirmació no es pot confirmar experimentalment.

El CDA pot ser utilitzat per assignar sexe gonadal a peixos indiferenciats histològicament

Per poder buscar diferències en l’expressió gènica relacionades amb el sexe, durant el

primer any de vida, on molts peixos estan indiferenciats, el sexe de cada peix individual va ser

determinat seguint un procés de dos passos. En el primer pas, i per assegurar que el procés

sencer de diferenciació sexual estava totalment representat, els peixos que oscil·laven entre 8-

Page 295: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-259-

225 mm de SL es classificaven com a sexualment indiferenciats, mascles o femelles basat en

la seva edat, la SL i els nivells d'expressió de cyp19a a les seves gònades. Els valors típics d’

mRNA de cyp19a de molts mascles i femelles d'un any, el sexe dels quals fou verificat

histològicament, s'utilitzaven com a referència per ajudar a la classificació i també s'incloïen

en el conjunt de dades resultant. En el segon pas, l’anàlisi canònic discriminant (CDA), també

conegut com anàlisi discriminant múltiple, s'utilitzà per analitzar el conjunt de dades. El CDA

és un procediment estadístic multivariant que agrupa una sèrie d'observacions en tres o més

categories (els valors d'una variable depenent, discriminant categòrica, també anomenada la

variable d'agrupació) basades en els valors de variables categòriques independents contínues o

predictors (Legendre i Legendre, 1998). El CDA està sent utilitzat en moltes àrees, incloent-hi

l’ecologia numèrica aplicada la gestió de pesqueries per classificar l'explotació d'un

ecosistema donat (Tudela et al., 2005) o en medicina forense per estimar el sexe de restes

esquelètiques desconegudes (Kemkes-Grottenthaler, 2005). Malgrat això, pel que coneixem,

aquesta és la primera vegada que s'utilitza per a l'estudi de la diferenciació sexual.

En aquest estudi, la SL i els nivells de mRNA de cyp19a van ser utilitzats com els dos

predictors i el sexe com la variable d'agrupació (Resultats secció II). El fonament per utilitzar

el CDA es va basar en dues observacions ben establertes: 1) l'estudi de la relació entre mida,

edat i el procés de diferenciació sexual en el llobarro, mostrant que aquest procés és més

dependent de la longitud que de l’edat (Blázquez et al., 1999), i 2) l'expressió de cyp19a és un

marcador adequat de la diferenciació ovàrica, amb nivells d'expressió més alts en femelles en

estat de desenvolupament (Blázquez et al., 2008). Els resultats mostraren que el mètode era

capaç de classificar correctament un 93.1% de les dades originals. A més, les dues variables,

cyp19a i SL amb una significació de P < 0.001, contribuïen a explicar el model de CDA com

va ser mostrat pels valors de la prova de lambda de Wilks (F = 239.8 i 0.23; F= 520.2 i 0.12,

respectivament), demostrant que ambdues variables contribueixen a classificar bé entre les

tres categories.

Diferències relacionades amb el sexe en els perfils d'expressió de gens clau relacionats amb

la síntesi d'esteroides i en la seva acció durant la diferenciació sexual del llobarro

En aquest estudi i basat en els resultats obtinguts després de classificació per CDA

(veure Resultats secció II), el sexe fenotípic deduït de cada peix individual s'utilitzà per

buscar diferències relacionades amb el sexe en l'expressió de cyp11b, arb, era, erb1 i erb2.

Page 296: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-260-

D’aquests, el gen cyp11b era l'únic que presentava diferències clarament consistents. En

canvi, aquest estudi mostra que no hi havia cap diferència relacionada amb el sexe en els

nivells d'arb, era, erb1 o erb2, la qual cosa dificultava l’agrupament, indicant que les

diferències relacionades amb el sexe en la seva expressió no siguin aparents, com a mínim,

dins de la gamma de mida estudiada.

Cyp19a i cyp11b com a marcadors moleculars de la diferenciació ovàrica i testicular del

llobarro, respectivament

Encara que els primers signes de diferències relacionades amb el sexe en cyp19a es

trobaven al voltant de 50 mm de SL, la segregació sexual completa en els valors de cyp19a es

podria observar als 60 mm de SL, sent classificats tots els peixos que exhibeixen alts nivells

d’expressió de cyp19a com a femelles mentre que tots els peixos amb uns nivells baixos de

cyp19a baixos van ser classificats com a mascles. Aquests resultats demostren que les etapes

inicials de diferenciació sexual a nivell molecular comencen com a molt tard, un cop els

peixos arriben a 50 mm de SL, abans que els primers signes histològics es facin evidents en el

llobarro (a SL de 80 mm). En aquest aspecte, estudis previs han demostrat que l'expressió de

cyp19a es pot utilitzar com a marcador molecular per a la diferenciació ovàrica en espècie de

peixos incloent-hi la truita irisiada (Luckenbach et al., 2005; Matsuoka et al., 2006; Vizziano

et al., 2007) i el llobarro (Blázquez et al., 2008). A més a més, els resultats dels valors de

cyp11b també mostren que aquest gen té una clara distribució d'agrupament, encara que en

aquest cas els mascles tenien nivells més alts que les femelles, amb valors similars en peixos

indiferenciats i en els mascles i femelles més petits. Tanmateix, en aquest cas, la primera

segregació sexual completa en els valors de cyp11b entre mascles i femelles apareixien en

peixos amb SL ≥ 87mm. Molts estudis han mostrat també que cyp11b està implicat en la

diferenciació testicular dels peixos (Liu et al., 2000; Wang i Orban, 2007; Sreenivasan et al.,

2008), amb nivells d'expressió de cyp11b més alts trobats en mascles de llobarro a l’inici de la

diferenciació testicular (Socorro et al., 2007). En resum, tots aquests resultats permeten

proposar que tant el cyp19a com el cyp11b puguin ser utilitzats com un primer marcador

molecular de la diferenciació ovàrica i testicular, respectivament. No obstant això, dels

nostres resultats (Resultats secció II) podem concloure que d'aquests dos marcadors, cyp19a

sembla el més consistent i permet la determinació del sexe en peixos uns 30 mm més petits i

un mes anterior (SL de 50 mm i 120 dpf) que el que necessitariem basat en els primers signes

de diferenciació histològica (SL de 80 mm i 150 dpf). Per totes aquestes raons, podem

Page 297: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-261-

concloure que el CDA proposat és una eina útil que es pot utilitzar per pronosticar el sexe

fenotípic en llobarros indiferenciats histològicament.

L’aromatasa com a gen clau-determinant responsable de la diferenciació ovàrica en

peixos (I): Estudis sobre regulació de la transcripció del seu promotor.

A causa de la implicació de cyp19a en la diferenciació sexual de peixos, existeix un

interès molt gran per entendre com es pot regular aquest gen. Promotors de cyp19a de peix

d'unes quantes espècies de peixos han estat analitzats i llocs d'unió de la transcripció similars

han estat trobats en diferents espècies(Piferrer i Blázquez, 2005).

El SF-1 i el Foxl2 activen la transcrició de cyp19a d’una forma sinèrgica

L'anàlisi del promotor de cyp19a del llobarro revela, com s’ha trobat en altres espècies

de peixos, la presència de llocs d’unió conservats per a SF-1 (Galay-Burgos et al., 2006). A

més, SF-1 es pot unir específicament a la seqüència de consens identificada en el promotor,

demostrant que SF-1 pot regular directament la transcripció de cyp19a en el llobarro. També

es va veure que tant SF-1 com Foxl2 estaven correlacionats amb l'expressió de cyp19a en

tilapia, tant espaialment com temporalment (Wang et al., 2007), suggerint que també Foxl2

pot estar relacionat amb la regulació de la transcripció de cyp19a. En aquest aspecte, s’ha

trobat que el factor de transcripció FoxL2 s’uneix al promotor de cyp19a i és capaç d’activar

directament la transcripció de l'aromatasa en unes quantes espècies de peixos (Nakamoto et

al., 2006; Wang et al., 2007; Yamaguchi et al., 2007). Tanmateix, s'ha suggerit que Foxl2

treballa conjuntament amb altres cofactors (Nakamoto et al., 2006; Pannetier et al., 2006). A

partir dels assaigs de cotransfecció realitzats en aquest estudi (veure Resultats secció IV), es

demostra que tan SF-1 com Foxl2 eren capaços d’activar la transcripció de cyp19a i que els

dos factors, com va ser prèviament demostrat per Nakamoto (2007), actuaven sinèrgicament.

La metilació com a mecanisme de regulació de cyp19a

Gorelick (2003) proposà que les diferències sexuals estan inicialment determinades

per diferents patrons de metilació del DNA nuclear de femelles i mascles. També es va

demostrar que la metilació del DNA mitjançava el control de l'expressió gènica de Sry en el

Page 298: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-262-

desenvolupament del ratolí (Nishino et al., 2004), suggerint que les diferències en els nivells

de metilació són les responsables de la determinació sexual genotípica. Especialment en

peixos, s’han descrit diferències en els nivells de metilació en els promotors de cyp19a i dels

receptors d’estrogen (ers) de medaka (Contractor et al., 2004).Al nostre estudi es mostren

clares diferències entre els nivells de metilació del promotor cyp19a de mascles i femelles (un

39.4% contra un 83.9%) en un llobarro d’ un any. A més a més, en el cas de les femelles es va

observar una correlació entre l’expressió de cyp19a i els nivells de metilació (r2= 0.2922 i

P<0.05). Aquests resultats ens permeten concloure que la regulació de l'expressió de cyp19a

de llobarro pot ser mitjançada a través dels nivells de metilació del seu promotor. Per aquesta

raó, especulem que la metilació de cyp19a pot ser una causa de la diferenciació sexual, ja que

durant el desenvolupament se sap que la metilació està implicada en la diferenciació de

cèl·lules mare a cèl·lules específiques en els diferents (Shiota, 2004). Els nostres resultats

indiquen que es requereixen nivells baixos de metilació del promotor de cyp19a per al

desenvolupament ovàric normal, suggerint que la metilació del promotor de cyp19a és el

mecanisme pel qual la transcripció de cyp19a és silenciada en el desenvolupament dels

mascles durant la diferenciació sexual, evitant el desenvolupament d'una gònada

indiferenciada a un ovari.

A més a més, s'ha trobat que la metilació del DNA del promotor de cyp19a de

llobarro és capaç de reprimir, in vitro, l’activació del promotor pels factors de transcripció

SF-1 i Foxl2, suggerint que la metilació és un mecanisme que evita interaccions entre els

factors de transcripció i el promotor diana.

Aquest estudi també mostra que les diferents CpGs presents en el promotor de cyp19a

de llobarro eren metilades de forma diferencial segons el sexe. Especialment, la CpG en la

posició -13 mostrava les diferències relacionades amb el sexe més altes, suggerint que aquest

lloc és important per a la transcripció del gen de l'aromatasa. Així, es va trobar una correlació

significativa entre la metilació del CpG en la posició -13 i els nivells d'expressió de cyp19a.

Aquesta posició és propera a la TATA box i al lloc d’unió de Sox, així que suggerim que

podria per ser important per a la iniciació de la transcripció. També, per determinar si el

nombre i posició de CpGs es conservava en altres espècies, es van alinear regions promotores

d’espècies de peixos tant properes com llunyanes filogenèticament. La similitud de seqüència

global era d’un 53%, amb una clara conservació d'alguns dels llocs d'unió de factors de

Page 299: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-263-

transcripció incloent-hi la TATA box. Fou interessant observar que el CpG situat en la posició

-13 era el més conservat d’entre totes les espècies, amb tres dels promotors que presentaven

aquest dinucleòtid exactament en aquesta posició. Aquesta observació suggereix que aquest

mecanisme epigenètic pot estar present en moltes espècies.

L’aromatasa com a gen clau-determinant responsable de la diferenciació ovàrica en

peixos (II): El factor de transcripció Sox17.

El factor de transcripció Sox17 està implicat en la diferenciació sexual de llobarro?

El fet que el CpG de la posició –13 del promotor de cyp19a, que està localitzat a prop

d’un lloc d’unió Sox, sembli estar directament relacionat amb la transcripció de cyp19a i el fet

que el lloc d’unió d’aquesta família de factors de transcripció es trobi en els promotors de

cyp19a de la majoria d’espècies de peix estudiades, ens portà a hipotetitzar que els gens Sox

podrien estar involucrats en la regulació de cyp19a en peixos. Se sap que els gens Sox estan

implicats en molts processos del desenvolupament i especialment en l'organogènesi, incloent-

hi la diferenciació sexual (Pevny i Lovell-Badge, 1997; Wegner, 1999). A més a més, s’han

trobat moltes seqüències consens pels llocs d’unió a Sox en les regions promotores de moltes

espècies de peixos (Piferrer i Blázquez, 2005) i també en el llobarro (Galay-Burgos et al.,

2006). Com que es va trobar que el Sox17 estava implicat en l'espermatogènesi de ratolí

(Kanai et al., 1996) i en el canvi de sexe de les anguiles de camp d'arròs (Wang et al., 2003),

un dels propòsits d'aquesta tesi va ser identificar i caracteritzar el sox17 de llobarro, intentant

dilucidar la seva implicació en la diferenciació sexual.

L'estructura genòmica del sox17 de llobarro és similar a la d’altres espècies

L'existència del gen de sox17 en el llobarro va ser prèviament trobada per amplificació

per PCR utilitzant primers basats en seqüències de gens relacionats amb Sox9 (Galay-Burgos

et al., 2004). L'estructura genòmica dels gens Sox és coneguda per moltes espècies de

vertebrats, des de peixos fins a mamífers (veure Bowles et al., 2000 per a ressenya). Malgrat

això, l'estructura genòmica dels gens sox17 només era coneguda en dues espècies: el ratolí

(Kanai et al., 1996) i l'anguila de camp d'arròs, Monopterus albus (Wang et al., 2003). Com a

novetat en aquesta tesi es mostra l’estructura genòmica de sox17 de llobarro (sb) (Resultats

secció III). La regió seqüenciada del gen abraça 3,233 bp. Això inclou 1,168 bp del promotor

per damunt del lloc de començament de la transcripció pronosticat, 205 bp de la regió no

Page 300: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-264-

traduïda 5’, 1,191 bp de pauta de lectura oberta, i 305 bp de regió no traduïda parcial 3’. Un

senyal poliA putatiu, AATAAA, va ser trobat a 3’ UTR. De forma similar a altres gens Sox17,

es va confirmar la presència d'un intró dins de la caixa d’HMG de sox17 de llobarro (sb).

Aquest intró divideix l'ORF en dos exons de 299 bp i 892 bp. L'intró es trobava insertat

exactament en la mateixa posició que ha estat trobat en ratolí, peix globus, Takifugu rubripes,

l’anguila de camp d'arròs i l’ esturió, Acipenser sturio i la seva mida era similar als seus

homòlegs de peixos i més petit que el de ratolí.

Tres diferents isoformes obtingudes per dos promotors i per clivatge alternatiu

En total, hem identificat tres trànscripts del sox17 de llobarro: el més gran, que reté la

regió de l'intró (sb i-sox17), un format per la combinació dels dos exons (sb sox17) i un últim,

el més curt, amb una supressió parcial de la regió de la caixa HMG (sb t-sox17). Dos dels

transcripts, sb sox17 i el sb t-sox17, eren estructuralment equivalents als dos trànscripts de

Sox17 prèviament identificats en ratolí (m) per Kanai et al. (1996): un que codifica una

proteïna funcional amb un domini “HMG box” únic prop del terme aminoacídic (m Sox17) i

un altre que codifica una proteïna truncada a la qual li falten la majoria de parts de l’HMG

box (m t-Sox17). La m Sox17 s'expressava abundanment en espermatogònies i els nivells de

mRNA disminuïen en espermatocits i etapes subsegüents, mentre que la m t-Sox17 primer

apareixia en espermatocits i després s’acumulava en espermàtides (Kanai et al., 1996). Això

suggereix que els diferents trànscripts tenen rols diferents durant la progressió de

l'espermatogènesi. Igual que passa en ratolí, es va trobar que sb sox17 s’expressava en

espermatogònies (Viñas i Piferrer, 2008), suggerint que el rol de Sox17, com a mínim en

algunes funcions biològiques essencials com es la regulació de l'espermatogènesi ha estat ben

conservat durant evolució dels vertebrats.

Aquest estudi va trobar dos llocs alternatius de començament de la transcripció (TSS)

en el sb sox17: el primer TSS (TSS1) va ser localitzat en direcció 3’ de la TATA box predita,

mentre que l'altre (TSS2) es trobava dins de l’intró. Això suggereix l’existència d'un segon

promotor (P2), dins de l’intró, a més a més de la regió en direcció 5’ de TSS1 (P1). A més, la

seqüència de l'intró de sb sox17 posseïa señals indicatius de clivatge molt conservats, com el

lloc d'empalmament 5’ (5ss), un punt de branca potencial (BP), una pista de polipirimidina

(PT) i el lloc d'empalmament 3’ (3ss), indicatiu de la presència d'un mecanisme de clivatge

alternatiu (definit per Smith i Valcárcel, 2000). També, l'existència de set codons d’aturada a

Page 301: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-265-

la regió de l'intró suggereix la possibilitat que el trànscript sb i-sox17 pugui generar una

proteïna no funcional. La retenció de l'intró s'ha assenyalat com un sistema regulador en

teixit- o com un mecanisme de clivatge específic pel qual l'expressió pot ser regulada.

Aquests resultats suggereixen que el mecanisme de clivatge alternatiu, així com l'ús

diferencial dels dos promotors, poden ser responsables de la regulació de l'expressió gènica de

sb sox17.

Una alta similitud entre seqüènies de proteïnes suggereix que són evolutivament conservades

Es va observar que hi havia una alta identitat (88-92%) entre la proteïna de sb Sox17 i

altres seqüències de proteïnes Sox17 de peixos, especialment a la HMG box, però també en

unes altres àrees, especialment al voltant de les regions de N- i C- terminals. La proteïna de

Sb Sox17 té una estructura similar a m Sox17 (veure Bowles et al., 2000). No obstant això, m

Sox17 posseeix una regió rica en Pro-Glu (Kanai et al., 1996) que és absent en la seqüència

de llobarro. També s’ha observat una identitat alta entre proteïnes Sox17 de Xenopus, ratolí i

humanes, indicant que aquestes proteïnes poden ser considerades evolutivament conservades

(Wang et al., 2003). Malgrat això, sb Sox17, o qualsevol altra seqüència Sox17 de peix, tenen

més en comú a la seqüència de Sox17 de tetràpodes que a la corresponent a una de zebrafish

(per exemple només mostra una identitat d'un 39.4% amb la seqüència de proteïna de

llobarro), reforçant la idea que l’última és molt diferent de la resta.

Perfils d'expressió gènica de Sb sox17

Resultats obtinguts en llobarros de dos anys, mostraven que sb sox17 s'expressava en

tots els teixits estudiats i normalment a nivells més alts que sb i-sox17. Malgrat això, aquest

últim, predominava clarament en alguns teixits, especialment a la pell, però també a cervell.

L'alta expressió de sb i-sox17 podria indicar un rol del Sox17 en aquests teixits. De la

mateixa forma que en altres gens Sox, la redundància de l’expressió gènica de Sox17 i el fet

que els gens Sox poden reconèixer i unir-se a les mateixes seqüències consens, suggereix que

la seva especificitat es pot aconseguir a través de canvis en la seva expressió temporal i

espaial (Pevny i Lovell-Badge, 1997). Encara que en aquest estudi es trobà que l’expressió

del sox17 és clarament dimòrfica pel que fa al sexe durant la diferenciació sexual del llobarro

(amb femelles amb nivells creixents i més alts que els dels mascles), els nostres resultats no

donen suport a la idea que el sox17 és el gen que determina el sexe en el llobarro, perquè

l'expressió apareix quan la diferenciació sexual gonadal ja esta en curs. Malgrat això, tant el

Page 302: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-266-

cyp19a com el sox17 mostraven un nivell similar d’expressió en les gònades durant la

diferenciació gonadal del llobarro, amb una correlació dèbil però estadísticament

significativa, que demostrava que els dos gens semblen estar implicats d’una forma similar.

No obstant això, pel que sabem, aquest constitueix el primer estudi on es mostra que

l'expressió de sb sox17 és clarament sexe-depenent en qualsevol vertebrat durant el temps

crític de diferenciació sexual. Ja que la seva expressió diferencial a nivell sexual coincideix

amb el final del període de diferenciació ovàrica, suggereixin que el gen Sox17 de peixos està

més relacionat amb el final del període de diferenciació sexual i amb el desenvolupament

ovàric i funcions ovàriques que amb els primers passos d’una diferenciació sexual

primerenca. Tanmateix, el paper exacte de sb sox17 en aquest procés encara queda per

determinar.

Alteracions de la diferenciació sexual de llobarro (I). Influència dels esteroides sexuals

Els tractaments amb esteroids sexuals han estat una pràctica comuna per influir en la

diferenciació gonadal en peixos en les darreres dècades. En aquest estudi (veure Resultats

secció I per a més detalls), i per intentar esbrinar els mecanismes implicats en la diferenciació

sexual de peixos, vam estimular i inhibir composts de la via esteroidogènica per modificar la

diferenciació sexual natural de mascles i femelles de llobarro. Els resultats mostraven que

mentre en el grup de control hi havia un 67.5% de femelles, MDHT i E2 donaven lloc a lots

sencers de mascles i femelles, respectivament, Tx provocava un 100% de femelles i Fz

incrementava el nombre de mascles fins a un 95% (tot amb P < 0.001), mentre que no es

trobava cap diferència significativa en les proporcions sexuals després de l'administració de

CPA.

L'efecte estrogènic d’E2 sobre la diferenciació ovàrica no és deguda per una sobreexpressió

de l’aromatasa.

L’efecte feminitzador dels estrògens s'ha mostrat en moltes espècies de peixos (revisat

per Piferrer, 2001), incloent-hi llobarro (Blàzquez et al., 1998a, Saillant et al., 2001;

Gorshkov et al., 2004 a). A més a més, l'administració oral d'estradiol ha estat utilitzada, amb

èxit, per canviar el sexe d’uns quants peixos hermafrodites, incloent el protàndric,

Acanthopagrus schlegeli (Du et al., 2003) i els protoginis Halichoeres trimaculatus i

Thalassoma duperrey (Nakamura et al., 2003). Aquest estudi també reflecteix l'efecte

Page 303: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-267-

feminitzant que provoca l’administració d'estrògens exògens (veure Resultats secció I). Amb

tots aquests resultats, podem hipotetitzar que els estrògens poden influir en la diferenciació

gonadal a travès d’una activació directa del gen cyp19a. En aquest sentit, s’ha suggerit que en

rèptils alguns factors de transcripció de gens masculinitzants i feminitzants estan sota el

control dels estrògens, sent els gens masculinitzats regulats a la baixa, mentre que els gens

que feminitzen són regulats a la alta pels estrògens (Pieau et al., 1999). Malgrat això, els

nostres estudis mostren que, en el llobarro, els nivells d'expressió de cyp19a eren insensibles

al tractament per E2, suggerint que l’efecte feminitzant de l’E2 exogen no està directament

relacionat amb la regulació de cyp19a. A més, el fet que llocs d'unió ERE no es trobin en la

majoria de promotors de cyp19a en peixos (Piferrer i Blázquez, 2005), permet suggerir que

l’efecte estrogènic de l'administració d’E2 pot estar actuant més amunt en en la via

esteroidogènica, regulant alguns factors de transcripció que, a la seva vegada, regulen la

transcripció del gen cyp19a, o més avall del gen cyp19a.

La masculinització plena en el llobarro es pot aconseguir per administració tant de MDHT

com de FZ

Encara que s’ha demostrat que l’E2 natural és més potent com a factor feminitzant que

el que són els andrògens naturals testoterona (T) o 11 ketotestosterone (11-KT) com a

masculinitzants (Piferrer i Donaldson, 1989), s’ha aconseguit la masculinització completa en

diverses espècies de peixos per administració d'andrògens sintètics com el 17α-

metiltestosteron (MT) o el 17α-methyldihydrotestosterona (MDHT) (Westerfield, 1995;

Chatain et al., 1999; Gale et al., 1999; Blázquez et al., 2001; Kato et al., 2003; Wassermann i

Afonso, 2003). La susceptibilitat d'un androgen a ser aromatitzat pot influir en la seva

potència masculinitzant relativa. En alguns casos, l’aromatització dels andrògens

administrats, com la MT, a un estrogen feminitzant, pot causar una feminització paradoxica

(Piferrer i Donaldson, 1991). MDHT és un androgen 17α-metilat no-aromatitzable que ha

estat considerat com un factor de masculinització potent (Piferrer et al., 1993; Piferrer et al.,

1994). Estudis previs en llobarro han demostrat que el període crític de masculinització

induïda per andrògens està situat entre els 96-126 dpf i coincideix amb la proliferació de

cèl·lules germinals a la gònada sexualment indiferenciada (Blázquez et al., 2001). Tots

aquests resultats previs van ser molt útils per escollir l'androgen més adequat, la dosi i el

període d'administració que permetés la masculinització completa del llobarro en el nostre

estudi (Resultats secció I).

Page 304: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-268-

D'altra banda, l’administració d’inhibitors de l’aromatasa (AI) en un gran nombre

d'espècies ha reforçat la importància de Cyp19a, i en conseqüència la implicació dels

estrogens, en la diferenciació sexual dels peixos. El fadrozole (Fz) és un AI no esteroidal

dissenyat per no interactuar amb l’ar (Steele et al., 1987). En rates, aquesta manca

d'interacció ha estat demostrada (Vagell i McGinnis, 1997) però, pel que sabem, no hi ha

disponibles dades similars en peixos. Especialment, s'ha demostrat la masculinització o el

canvi de sexe protogini produït per administració de Fz en un gran nombre de peixos

gonocorístes i hermafrodites, respectivament (Nakamura et al., 2003; Bhandari et al., 2004b;

Bhandari et al., 2004 a). El canvi de sexe és provocat per una disminució d’E2 per sota el

llindar límit (Nakamura et al., 2003). Els nostres resultats també mostren que en el llobarro el

cyp19a i E2 són essencials per a la diferenciació ovàrica, ja que el tractament de Fz inhibia

l’expressió de cyp19a i ocasionava una masculinització gairebé completa.

Els efectes masculinitzants MDHT i FZ actuen a travès de diferents mecanismes

Els resultats dels nostres estudis (veure Resultats secció I) mostren que el Fz i MDHT

afectaven, diferencialment, l’expressió gènica de cyp19a i ar. En aquest sentit, les diferències

significatives en els nivells de cyp19a a 200 dpf es trobaven en mascles tractats amb Fz que

mostraven nivells més alts que els tractats amb MDHT. Per contra, els nivells d'expressió

gènica d'ar augmentaven durant el període de diferenciació sexual (de 150 a 200 dpf) en tots

els grups excepte en el tractat amb MDHT, suggerint que l’exposició primerenca a un

androgen regula a la baixa els nivells d'expressió gènica d'ar en mascles. De la mateixa

manera, els elements reguladors presents a la regió 5' d'ar en peixos no són coneguts. Les

rates, tanmateix, posseeixen un mig-ARE (Song et al., 1993). Si això s’aplica a peixos podria

explicar la inhibició observada d'ar després del tractament amb andrògens. A més a més, la

regió 5' de cyp19a de llobarro conté un element de resposta als andrògens (ARE) (Galay-

Burgos et al., 2006), suggerint que potser, els andrògens poden influir en la diferenciació

sexual a travès d’una inhibició de cyp19a, com es va observar després del tractament amb

andrògens en aquest estudi (Resultats secció I). Junts, aquests resultats indiquen que de les

dues opcions considerades fins ara, per explicar la masculinització deguda al tractament amb

andrògens: 1) un efecte directe dels andrògens sobre l’activació de la diferenciació sexual

testicular o 2) diferenciació passiva a mascle provocada per la inhibició de la síntesis

d’estrogens, la segona és la més probable en el cas del llobarro. Per altra banda, l'efecte

masculinitzador del Fz sembla no ser degut a una interacció directa amb ar. El més probable

Page 305: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-269-

és que sigui degut a una combinació de l'acumulació d'andrògens i la manca d'estrògens. A

més a més, els experiments portats a terme amb tractament amb andrògens en la truita irisiada

indueixen la regulació a la baixa dels gens específics de femelles, però no la restauració

completa del patró d'expressió gènica específic dels mascles (Baron et al., 2007). Aquests

autors suggereixen que la masculinització per andrògens podria actuar a travès d’una

inhibició primerenca del desenvolupament com a femella més que a travès d’una inducció

directa de la diferenciació testicular. En contrast, el nostre tractament amb Fz no solament

reduïa les femelles d'una mitjana d'un 67.5% en els controls fins a un 5%, indicant que les

estrògens són essencials per a la diferenciació sexual a femella, sino que també inhibia

l’expressió gènica de cyp19a durant el període de diferenciació sexual, possiblement abolint

una resposta positiva mitjançada per E2 sobre la síntesi de mRNA de cyp19a. En aquest sentit,

en peixos hermafrodites s’ha demostrat que el canvi sexual és provocat per una disminució de

E2 per sota un determinat llindar i no per un efecte androgènic directe (Nakamura et al.,

2003). També, l'administració d'AI reprimeix l'expressió d'alguns gens específics de femelles

com són el cyp19a en la truita irisiada, la tilàpia i la palaia japonesa, Paralichthys olivaceus

(Kitano et al., 1999; Govoroun et al., 2001; Bhandari et al., 2006; Vizziano et al., 2008).

Això suggereix que la inhibició de cyp19a és necessària per provocar la diferenciació a

mascle. A més a més, algunes evidències donen suport a l'observació que la masculinització

amb AI és més fisiològica que amb el tractament d'andrògens (Vizziano et al., 2008).

Efectes a llarg termini del Fz sobre la correcta funció testicular en mascles precoços i no

precoços

Els resultats trobats en aquesta tesi il·lustren també la importància d’E2 per a la

correcta funció testicular en peixos (Resultats secció I). En altres experiments portats a terme

sobre peixos indiferenciats, es va observar que no hi havia diferències morfològiques entre

testicles control i tractats amb AI i que aquests peixos eren capaços de completar

l’espermatogènesi (Piferrer et al., 1994; Bhandari et al., 2004b; Bhandari et al., 2004 a). A

més a més, el percentatge d'incidència de la precocitat en els mascles en aquests estudis no

era diferent entre els grups tractats i el grup control, indicant que el tractament amb AI no

només masculinitza inhibint la síntesi d'estrògens, sinó que els mascles resultants tenen

testicles normals en termes d'estructura i funció. Malgrat això, vam trobar que els valors de

GSI en mascles precoços, estaven significativament molt reduïts en el grup de MDHT i

augmentava, però sense significància estadística, en el grup Fz, suggerint que encara que la

Page 306: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-270-

incidència de mascles precoços no canviava, la masculinització pels dos tractaments produeix

efectes diferents sobre el desenvolupament dels testicles de mascles d'un any.

Alteracions de la diferenciació sexual de llobarro (II). Influència de la temperatura

La temperatura és el principal factor ambiental capaç de modificar les proporcions sexuals

en peixos

Els peixos són organismes poiquiloterms i per això les fluctuacions de temperatura en

el seu hàbitat natural poden canviar processos bàsics com la determinació i diferenciació

sexuals donant lloc a proporcions sexuals canviades (Conover i Kynard, 1981; Devlin i

Nagahama, 2002; Strussmann i Nakamura, 2002; Godwin et al., 2003). Tenint en compte la

influència de la temperatura en les proporcions sexuals, els peixos es poden classificar en dos

grups diferents, es a dir, aquells que exhibeixen TSD i aquells que exhibeixen GSD+TE

(Valenzuela et al., 2003). Curiosament, estudis recents han demostrat que la resposta a la

temperatura en els peixos segueix un patró general on altes temperatures, invariablement

ocasionen un augment en la proporció de mascles (Ospina-Álvarez i Piferrer, 2008). També, i

al contrari que els rèptils, les poblacions monosexe generalment no es produeixen a

temperatures extremes (especialment les poblacions monosexe de femelles), suggerint que

existeixen fortes interaccions genotip-ambient (Baroiller i D'Cotta, 2001). En aquest aspecte,

Ospina-Álvarez i Piferrer (2008) han postulat que la TSD és l'excepció en la determinació

sexual de peixos, reforçant que les espècies de peixos sobre els quals la temperatura exerceix

la seva influència sobre la diferenciació sexual podrien determinar el seu sexe fenotípic

depenent d'aquesta interacció genotip-ambient.

Molts autors han demostrat que les temperatures de cria durant el desenvolupament

primerenc del llobarro poden afectar la diferenciació sexual, i conseqüentment les

proporcions sexuals. Seguint el mateix model descrit per Ospina-Álvarez i Piferrer (2008),

s'ha mostrat que la cria de llobarro a altes temperatures (~21ºC) ocasiona un nombre creixent

de mascles i que incrementant els períodes de cria a baixes temperatures (~15ºC) durant el

desenvolupament primerenc (de 0 a 120 dpf) s’aconsegueix incrementar les proporcions de

femelles (Resultats secció V). A més a més, les diferències entre les diferents famílies

utilitzades en el aquests estudis i criades en el mateix règim tèrmic s'estenen al voltant d'un

45%, i expliquen les diferències en l'origen genètic dels pares trobats en l'anàlisi de

Page 307: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-271-

microsatèl·lits. També, l'anàlisi estadístic mostrava que tant la temperatura, com l'origen

genètic (o família) influenciaven significativament (P<0.001) en les proporcions sexuals

resultants en el llobarro. Junts, aquests resultats permeten confirmar que, com s’ha demostrat

en altres estudis (Piferrer et al., 2005; Vandeputte et al., 2007), les proporcions sexuals de les

poblacions de llobarro depenen de les influències parentals i mediambientals (temperatura).

Les baixes temperatures de cria no són capaces de feminitzar el llobarro

Encara que els nostres experiments (Resultats secció V) aconsegueixen assolir un

màxim d'un 90% de femelles en una família criada en tractaments de baixes temperatures

durant els primers 60 dies (la proporció més alta de femelles aconseguida fins ara per

manipulacions en la temperatura de cria), els resultats mostren que els tractaments de baixes

temperatures aconsegueixen incrementar les proporcions de femelles al voltant de 20-30

respecte els grups d’altes temperatures en totes les famílies testades. Això indica que els

canvis en les proporcions sexuals genètiques del llobarro aconseguits per temperatura no són

de 0 a 100%, i que la temperatura només està modificant la diferenciació sexual en una

proporció restringida de peixos. Tenint en compte això i altres resultats experimentals,

resumits en l’article V, sembla clar que els protocols de temperatura de cria no puguin

produir la feminització del llobarro, ja que després de molts intents, cap mètode de cria amb

manipulació de la temperatura ha permès aconseguir un lots de 100% de femelles. Malgrat

això, com s’ha exposat anteriorment se sap que les altes temperatures produeixen una

masculinització completa o gairebé completa en poblacions de peixos. Tenint en compte els

resultats disponibles fins ara, la nostra tesi és que les altes temperaturess estan provocant la

masculinització de femelles genètiques, mentre que els protocols de cria aa baixes

temperatures (que són similars a les condicions naturals de cria trobades en el camp) només

permeten el desenvolupament genètic programat de cada sexe, resultant en una població amb

unes proporcions sexuals que només depenen de les influències dels pares. Aquesta

consideració, implica que els mascles fenotípics trobats en grups criats a altes temperatures

durant el desenvolupament primerenc són el resultat de la suma dels mascles genotípics més

algunes femelles genètiques amb el sexe canviat. Això s'ha demostrat en espècies amb la

determinació sexual cromosòmica, com la pelaia japonesa, Paralichthys olivaceus , que

posseeix determinació sexual heterogamètica mascle, on els sexes genotípic i fenotípic sovint

no lliguen a causa d'alteracions en la diferenciació sexual provocades per les temperatures de

cria (Yamamoto, 1999). A més a més, s’han demostrat els mateixos efectes en el carpi daurat,

Page 308: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-272-

on les altes temperatures masculinitzen femelles genotípiques a mascles fenotípics (Goto-

Kazeto, 2006).

Influència de la temperatura sobre l’expressió gènica

Entre els diferents gens que se sap que són afectats per la temperatura, el cyp19a ha

estat estudiat àmpliament, especialment en peixos. En aquest sentit, les altes temperatures

durant el desenvolupament primerenc ocasionaven una baixa expressió i/o activitat enzimàtica

de cyp19a, induint la diferenciació testicular en el pejerrey (Karube et al., 2007), la palaia

japonesa (Kitano et al., 1999), la tilàpia , (D'Cotta et al., 2001) i el fletà atlàntic, Hippoglossus

hippoglossus (van Nes i Andersen, 2006). També s’han trobat en la carpa comuna, Cyprinus

carpio, disminucions en l’expressió de cyp19a provocada per les altes temperatures durant el

desenvolupament embrionari i larvari (Barney et al., 2008). A més a més, i encara que la

temperatura no afectava significativament les proporcions sexuals al fletà, els nivells de

cyp19a en peixos criats a baixes (7ºC) temperatures mostraven una expressió

significativament més alta que aquells es criaven a temperatures altes (13ºC) (van Nes i

Andersen, 2006). Aquests resultats permeten remarcar que la temperatura pot afectar

l’expressió de cyp19a també en espècies que segueixen una determinació sexual genotípica

forta. De forma especial en el llobarro, l'anàlisi de l'expressió de cyp19a utilitzant PCRs

semiquantitatives mostrava una tendència decreixent en peixos d’un any criats a altes

temperatures durant el desenvolupament primerenc (de 0 a 90 dpf) quan els comparàvem amb

aquells criats a temperatures baixes, encara que les diferències estadístiques només es

trobaven en els mascles. La manca de diferències observades en les femelles podria ser

deguda a limitacions metodològiques derivades de la tècnica utilitzada, ja que en un estudi

paral·lel que utilitzava PCR en temps real, molt més sensible, es van trobar nivells

significativament més alts en femelles criades tant en altes com en baixes temperatures (veure

article IV). Conjuntament, aquests resultats en el llobarro reforcen el fet que la temperatura

modula l’expressió de cyp19a en els peixos.

Tenint en compte tots els resultats previs, la qüestió pendent és com la temperatura,

que s'aplica durant el desenvolupament primerenc, està afectant l’expressió gènica i les

proporcions sexuals en llobarros d'un any. Per aquesta raó, estàvem esperant que la

temperatura també afectés l’expressió gènica de cyp19a durant el desenvolupament primerenc

de llobarro. Malgrat això, no es va trobar cap efecte de la temperatura sobre l’expressió de

Page 309: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-273-

cyp19a de llobarro durant el desenvolupament larvari (0-60 dfp) ni en els estudis presents i ni

en els previs (Socorro et al., 2007). Anàlisis realitzats en aquesta tesi (veure Resultats secció

II) no mostren cap relació consistent entre la temperatura de l'aigua i l’expressió gènica per a

cap dels gens estudiats, incloent-hi el cyp19a, durant el desenvolupament larval i la

metamorfosi (entre 30-120 dpf). No obstant això, tots els gens ja es podien detectar durant la

cria larval (30 dpf), indicant que la maquinària involucrada en la producció d'esteroids sexuals

i la seva acció són presents en les primeres etapes del desenvolupament del llobarro. En

aquest sentit, en la palaia japonesa les diferències relacionades amb la temperatura en

l'expressió de cyp19a tampoc eren detectades abans de la diferenciació sexual histològica

(Kitano et al., 1999). A més a més, Strussmann i Nakamura (2002) apuntaven que, malgrat

que és veritat que l'expressió de cyp19a és sexualment i temporal dimòrfica en el pejerrey

l'expressió de cyp19a no estava temporalment relacionada amb la diferenciació sexual,

suggerint que la temperatura pot afectar altres gens implicats en la diferenciació sexual.

Malgrat això, no es va observar cap diferència significativa entre grups criats a baixes o altes

temperatures en altres gens com el cyp11b de llobarro (Socorro et al., 2007) o els ers d'halibut

atlàntic (van Nes i Andersen, 2006). Tenint en compte aquests resultats, i ja que no es va

poder detectar cap diferència relacionada amb la temperatura durant el desenvolupament

primerenc, es pot hipotetitzar, com a mínim en aquestes espècies, que les altes temperatures

no estan influint sobre la diferenciació sexual directament a través de l’expressió de cyp19a i,

en conseqüència,.

No obstant això, els nostres resultats mostraven que l'efecte de les altes temperatures

de cria durant el desenvolupament primerenc es reflectia en una disminució en el nombre de

peixos amb uns nivell alts d'expressió de cyp19a en el període de diferenciació sexual del

llobarro (195 dpf), reflectint la influència de la temperatura en la diferenciació sexual

(Resultats secció II). És important adonar-se que, com està explicat anteriorment, les

diferències relacionades amb el sexe en els nivells d'expressió de cyp19a de llobarro no es

poden trobar fins a 120 dpf, quan els primers els peixos (probables futures femelles)

comencen a incrementar els seus nivells de cyp19a. Per aquest període del desenvolupament,

una elevada proporció de peixos roman indiferenciada amb uns nivells de cyp19a molt

baixos. Això podria explicar que, en aquest període, no es trobès cap diferència entre

tractaments de temperatura, ja que els mecanismes reguladors implicats en l'activació de

cyp19a romanen inactius, esperant els senyals responsables per iniciar la diferenciació sexual

Page 310: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-274-

durant el desenvolupament. Per aquestes raons, i perquè es poden detectar els efectes de la

temperatura sobre l’expressió de cyp19a en llobarros d'un any (com s’ha exposat

anteriorment), especulem que si es poden mesurar els nivells de cyp19a, durant el període de

diferenciació sexual (120-200 dpf), en mascles i femelles criats a baixes i altes temperatures

durant el desenvolupament primerenc, es podrien observar diferències relacionades amb la

temperatura. Però si això és veritat, com la temperatura, que s'aplica durant el

desenvolupament primerenc, pot afectar l’expressió de cyp19a en una etapa tan posterior,

especialment en el període de diferenciació sexual de llobarro? En aquest sentit, i ja que el

TSD és un mecanisme àmpliament estudiat en rèptils, els investigadors d’aquest camp també

estan intentant entendre com una diferència de dos graus de temperatura durant el TSP

d'incubació dels ous pot iniciar la cascada molecular que determina si la gònada

indiferenciada es desenvolupa com a ovari o testicle (Lance, 2008). Aquest autor també ha

assenyalat que de les teories actuals que poden explicar els fenòmens de TSD per la

implicació de cyp19a i de la producció d'estrogen, és la que té més evidències, més que la que

implica als esteroides del sac vitel.lí o el cervell com el conductor per a TSD. Tanmateix, és

necessària una nova forma de pensament o una nova aproximació experimental per resoldre

aquest fenomen enigmàtic.

Intentant contestar aquestes preguntes vam pensar que la temperatura podria exercir

els seus efectes duradors sobre l’expressió gènica de cyp19a a través d'alguna classe de

mecanisme epigenètic. En aquest sentit, Gorelick (2003) hipotetitzà que diferents patrons de

metilació de cromosomes sexuals virtualment idèntics en espècies amb TSD podrien ser

alterats per petits canvis medioambientals determinant, així, el sexe dels individus. Aquesta

nova forma de pensar reforçava la nostra sospita que un mecanisme epigenètic implicat en la

diferenciació sexual podria estar afectat especialment per la temperatura. Així, vam trobar

diferències sexuals en els nivells de metilació del promotor de cyp19a de llobarro que també

estaven relacionades amb diferències en l’expressió gènica (pagxx). Per aquesta raó, els

nivells de metilació del promotor de cyp19a de llobarros criats a diferents temperatures van

ser analitzats intentant dilucidar si la temperatura podia exercir el seu efecte sobre la

diferenciació sexual del llobarro, modificant els nivells de metilació d'un gen que està

altament relacionat amb la diferenciació sexual dels peixos.

Page 311: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-275-

La temperatura modula els nivells de metilació del promotor de cyp19a i canvia les

proporcions sexuals del llobarro

La nostra hipòtesi era que els efectes de temperatura sobre les proporcions sexuals

podrien ser mitjançades per canvis en la metilació del DNA en el promotor de cyp19a. Els

resultats presentats en aquesta tesi (Resultats secció IV) mostren que, els nivells de metilació

en les femelles criades a altes temperatures, mostraven un clar i significatiu increment en els

nivells de metilació del promotor de cyp19a respecte les femelles criades a baixes

temperatures (un de 37.1 a 53.9%, respectivament; prova de t, P=0.005). Els nivells dels

mascles d'un any cultivats, durant el desenvolupament primerenc (0-90 dpf), a altes (21ºC)

temperatures eren més alts que els cultivats a baixes (15ºC) temperatures (77.70 contra un

85.2%, respectivament; t-test P=0.062). La manca de diferències significatives entre mascles,

pot ser explicada perquè els nivells en els mascles ja eren molt alts. D'aquests resultats

suggerim que durant el desenvolupament primerenc les altes temperatures podrien exercir un

efecte sobre la diferenciació sexual, i conseqüentment en les proporcions sexuals del llobarro,

a través de canvis en els nivells de metilació del promotor de cyp19a. Proposem que

l’exposició del llobarro a temperatures anormalment altes durant el període termolàbil pot ser

capaç de modificar els patrons de metilació del promotor de cyp19a, ocasionant un augment

significatiu en el nivell de metilació mitjà del promotor de cyp19a. En les femelles genètiques

la temperatura incrementa els nivells de metilació del promotor de cyp19a per sobre d’un cert

límit de metilació, aproximant-se a valors característics dels mascles genotípics, disminuint

els seus nivells d'expressió gènica de cyp19a i diferenciant-se com a mascles fenotípics en

comptes de femelles fenotípiques. D’aquesta forma s’alterari les proporcions sexuals de la

població, com s’ha observat en moltes espècies quan els animals eren exposats a altes

temperatures.

S'ha suggerit que els mecanismes moleculars subjacents a les respostes de les

proporcions sexuals a la temperatura han de ser conservats a través dels vertebrats (Janzen i

Krenz, 2004). En aquest sentit, i com s’ha exposat anteriorment, les posicions CpGs

conservades poden suggerir que aquest mecanisme epigenètic pot ser present en moltes

espècies. S'ha suggerit que en espècies amb GSD com els mamífers, on la determinació sexual

depèn de l'herència del gen SRY, el sexe és una dicotomia de llindar que imita un efecte de

gen únic (Mittwoch, 2006). Els nostres resultats indiquen que també s'apliqui tal dicotomia de

llindar a un escenari completament diferent: els nivells de metilació del promotor de cyp19a

Page 312: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-276-

de mascles contra els de femelles, implicant que el dos principals mecanismes de

determinació del sexe en vertebrats, GSD i TSD, es puguin unificar en un mecanisme similar

comú. Així, la temperatura modula les proporcions sexuals a través de canvis en la proporció

d'animals, els nivells de metilació dels promotors del cyp19a dels quals estan per sobre o sota

d'un llindar. Junts, aquests resultats demostren un mecanisme epigenètic pel qual els canvis en

la temperatura mediambiental poden afectar una funció biològica essencial com és la

diferenciació sexual, amb conseqüències en les proporcions sexuals de la població resultant.

Finalment, suggerim que el mecanisme epigenètic descrit aquí no és exclusiu d'espècies GSD

influibles per la temperatura, com ho és el llobarro, sino que probablement és el mecanisme

llargament buscat que connecta les proporcions sexuals i la temperatura ambiental en espècies

amb TSD, incloent-hi peixos i rèptils. Malgrat això, investigacions futures, utilitzant altres

peixos model que posseeixen una marca sexual genètica que permeti identificar el sexe

genètic, podrien ajudar a confirmar aquesta hipòtesi mostrant evidències directes que la

temperatura provoca inversions del sexe genètic relacionades amb els nivells de metilació del

promotor de cyp19a.

Regulació dels estrògens en la diferenciació sexual

L'acció dels estrògens sembla que reguli la diferenciació ovàrica actuant per damunt de

cyp19a en peixos

Tractaments amb E2 contraresten canvi produït per l’administració de AI en peixos

hermafrodites protoginis com el Halichoeres trimaculatus (Higa et al., 2003). A més a més,

en unes quantes espècies de rèptils amb TSD, l'administració d'estradiol exògen en embrions

invalidava l'efecte de les temperatures masculinitzants produint femelles (Bull et al., 1988;

Crews et al., 1991; Dorizzi et al., 1991; Wibbels et al., 1991; Lance i Bogart, 1992; Pieau et

al., 1994; Dorizzi et al., 1996; Chardard i Dournon, 1999; Pieau et al., 1999). Amb aquests

resultats és fàcil suggerir que l'estrogen i la temperatura actuen per una via comuna (Crews et

al., 1994; Crews et al., 1995; Dorizzi et al., 1996), amb l’aromatasa responent directament a

la temperatura, i amb l’estrogen produint un control de resposta positiu en el gen cyp19

(Pieau, 1996). Tanmateix, una altre possibilitat és que el procés termosensible pugui estar

localitzat més amunt del gen cyp19 controlant la via de desenvolupament de la femella,

incloent-hi l'expressió de cyp19 (Merchant-Larios et al., 1997).

Page 313: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-277-

En aquest sentit, els resultats exposats en aquesta tesi (Resultats secció I), no

mostraven cap diferència significativa en els nivells d'expressió gènica de cyp19a entre el

grup control i les femelles tractades amb E2, suggerint que l'efecte estrogènic de l’E2 exogen

no implica una regulació directa de cyp19a. A més, alguns estudis han demostrat que la

sensibilitat de la diferenciació sexual dels rèptils a l’E2 varia amb la temperatura d’incubació

(Wibbels et al., 1991), i que els efectes dels esteroids en la diferenciació sexual poden variar

depenent de la temperatura utilitzada (Wibbels i Crews, 1995). Aquests autors mostraven que

els efectes d’E2 eren més grans en temperatures que produeixen poblacions de proporcions

sexuals mixtes que en temperatures que produeixen només mascles (Wibbels i Crews, 1995).

En aquest sentit, s’ha demostrat que la temperatura i l’estrogen també actuen amb sinergisme

entre aquests dos factors en medaka, amb percentatges que disminueixen en mascles

genotípics feminitzats per E2 amb temperatures de cria creixents (Minamitani i Strussmann,

2003).

Intentant dilucidar els efectes de la temperatura, l’estradiol (E2) i Fz en la diferenciació

gonadal de peixos, es va portar a terme un estudi preliminar en larves i juvenils de llobarro.

Llobarros indiferenciats es van criar a dues temperatures, 15ºC (temperatura baixa; LT) i 21ºC

(temperatura alta; HT) durant el període termolàbil de 0 a 60 dies post-fertilització (dpf). Al

final d'aquest període, el grup LT es dividir en quatre grups: a un se li donà una dieta control

(grup LT-CT) mentre que la resta estaven oralment exposats de 90 a 150 dpf a E2 a 10 mg/kg

(LT-E2), Fz a 100 mg/kg (LT-Fz), o a una combinació d’E2 i Fz a 10 i 100 mg/kg,

respectivament (LT-E2+Fz). El grup HT es va dividir en dos grups, un grup de control (HT-

CT) i un altre a E2 a 10 mg/kg durant el mateix període (HT-E2). L'administració d’E2

augmentà el nombre de femelles d'un 2.5% al grup LT-CT fins a un 90% al grup LT-E2,

mentre que al grup HT-E2 només va augmentar el nombre de femelles fins a un 8.1% (HT-E2)

quan el comparem amb el 0% en el grup HT-CT. Això mostra que l’E2 no pot invalidar

l'efecte masculinitzant de l'exposició prèvia a les altes temperatures en el llobarro. A més a

més, quan es donava E2 en combinació amb Fz al grup LT, el nombre de femelles augmentava

a un 36% en el grup LT-Fz+E2 quan el comparem amb el 0% del grup LT-Fz, però mai no

assoleix el 90% de femelles obtingudes després del tractament amb E2 (LT-E2). Aquests

resultats suggereixen que la temperatura, l’E2 i el Fz podrien estar afectant la regulació i

l'expressió de diferents gens implicats en la diferenciació gonadal.

Page 314: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-278-

Alguns autors han proposat que malgrat que la temperatura i els tractaments d'AI són

capaços de produir el mateix efecte, masculinitzar poblacions de peixos, el mecanisme

implicat és diferent (Chardard et al., 1995). Suggereixen que mentre que l’AI actua sobre

l’activitat enzimàtica, reduint la disponibilitat d’estrògens i inactivant la transcripció de

cyp19a per feedback, les altes temperatures, en canvi, actuen sobre la síntesi enzimàtica per

repressió de la transcripció de cyp19a. En aquest sentit, i ja que els tractaments amb E2 no

eren capaços de suprimir l’efecte de les altes temperatures sobre les proporcions sexuals del

llobarro, suggerim que l’E2 pot actuar regulant l'expressió d'un factor de transcripció que no

pot exercir la seva influència sobre l’expressió de cyp19a a causa de la metilació de cyp19a

provocada per altes temperatures. En aquest sentit, s’ha proposat el factor de transcripció

foxl2 com a element clau en un circuit de retroalimentació positiu per mantenir l’alta

expressió de cyp19a (Al de et Vizziano., 2008), així que suggerim que Foxl2 pot ser un

candidat per a la regulació d’E2.

Aplicacions a l’aqüicultura del llobarro

Com hem conclòs a partir dels resultats obtinguts en aquesta tesi (veure aquest secció

pagxx), les baixes temperatures de cria durant el desenvolupament primerenc permeten a la

població cultivada desenvolupar el sexe genèticament heretat. A més, es coneix que la

influència de la temperatura de cria en les proporcions sexuals del llobarro també pot

dependre de l'origen genètic (Mylonas et al., 2005) i de les influències parentals (Saillant et

al., 2002; Gorshkov et al., 2003; Saillant et al., 2003). Amb tot això, podem concloure que

les proporcions sexuals del llobarro d'una població donada són el resultat de la interacció

entre el genotip (dels pares) i l'ambient (temperatura) (Piferrer et al., 2005). Per aquesta raó,

un dels objectius d'aquesta tesi era establir un protocol de cria basat en la manipulació

tèrmica que asseguraria la producció del nombre més alt possible de femelles. Demostrem

que obtenir un 90% de femelles després dels tractaments a baixes temperatures durant els

primers 60 dpf és factible si s’utilitza un stock que dóna, de forma natural, un percentatge de

femelles alt. Així, emfatitzem la necessitat de la selecció genètica en aquesta espècie. En

aquest sentit, el genotipatge dels reproductors s'hauria d'implementar a totes les granjes de

llobarro.

Page 315: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-279-

El creixement compensatori en peixos inicialment mantinguts a baixes temperatures i la

existència de dimorfisme en el creixement sexual a favor de les femelles, donen suport a

l'avantatge de fer créixer peixos a baixes temperatures durant els primers 60 dpf

Malgrat això, encara que les baixes temperatures maximitzen el nombre de femelles,

aquests tractaments són coneguts per afectar negativament al creixement. Els nostres resultats

mostren que al final dels diferents règims tèrmics de baixes temperatures provoquen un retard

en el creixement a tots els grups criats a baixes temperatures durant els primers 0-120 dpf.

Tanmateix, com s’ha trobat prèviament (Pavlidis et al., 2000; Koumoundouros et al., 2002;

Mylonas et al., 2005), hi ha un creixement compensatori al final del primer any G30, però no

en G60, G90 i G120, amb peixos del grup G30 mostrant valors BW inclús majors que els del

grup G10 (un 9.4% més alt). Malgrat que BW en el grup G60 al final del primer any era més

baix que G10, aquesta diferència disminuïa cap el final del tractament tèrmic des d'un 62.5%

fins a un 15.2%, demostrant l'existència d’un creixement compensatori i suggerint que

aquestes diferències podien desaparèixer durant el segon any. A més, s’han trobat patrons de

creixement sexualment dimòrfic al voltant del primer any en el llobarro (Blázquez et al.,

1999; Gorshkov et al., 1999; Saillant et al., 2003), suggerint que el creixement és dependent

del sexe fenotípic en aquesta espècie (Saillant et al., 2001; Gorshkov et al., 2004b). Aquest

estudi mostra que ja al final del primer any les femelles exhibeixen mides significativament

més altes que els mascles.

A més a més, i coincidint amb el període de mercat al final del segon any, les femelles

de llobarro arribaven a la mida comerciable, considerada com 400 g segons les pràctiques de

producció comunes de llobarro, 120 dies anteriors que mascles. En aquest sentit, l'increment

d'un 6.1 i 9.2% de la biomassa en els grups G60 i G120 respecte al grup G10 que com s’ha

observat en el present estudi està basat en l’increment en el percentatge de femelles i el fet

que hi hagi un sexe de creixement més ràpid indica els més que probables avantatges

econòmics d’un increment en la proporció de femelles en els cultius de llobarro.

La precocitat en els mascles es redueix amb els protocols de baixes temperatures

El predomini dels mascles en l'aqüicultura del llobarro no és un problema només

perquè els mascles són el sexe de creixement més lent, sinó també perquè d’un 25 a un 30%

d'ells maduren precoçment al final del primer any (Carrillo et al., 1995). Això suposa un

problema fins i tot pitjor, ja que els mascles precoços normalment exhibeixen creixements

Page 316: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-280-

estroncats i una eficiència de conversió alimentària pobra durant la resta de la seva vida. Les

temperatures de cria altes no solament ocasionaven una disminució en el nombre de femelles

sinó que també en desenvolupament gonadal avançat. Els nostres resultats mostren que els

mascles precoços eren més grans que els mascles immadurs en el primer any de vida, similars

al que han estat trobats en un estudi previ (Begtashi et al., 2004). Malgrat això, al final del

segon any, els mascles precoços eren aproximadament un 18% més petits en pes i un 5% en

llargada (Felip et al., 2006). Dels nostres resultats podem concloure que les baixes

temperatures ocasionaven una disminució d'un 30% a un 10-20% en el nombre de mascles

precoços. A més a més, el nombre de mascles en l’estat IV-V (etapes de maduració testicular)

disminuïa amb la durada creixent a l’exposició a baixes temperatures. Els valors de GSI al

final del primer any en femelles i mascles augmentaven significativament (P<0.01) a mesura

que disminuïa el període de cria a baixes temperatures, indicant que les temperatures de cria

baixes durant el desenvolupament primerenc també provocaven un retard en el

desenvolupament gonadal. Junts, aquests resultats indiquen que les baixes temperatures

durant el desenvolupament primerenc retarden la maduració dels mascles, ocasionant un

creixement major especialment pel període de venda (final del segon any).

Un protocol en el qual els peixos estan exposats 17ºC durant 53 dies es proposa com la

manera de millorar la productivitat en el cultiu de llobarro

Aquesta tesi proporciona informació valuosa per a optimitzar la producció del llobarro

augmentant el nombre de femelles amb un règim tèrmic apropiat. Sota condicions de

laboratori, el nombre més alt de femelles s'aconseguí després de criar peixos a 15°C durant 60

dies des que començaven la fertilització, encara que no es pogué evitar pagar un peatge en

forma de retard en el creixement. Malgrat això, ja que el llobarro criat a 17ºC millora la

supervivència i el creixement (Ayala et al., 2000; Lopez-Albors et al., 2003) sense alterar les

proporcions sexuals (Mylonas et al., 2005; aquest estudi), suggerim la cria 17ºC durant els

primers 53 dpf (que corresponen a 840 graus dia) per maximitzar tant la proporció de femelles

com el creixement. El protocol proposat hauria d'ocasionar un augment en el nombre de

femelles, sense retard en el creixement, i també una disminució en el nombre de mascles

precoços. Això permetria arribar al temps de mercat a una edat anterior ja que les femelles

creixen més que els mascles, disminuïnt així els costos de producció. Combinat amb la

selecció genètica dels reproductors de l’stock amb la intenció d’obtenir progènies amb un

nombre de femelles alt i amb baixa sensibilitat per les altes temperatures, aquest mètode de

Page 317: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-281-

cria hauria de contribuir al cultiu rutinari de poblacions amb unes proporcions sexuals

altament esbiaixades a favor de les femelles, en benefici de l'aqüicultura del llobarro.

CONCLUSIONS

1. El paper dels andrògens durant la diferenciació sexual de mascles - El tractament de

llobarros sexualment indiferenciats amb un antagonista del receptor d’androgen durant el

període de màxima sensibilitat, no va alterar les proporcions de sexes, suggerint que els

andrògens no són necessaris per a l’inici de la diferenciació testicular.

2. Els efectes d'estrògens exògens – El tractament amb l'estrogen natural 17ß-estradiol (E2)

no va afectar l’expressió gènica de cyp19a, tot i així va provocar que un 100% del peixos es

diferenciessin com a femelles. Ja que l'expressió de cyp19a i l’activitat aromatasa són

essencials per a la diferenciació ovàrica i, com en altres peixos, el promotor de cyp19a de

llobarro no posseeix elements de resposta a estrògens (ERE), concloem que l'efecte estrogènic

de l’E2 exogen no implica la regulació directa de cyp19a, i que l’E2 exogen ha d'exercir els

seus efectes feminitzadors indirectament amb la regulació d’uns altres gens. Basat en

observacions fetes a altres espècies, el factor de transcripció foxl2 és un bon candidat com a

diana de l’E2 durant la diferenciació ovàrica.

3. Rutes de masculinització induïda– El tractament de llobarros sexualment indiferenciats

amb un potent androgen sintètic (MDHT) o amb un inhibidor no esteroidal de l’aromatasa

específic (Fz) presenta les mateixes conseqüències fenotípiques: la masculinització completa

o gairebé completa. Tanmateix, degut a les diferències temporals importants i als canvis

específics observats en l’expressió gènica, concloem que les rutes moleculars implicades són

diferents. Fz suprimeix l’expressió de cyp19a però no interacciona amb el receptor

d'andrògens (arb). Així, la masculinització provocada per Fz és la conseqüència de la

inhibició de la diferenciació ovàrica més que d'un efecte androgènic directe. A més a més,

MDHT no només suprimeix l’expressió de cyp19a sinó també l'augment ontogenètic de

l’expressió d'arb, indicant que l’exposició primerenca a un androgen redueix a la baixa la

subsegüent expressió d'arb en mascles. Llavors, la masculinització provocada per MDHT és

deguda a la inhibició del desenvolupament com a femella més que a un efecte androgènic

directe.

Page 318: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-282-

4. Marcadors moleculars – En el llobarro, els nivells d’expressió de cyp19a i, en menor

mesura de cyp11b, reflecteixen fidelment la diferenciació ovàrica i testicular, respectivament.

Quan es combinen, poden discriminar inequívocament, en el 100% dels casos, el sexe

fenotípic de juvenils sexualment diferenciats, fent innecessari l'ús o la recerca d’uns altres

marcadors moleculars. D'altra banda, no s’ha trobat cap associació clara entre sexe i expressió

gènica d'arb o de cap dels tres receptors d'estrogen analitzats, suggerint que encara que

aquests gens són necessaris per al desenvolupament gonadal no contribueixen en la

diferenciació d'un sexe en particular.

5. Predicció del sexe – Vam aplicar per primer cop en l'estudi de diferenciació sexual en

animals un Anàlisi Canònic Discriminant (ACD), combinant dades biomètriques i d'expressió

gènica. L'ús d’ACD, amb la llargada (SL) i l’expressió de cyp19a com a predictors, és un

mètode útil per distingir entre mascles i femelles sexualment indiferenciats, amb > 90% de

precisió en llobarros dels que no se sabia prèviament el sexe histològic. Això permet

determinar el sexe en peixos de 50 mm de SL i 120 dpf, es a dir, ~30 mm més petits i un mes

abans del que s'exigia anteriorment basant-se en els primers senyals de diferenciació

histològica (SL de 80 mm i 150 dpf). Proposem l’ús d’aquesta aproximació a d’altres animals

on el sexe genotípic no es pot establir al moment de la fertilització degut a la manca de

sistemes simples de determinació del sexe -com és el cas de molts peixos i rèptils amb TSD-

per ajudar en l'estudi de diversos aspectes de la diferenciació sexual.

6. Regulació de l’expressió de cyp19a - Abans dels primers senyals de diferenciació sexual,

les futures femelles van presentar nivells molt més alts de cyp19a que els presumptes mascles.

A més, els mascles de llobarro tenen el doble de metilació del promotor de cyp19a que les

femelles, i hi ha una relació inversa entre el nivell de metilació i els nivells d'expressió

d'aquest gen. Juntament, això fermament indica que nivells de metilació baixos del promotor

de cyp19a són necessaris per a un desenvolupament ovàric normal, i que la metilació del

promotor de cyp19a és el mecanisme silenciador de la transcripció de cyp19a als mascles en

desenvolupament durant la diferenciació sexual, evitant el desenvolupament d'una gònada

indiferenciada en ovari.

7. Conseqüències de la metilació del promotor de cyp19a – La metilació de set dinucleòtids

CpG del promotor de cyp19a de llobarro suprimeix completament l'activació transcriptional

Page 319: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-283-

d'aquest gen per SF-1 i Foxl2 in vitro, indicant que la metilació actua evitant les interaccions

físiques entre aquests factors de transcripció i els llocs específics d’unió al promotor de

cyp19a.

8. L’importància de la posició –13 de CpG al promotor de cyp19a – En el promotor de

llobarro de cyp19a, la posició de CpG -13 no només està diferencialment metilada en mascles

i femelles sinó que també és el més conservat entre unes quantes espècies examinades, tant

filogenèticament relacionades com distants. Aquesta posició està situada prop de la caixa de

TATA i d’un lloc d’unió a Sox, suggerint que és important per a la regulació transcriptional

de cyp19a i que un mecanisme epigenètic similar és probablement present a altres espècies.

9. El gen sox17 de llobarro - Proporcionem una anàlisi de l'estructura genòmica del gen

sox17 de llobarro, el tercer conegut a vertebrats després del de ratolí i l’anguila de camp

d'arròs. La elevada identitat observada entre la proteïna Sox17 de llobarro i unes altres

seqüències de proteïna Sox17 piscícola disponibles, suggereixen que el paper de Sox17, com

a mínim en algunes funcions biològiques essencials, pot estar conservat en vertebrats.

Igualment, a més dels dos trànscripts semblants als trobats en ratolins, vam trobar la primera

evidència de l'existència d'un mecanisme de clivatge alternatiu per retenció d'un intró en un

gen de Sox17 que produeix un tercer nou trànscript. Això, juntament amb l'existència de dos

promotors diferents suggereix que la regulació dels nivells de transcripció de sox17 és

complexa. L'expressió de sox17 apareix quan la diferenciació sexual gonadal ja estava en

curs, indicant que aquest gen no és un gen que determina el sexe en llobarro; tanmateix,

proporcionem la primera evidència de diferències en l'expressió en sox17 relacionades amb el

sexe, fet que implica a aquest gen en el desenvolupament ovàric, com a mínim en el llobarro.

10. Els efectes de la temperatura sobre les proporcions de sexe - L'exposició a

temperatures anormalment altes durant el desenvolupament primerenc ocasiona la

masculinització en llobarro i moltes altres espècies, sense tenir en compte el mecanisme

determinant del sexe, i se sospitava que cyp19a estava implicat mediant els efectes de

temperatura sobre les proporcions de sexe. Tanmateix, el mecanisme molecular romania

elusiu. Aquí, mostrem que altes temperatures de l’aigua augmentaven la metilació del

promotor de cyp19a, suprimint l’expressió de cyp19a i fent que presumptes femelles

genètiques segueixin una diferenciació testicular. Concloem que la temperatura

Page 320: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Resum en Català

-284-

mediambiental influeix en les proporcions de sexes a través de canvis al patró de metilació del

promotor de cyp19a. Donat que no s'observava cap diferència en l'expressió de cyp19a durant

el període termolàbil entre peixos exposats a baixes i altes temperatures, suggerim

específicament que les temperatures altes augmenten irreversiblement la metilació del

promotor de cyp19a. Després, quan comença la diferenciació sexual, la metilació inhibeix

l’activació transcripcional de cyp19a, suprimint la producció d'estrogen i, conseqüentment,

forçant la diferenciació testicular. Suggerim que el mecanisme epigenètic descrit aquí no és

exclusiu del llobarro, sinó que és més probable que sigui el llargament buscat mecanisme que

connecta la temperatura ambiental amb les proporcions de sexe en espècies amb TSD,

incloent peixos i rèptils.

11. El sexe com a dicotomia de llindar - Proposem la tesi següent: en vertebrats no

mamífers el sexe és una dicotomia de llindar dels nivells de metilació del promotor de

cyp19a. Donat que una proposició similar s'ha fet en quant als efectes de SRY (el gen

determinant del sexe) en mamífers, això implica que el dos principals sistemes determinants

del sexe, GSD i TSD, es poden unificar en un mecanisme comú.

12. Aplicacions en aqüicultura - La proporció de femelles que resulten com a funció de la

cria a temperatures baixes des de la fertilització segueix una corba en forma d’U invertida,

amb una resposta positiva i essencialment lineal, com a mínim fins a 120 dies post

fertilització (dpf). No hi ha cap protocol basat únicament en la manipulació tèrmica que sigui

capaç de provocar una feminització completa en el llobarro, ja que l’exposició a baixa

temperatura merament permet el desenvolupament de les femelles genètiques com a mascles

fenotípics. La temperatura baixa durant el període larvari endarrereix el creixement però si els

peixos es canvien a temperatura alta a l'època apropiada, llavors exhibeixen creixement

compensatori. Proposem la cria de larves a 17°C des del moment de la fertilització fins als 53

dpf i llavors passar a 21°C evitant els efectes masculinitzadors de les altes temperatures,

permetent un creixement compensatori, amb un augment de la producció de biomassa en un

~10% respecte a la pràctica corrent. Combinat amb la selecció genètica del llobarro dirigida a

l’obtenció de progenies amb un nombre de femelles alt i una baixa sensibilitat a les altes

temperatures, aquest mètode de cria hauria de contribuir al cultiu rutinari de poblacions amb

altes proporcions de femelles, en benefici de l'aqüicultura de llobarro.

Page 321: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

Page 322: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 323: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-285-

REFERENCES

Abd-el-Aziz, S.H., Ramadan, A.A., 1990. Sexuality and hermaphroditism in fishes: I. Synchronous functional hermaphroditism in the serranid fish Serranus scriba L. Folia Morphologica 38, 86-100.

Abinawanto S., Shimada, K., Yoshida, K., Saito, N., 1996. Effects of aromatase inhibitor on sex differentiation and levels of P45017alpha and P450arom messenger ribonucleic acid of gonads in chicken embryos. General and Comparative Endocrinology 102, 241-246.

Afonso, L.O.B., Wassermann, G.J., De Oliveira, R.T., 2001. Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. Journal of Experimental Zoology 290, 177-181.

Afonso, L.O.B., Iwama, G.K., Smith, J., Donaldson, E.M., 2000. Effects of the aromatase inhibitor fadrozole on reproductive steroids and spermiation in male coho salmon (Oncorhynchus kisutch) during sexual maturation. Aquaculture 188, 175-187.

Afonso, L.O.B., Iwama, G.K., Smith, J., Donaldson, E.M., 1999. Effects of the aromatase inhibitor fadrozole on plasma sex steroid secretion and ovulation rate in female coho salmon, Oncorhynchus kisutch, close to final maturation. General and Comparative Endocrinology 113, 221-229.

Afonso, L.O.B., Campbell, P.M., Iwama, G.K., Devlin, R.H., Donaldson, E.M., 1997. The effect of the aromatase inhibitor fadrozole and two polynuclear aromatic hydrocarbons on sex steroid secretion by ovarian follicles of coho salmon. General and Comparative Endocrinology 106, 169-174.

Akatsuka, N., Komatsuzaki, E., Ishikawa, A., Suzuki, I., Yamane, N., Miyata, S., 2005. Expression of the gonadal p450 aromatase gene of Xenopus and characterization of the 5'-flanking region of the aromatase gene. The Journal of Steroid Biochemistry and Molecular Biology 96, 45-50.

Alekseev, F.E., 1982. Hermaphroditism in sparid fishes (Perciformes, Sparidae). I. Protogyny in porgies, Pagrus pagrus, P. orphus, P. ehrenbergi and P. auriga, from West Africa. Journal of Ichtyology 22, 85-94.

Altschmied, J., Volff, J.N., Winkler, C., Gutbrod, H., Korting, C., Pagany, M., Schartl, M., 2000. Primary structure and expression of the Xiphophorus DNA-(cytosine-5)-methyltransferase XDNMT-1. Gene 249, 75-82.

Ankley, G.T., Kahl, M.D., Jensen, K.M., Hornung, M.W., Korte, J.J., Makynen, E.A., Leino, R.L., 2002. Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas). Toxicological Sciences 67, 121-130.

Aoyama, S., Shibata, K., Tokunaga, S., Takase, M., Matsui, K., Nakamura, M., 2003. Expression of Dmrt1 protein in developing and in sex-reversed gonads of amphibians. Cytogenetic and Genome Research 101, 295-301.

Page 324: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-286-

APROMAR, Asociación Empresarial de Productores de Cultivos Marinos, 2008. La acuicultura marina de peces en España 2007. http://www.apromar.es/.

Aref'yev, V.A., 1989. Cytogenetic analysis and nuclear organization of the sea bass Dicentrarchus labrax. Journal of Ichthyology 29, 1-12.

Arias, A., 1980. Growth, food and reproductive habits of sea bream (Sparus aurata L) and Sea Bass (Dicentrarchus labrax L) in the esteros (fish ponds) of Cadiz. Investigación Pesquera 44, 59-83.

Ayala, M.D., Lopez-Albors, O., Gil, F., Latorre, R., Vazquez, J.M., Garcia-Alcazar, A., Abellan, E., Ramirez, G., Moreno, F., 2000. Temperature effect on muscle growth of the axial musculature of the sea bass (Dicentrarchus labrax L.). Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C 29, 235-241.

Barney, M.L., Patil, J., Gunasekera, R., Carter, C.G., 2008. Distinct cytochrome P450 aromatase isoforms in the common carp (Cyprinus carpio): sexual dimorphism and onset of ontogenic expression. General and Comparative Endocrinology, doi: 10.1016/j.ygcen.2008.1003.1013.

Baroiller, J.F., D'Cotta, H., 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology 130, 399-409.

Baroiller, J.F., Guigen, Y., Fostier, A., 1999. Endocrine and environmental aspects of sex differentiation in fish. Cellular and Molecular Life Sciences 55, 910-931.

Baron, D., Montfort, J., Houlgatte, R., Fostier, A., Guiguen, Y., 2007. Androgen-induced masculinization in rainbow trout results in a marked dysregulation of early gonadal gene expression profiles. feedback.

Begtashi, I., Rodriguez, L., Moles, G., Zanuy, S., Carrillo, M., 2004. Long-term exposure to continuous light inhibits precocity in juvenile male European sea bass (Dicentrarchus labrax L.). I. Morphological aspects. Aquaculture 241, 539-559.

Bestor, T.H., 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. The EMBO Journal 11, 2611-2617.

Bestor, T.H., 2000. The DNA methyltransferases of mammals. Human Molecular Genetics 9, 2395-2402.

Bhandari, R.K., Komuro, H., Higa, M., Nakamura, M., 2004a. Sex inversion of sexually immature honeycomb grouper (Epinephelus merra) by aromatase inhibitor. Zoological Science 21, 305-310.

Bhandari, R.K., Higa, M., Nakamura, S., Nakamura, M., 2004b. Aromatase inhibitor induces complete sex change in the protogynous honeycomb grouper (Epinephelus merra). Molecular Reproduction and Development 67, 303-307.

Page 325: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-287-

Bhandari, R.K., Komuro, H., Nakamura, S., Higa, M., Nakamura, M., 2003. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper (Epinephelus merra). Zoology Science 20, 1399-1404.

Bhandari, R.K., Alam, M.A., Higa, M., Soyano, K., Nakamura, M., 2005. Evidence that estrogen regulates the sex change of honeycomb grouper (Epinephelus merra), a protogynous hermaphrodite fish. Journal of Experimental Zoology. Part A, Comparative Experimental Biology 303, 497-503.

Billard, R., 1982. Attempts to inhibit testicular growth in rainbow trout with antiandrogens (cyproterone, cyproterone acetate, oxymetholone) and busulfan given during the period of spermatogenesis. General and Comparative Endocrinology 48, 33-38.

Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes & Development 16, 6-21.

Bishop, C.E., Whitworth, D.J., Qin, Y., Agoulnik, A.I., Agoulnik, I.U., Harrison, W.R., Behringer, R.R., Overbeek, P.A., 2000. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nature Genetics 26: 490-494.

Bishop, T.C., Kosztin, D., Schulten, K., 1997. How hormone receptor-DNA binding affects nucleosomal DNA: the role of symmetry. Biophysical Journal 72, 2056-2067.

Blázquez, M., Piferrer, F., 2004. Cloning, sequence analysis, tissue distribution, and sex-specific expression of the neural form of P450 aromatase in juvenile sea bass (Dicentrarchus labrax). Molecular and Cellular Endocrinology 219, 83-94.

Blázquez, M., Piferrer, F., 2005. Sea bass (Dicentrarchus labrax) androgen receptor: cDNA cloning, tissue-specific expression, and mRNA levels during early development and sex differentiation. Molecular and Cellular Endocrinology 237, 37-48.

Blázquez, M., Zanuy, S., Carrillo, M., Piferrer, F., 1998a. Structural and functional effects of early exposure to estradiol-17 beta and 17 alpha-ethynylestradiol on the gonads of the gonochoristic teleost Dicentrarchus labrax. Fish Physiology and Biochemistry 18, 37-47.

Blázquez, M., Zanuy, S., Carillo, M., Piferrer, F., 1998b. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 281, 207-216.

Blázquez, M., Carrillo, M., Zanuy, S., Piferrer, F., 1999. Sex ratios in offspring of sex-reversed sea bass and the relationship between growth and phenotypic sex differentiation. Journal of Fish Biology 55, 916-930.

Blázquez, M., Piferrer, F., Zanuy, S., Carrillo, M., Donaldson, E.M., 1995. Development of sex control techniques for European sea bass (Dicentrarchus labrax L.) aquaculture: Effects of dietary 17 alpha -methyltestosterone prior to sex differentiation. Aquaculture 135, 329-342.

Page 326: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-288-

Blázquez, M., Felip, A., Zanuy, S., Carrillo, M., Piferrer, F., 2001. Critical period of androgen-inducible sex differentiation in a teleost fish, the European sea bass. Journal of Fish Biology 58, 342-358.

Blázquez, M., González, A., Papadaki, M., Mylonas, C., Piferrer, F., 2008. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). General and Comparative Endocrinology 158, 95-101.

Bögi, C., Levy, G., Lutz, I., Kloas, W., 2002. Functional genomics and sexual differentiation in amphibians. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 133, 559-570.

Borg, B., 1994. Androgens in teleost fishes. Comparative Biochemistry and Physiology 109, 219-245.

Bowles, J., Schepers, G., Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Developmental Biology 227, 239-255.

Bradbury, J., 2003. Human epigenome project: up and running. PLoS Biology 1, 316-319.

Brandt, M.E., Vickery, L.E., 1997. Cooperativity and dimerization of recombinant human estrogen receptor hormone-binding domain. The Journal of Biological chemistry 272, 4843-4849.

Braun, A.M., Thomas, P., 2004. Biochemical characterization of a membrane androgen receptor in the ovary of the atlantic croaker (Micropogonias undulatus). Biology of Reproduction 71, 146-155.

Brunner, B., Hornung, U., Shan, Z., Nanda, I., Kondo, M., Zend-Ajusch, E., Haaf, T., Ropers, H.H., Shima, A., Schmid, M., 2001. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1. Genomics 77, 8–17.

Bruslé, J., Bruslé, S., 1983. La gonadogenèse des Poissons. Reproduction Nutrition Development 23, 453-491.

Bruslé, J., Roblin, C., 1984. Sexualité du loup Dicentrarchus labrax en condition d’élevage contrôlé. L’aquaculture du bar et des sparidés. Inra Publications, Paris pp 33–43.

Brzozowski, A.M., Pike, A.C., Dauter, Z., Hubbard, R.E., Bonn, T., Engstrom, O., Ohman, L., Greene, G.L., Gustafsson, J.A., Carlquist, M., 1997. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753-758.

Bull, J.J., 1983. Evolution of Sex Determining Mechanisms. Menlo Park, Calif.: Benjamin/Cummings Pub. Co., Advanced Book Program.

Bull, J.J., Gutzke, W.H.N., Crews, D., 1988. Sex reversal by estradiol in three reptilian orders. General and Comparative Endocrinology 70, 425-428.

Page 327: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-289-

Buxton, C.D., Garratt, P.A., 1990. Alternative reproductive styles in seabreams (Pisces: Sparidae). Environmental Biology of Fishes 28, 113-124.

Capel, B., 2000. The battle of the sexes. Mechanisms of Development 92, 89-103.

Carrillo, M., Zanuy, S., Blázquez, M., Ramos, J., Piferrer, F., Donaldson, E.M., 1995. Sex control and ploidy manipulation in sea bass, Environmental Impacts of Aquatic Biotechnology. OCDE, Paris pp 125-144.

Cataudella, S., Civitelli, M.V., Capanna, E., 1978. The chromosomes of some Mediterranean teleosts: Scorpenidae, Serranidae, Labridae, Blenidae, Gobidae (Pisces-Scorpeniformes, Perciformes). Bollettino di Zoologia 40, 885-889.

Clarkson, M.J., Harley, V.R., 2002. Sex with two SOX on: SRY and SOX9 in testis development. Trends in Endocrinology & Metabolism 13, 106-111.

Clyne, C.D., Kovacic, A., Speed, C.J., Zhou, J., Pezzi, V., Simpson, E.R., 2004. Regulation of aromatase expression by the nuclear receptor LRH-1 in adipose tissue. Molecular and Cellular Endocrinology 215, 39-44.

Colombo, L., Barbaro, A., Francescon, A., Libertini, A., Benedetti, P., Dalla Valle, L., Pazzaglia, M., Pugi, L., Argenton, F., Bortolussi, M., Belvedere, P., 1996. Potential gains through genetic improvements: chromosome set manipulation and hybridization. In: Chatain, B., Saroglia, M., Sweetman, J., Lavens, L. (Eds.), Seabass and seabream culture: problems and prospects. International Workshop, Verona, Italy (16-18/10/1996). European Aquaculture Society, Oostende, Belgium pp. 343-462.

Collas, P., 1998. Modulation of plasmid DNA methylation and expression in zebrafish embryos. Nucleic Acids Research 26, 4454-4461.

Coney, N.S., Mackey, W.C., 1998. The woman as the final arbiter: a case of facultive character of the human sex ratio. Journal of Sex Research 35, 169-175.

Conover, D.O., 2004. Temperature-dependent sex determination in fishes. In: Valenzuela, N., Lance, V. (Eds.), Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washinton, pp. 11-20.

Conover, D.O., Kynard, B.E., 1981. Environmental sex determination: interaction of temperature and genotype in a fish. Science 213, 577-579.

Contractor, R.G., Foran, C.M., Li, S.F., Willett, K.L., 2004. Evidence of gender- and tissue-specific promoter methylation and the potential for ethinylestradiol-induced changes in japanese medaka (Oryzias latipes) estrogen receptor and aromatase genes. Journal of Toxicology and Environmental Health-Part A 67, 1-22.

Crews, D., 2003. Sex determination: where environment and genetics meet. Evolution & Development 5, 50-55.

Crews, D., Bull, J.J., Wibbels, T., 1991. Estrogen and sex reversal in turtles: a dose-dependent phenomenon. General and Comparative Endocrinology 81, 357-364.

Page 328: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-290-

Crews, D., Bergeron, J.M., McLachlan, J.A., 1995. The Role of Estrogen in Turtle Sex Determination and the Effect of Pcbs. Environmental Health Perspectives 103, 73-77.

Crews, D., Bergeron, J.M., Bull, J.J., Flores, D., Tousignant, A., Skipper, J.K., Wibbels, T., 1994. Temperature-dependent sex determination in reptiles: proximate mechanisms, ultimate outcomes, and practical applications. Developmental Genetics 15, 297-312.

Chang, C.-F., Lan, S.-C., Chou, H.-Y., 1995. Gonadal histology and plasma sex steroids during sex differentiation in grey mullet, Mugil cephalus. Journal of Experimental Zoology 272, 395-406.

Chang, C.F., Lin, B.Y., 1998. Estradiol-17b stimulates aromatase activity and reversible sex change in protandrous black porgy, Acanthopagrus schlegeli. Journal of Experimental Biology 280, 165–173.

Chardard, D., Dournon, C., 1999. Sex reversal by aromatase inhibitor treatment in the Newt Pleurodeles waltl. Journal of Experimental Zoology 283, 43-50.

Chardard, D., Desvages, G., Pieau, C., Dournon, C., 1995. Aromatase activity in larval gonads of Pleurodeles waltl (Urodele amphibia) during normal sex differentiation and during sex reversal by thermal treatment effect. General and Comparative Endocrinology 99, 100-107.

Charlesworth, B., 2006. The Evolutionary Biology of Sex. Current Biology 16, R693-R695.

Chatain, B., Saillant, E., Peruzzi, S., 1999. Production of monosex male populations of European seabass, Dicentrarchus labrax L-by use of the synthetic androgen 17 alpha-methyldellydrotestosterone. Aquaculture 178, 225-234.

Chen, T., Ueda, Y., Xie, S., Li, E., 2002. A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. Journal of Biological Chemistry 277, 38746-38754.

Chiang, E.F., Pai, C.I., Wyatt, M., Yan, Y.L., Postlethwait, J., Chung, B., 2001a. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Developmental Biology 231, 149-163.

Chiang, E.F., Yan, Y.L., Tong, S.K., Hsiao, P.H., Guiguen, Y., Postlethwait, J., Chung, B.C., 2001b. Characterization of duplicated zebrafish cyp19 genes. Journal of Experimental Zoology 290, 709-714.

Choi, J.Y., Park, J.G., Jeong, H.B., Lee, Y.D., Takemura, A., Kim, S.J., 2005. Molecular cloning of cytochrome P450 aromatases in the protogynous wrasse, Halichoeres tenuispinis. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 141, 49-59.

Cheshenko, K., Pakdel, F., Segner, H., Kah, O., Eggen, R.I.L., 2008. Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish. General and Comparative Endocrinology 155, 31-62.

Page 329: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-291-

D'Cotta, H., Fostier, A., Guiguen, Y., Govoroun, M., Baroiller, J.F., 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of Tilapia, Oreochromis niloticus. Molecular Reproduction and Development 59, 265-276.

Dalla Valle, L., Lunardi, L., Colombo, L., Belvedere, P., 2002. European sea bass (Dicentrarchus labrax L.) cytochrome P450arom: cDNA cloning, expression and genomic organization. Journal of Steroid Biochemistry and Molecular Biology 80, 25-34.

Deloffre, L., Martins, R.S.T., Mylonas, C., Canario, A.V., 2008. Alternative transcripts of DMRT1 in the European sea bass expression during gonadal differentiation. Genesis, in press.

Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-364.

Dorizzi, M., Richard-Mercier, N., Pieau, C., 1996. The ovary retains male potential after the thermosensitive period for sex determination in the turtle Emys orbicularis. Differentiation 60, 193-201.

Dorizzi, M., Mignot, T.M., Guichard, A., Desvages, G., Pieau, C., 1991. Involvement of oestrogens in sexual differentiation of gonads as a function of temperature in turtles. Differentiation 47, 9-17.

Dorizzi, M., Richard-Mercier, N., Desvages, G., Girondot, M., Pieau, C., 1994. Masculinization of gonads by aromatase inhibitors in a turtle with temperature-dependent sex determination. Differentiation 58, 1-8.

Du, J.L., Lin, B.Y., Lee, Y.H., Yueh, W.S., He, C.L., Lee, M.F., Sun, L.T., Chang, C.F., 2003. Estradiol, aromatase and steroid receptors involved in the sex change of protandrous black porgy, Acanthopagrus schlegeli. Fish Physiology and Biochemistry 28, 131-133.

Elbrecht, A., Smith, R.G., 1992. Aromatase enzyme activity and sex determination in chickens. Science 255, 467-470.

Erdman, S., Burtis, K.C., 1993. The Drosophila doublesex proteins share a novel zinc-finger-related DNA-binding domain. EMBO Journal 12, 527-535.

Falkenstein, E., Tillmann, H.C., Christ, M., Feuring, M., Wehling, M., 2000. Multiple actions of steroid hormones. A focus on rapid, nongenomic effects. Pharmacological Reviews 52, 513-556.

Felip, A., Zanuy, S., Carrillo, M., 2006. Comparative analysis of growth performance and sperm motility between precocious and non-precocious males in the European sea bass (Dicentrarchus labrax L.). Aquaculture 256, 570-578.

Fenske, M., Segner, H., 2004. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquatic Toxicology 67, 105-126.

Page 330: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-292-

Fernandino, J.L., Guilgur, L.G., Somoza, G.M., 2006. Dmrt1 expression analysis during spermatogenesis in pejerrey, Odontesthes bonariensis. Fish Physiology and Biochemistry 32, 231-240.

Fernandino, J.L., Guilgur, L.G., Strobl-Mazzulla, P.H., Somoza, G.M., 2003. Molecular cloning of SOX9, DMRT1 and SF1 cDNA partial sequences in the pejerrey fish Odontesthes bonariensis (Atheriniformes). Fish Physiology and Biochemistry 28, 145-146.

Ferres-Marco, D., Gutierrez-Garcia, I., Vallejo, D.M., Bolivar, J., Gutierrez-Avino, F.J., Dominguez, M., 2006. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430-436.

Fleming, A., Wibbels, T., Skipper, J.K., Crews, D., 1999. Developmental expression of steroidogenic factor 1 in a turtle with temperature-dependent sex determination. General and Comparative Endocrinology 116, 336-346.

Foster, J.W., Dominguez-Steglich, M.A., Guioli, S., Kowk, G., Weller, P.A., Stevanovic, M., Weissenbach, J., Mansour, S., Young, I.D., Goodfellow, P.N. et al., 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525-530.

Fostier, A., Jalabert, B., Billard, R., Breton, B., Zohar, Y., 1983. The gonadal steroids. Fish Physiology 9, 277–372.

Froese, R., Pauly, D., Editors. 2008. Fish Base, World Wide Web electronic publication. www.fishbase.org, version (04/2008)

Fukada, S., 1995. The Sox gene family and its expression during embryogenesis in the teleost fish, medaka (Oryzias latipes). Development, Growth & Differentiation 37, 379-385.

Furbass, R., Selimyan, R., Vanselow, J., 2007. DNA methylation and chromatin accessibility of the proximal Cyp19 promoter region 1.5/2 correlate with expression levels in sheep placentomes. Molecular Reproduction and Development 75, 1-7.

Furbass, R., Said, H.M., Schwerin, M., Vanselow, J., 2001. Chromatin structure of the bovine Cyp19 promoter 1.1 - DNaseI hypersensitive sites and DNA hypomethylation correlate with placental expression. European Journal of Biochemistry 268, 1222-1227.

Futscher, B.W., Oshiro, M.M., Wozniak, R.J., Holtan, N., Hanigan, C.L., Duan, H., Domann, F.E., 2002. Role for DNA methylation in the control of cell type–specific maspin expression. Nature Genetics 31, 175-179.

Galay-Burgos, M., Llewellyn, L., Mylonas, C.C., Canario, A.V., Zanuy, S., Sweeney, G.E., 2004. Analysis of the Sox gene family in the European sea bass (Dicentrarchus labrax). Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology 137, 279-284.

Galay-Burgos, M., Gealy, C., Navarro-Martin, L., Piferrer, F., Zanuy, S., Sweeney, G.E., 2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass

Page 331: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-293-

and identification of single nucleotide polymorphisms. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 145, 47-53.

Gale, W.L., Fitzpatrick, M.S., Lucero, M., Contreras-Sanchez, W.M., Schreck, C.B., 1999. Masculinization of Nile tilapia (Oreochromis niloticus) by immersion in androgens. Aquaculture 178, 349-357.

Gao, S., Zhang, T., Zhou, X., Zhao, Y., Li, Q., Guo, Y., Cheng, H., Zhou, R., 2005. Molecular cloning, expression of Sox5 and its down-regulation of Dmrt1 transcription in zebrafish. Journal of Experimental Zoology. Part B, Molecular and Development 304, 476-483.

Girard, F., Cremazy, F., Berta, P., Renucci, A., 2001. Expression pattern of the Sox31 gene during zebrafish embryonic development. Mechanisms of Development 100, 71-73.

Godwin, J., Luckenbach, J.A., Borski, R.J., 2003. Ecology meets endocrinology: environmental sex determination in fishes. Evolution and Development 5, 40-49.

Gonzalez, A., Piferrer, F., 2003. Aromatase activity in the European sea bass (Dicentrarchus labrax L.) brain. Distribution and changes in relation to age, sex, and the annual reproductive cycle. General and Comparative Endocrinology 132, 223-230.

Gorelick, R., 2003. Evolution of dioecy and sex chromosomes via methylation driving Muller's ratchet. Biological Journal of the Linnean Society 80, 353.

Gorshkov, S., Gorshkova, G., Knibb, W., Gordin, H., 1999. Sex ratios and growth performance of European sea bass (Dicentrarchus labrax L.) reared in mariculture in Eilat (Red Sea). Israeli Journal of Aquaculture-Bamidgeh 51, 91-105.

Gorshkov, S., Gorshkova, G., Colorni, B., Gordin, H., 2004a. Effects of natural estradiol-17 beta and synthetic 17 alpha-ethynylestradiol on direct feminization of European sea bass Dicentrarchus labrax. Journal of the World Aquaculture Society 35, 167-177.

Gorshkov, S., Gorshkova, G., Meiri, I., Gordin, H., 2004b. Culture performance of different strains and crosses of the European sea bass (Dicentrarchus labrax) reared under controlled conditions at Eilat, Israel. Journal of Applied Ichthyology 20, 194-203.

Gorshkov, S., Meiri, I., Rosenfeld, H., Ben-Atia, S., Lutzki, S., Peduel, A., Ron, B., Skvortzov, A., Gorshkova, G., Tandler, A., 2003. Parental effects on sex ratios in progeny of the European sea bass (Dicentrarchus labrax). Israeli Journal of Aquaculture-Bamidgeh 55, 265-273.

Goto-Kazeto, R., 2006. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture 254, 617-624.

Govoroun, M.M., McMeel, O.O., D'Cotta, H.H., Ricordel, M.M.J., Smith, T.T., Fostier, A.A., Guiguen, Y.Y., 2001. Steroid enzyme gene expressions during natural and androgen-induced gonadal differentiation in the rainbow trout, Oncorhynchus mykiss. Journal of Experimental Zoology 290, 558.

Page 332: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-294-

Govoroun, M.S., Pannetier, M., Pailhoux, E., Cocquet, J., Brillard, J.P., Couty, I., Batellier, F., Cotinot, C., 2004. Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Developmental dynamics 231, 859-870.

Grandi, G., Giovannini, S., Chicca, M., 2007. Gonadogenesis in early developmental stages of Acipenser naccarii and influence of estrogen immersion on feminization. Journal of Applied Ichthyology 23, 3-8.

Graves, J.A.M., 2002. The rise and fall of SRY. Trends in Genetics 18, 259-264.

Grese, T.A., Sluka, J.P., Bryant, H.U., Cullinan, G.J., Glasebrook, A.L., Jones, C.D., Matsumoto, K., Palkowitz, A.D., Sato, M., Termine, J.D., 1997. Molecular determinants of tissue selectivity in estrogen receptor modulators. Proceedings of the National Academy of Sciences 94, 14105.

Griekspoor, A., Zwart, W., Neefjes, J., Michalides, R., 2007. Visualizing the action of steroid hormone receptors in living cells. Nuclear Receptor Signaling 5, 1-9.

Grosschedl, R., Giese, K., Pagel, J., 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends in Genetics 10, 94-100.

Guan, G., Kobayashi, T., Nagahama, Y., 2000. Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-Domain genes in a teleost fish, the tilapia (Oreochromis niloticus). Biochemical and Biophysical Research Communications 272, 662-666.

Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Munsterberg, A., Vivian, N., Goodfellow, P., Lovell-Badge, R., 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245-250.

Guiguen, Y., Baroiller, J.F., Ricordel, M.J., Iseki, K., McMeel, O.M., Martin, S.A.M., Fostier, A., 1999. Involvement of estrogens in the process of sex differentiation in two fish species: the rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Molecular Reproduction and Development 54, 154-162.

Guo, Y., Cheng, H., Huang, X., Gao, S., Yu, H., Zhou, R., 2005. Gene structure, multiple alternative splicing, and expression in gonads of zebrafish Dmrt1. Biochemical and Biophysical Research Communications 330, 950-957.

Hahlbeck, E., Griffiths, R., Bengtsson, B.E., 2004. The juvenile three-spined stickleback (Gasterosteus aculeatus L.) as a model organism for endocrine disruption I. Sexual differentiation. Aquatic Toxicology 70, 287-310.

Halm, S., Martínez-Rodríguez, G., Rodríguez, L., Prat, F., Mylonas, C.C., Carrillo, M., Zanuy, S., 2004. Cloning, characterisation, and expression of three oestrogen receptors (ERa, ERß1 and ERß2) in the European sea bass, Dicentrarchus labrax. Molecular and Cellular Endocrinology 223, 63-75.

Page 333: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-295-

Hanley, N.A., Ikeda, Y., Luo, X., Parker, K.L., 2000. Steroidogenic factor 1 (SF-1) is essential for ovarian development and function. Molecular and Cellular Endocrinology 163, 27-32.

Hardy, I.C.W., Hardy, I., 2002. Sex ratios: concepts and research methods. Cambridge University Press.

Harvey, S.C., Kwon, J.Y., Penman, D.J., 2003. Physical mapping of the brain and ovarian aromatase genes in the Nile Tilapia, Oreochromis niloticus, by fluorescence in situ hybridization. Animal Genetics 34, 62-64.

Hashida, S.N., Kitamura, K., Mikami, T., Kishima, Y., 2003. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology 132, 1207-1216.

Hata, K., Okano, M., Lei, H., Li, E., 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983-1993.

Hatano, O., 1994. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development, 10: 2787-2797.

Hattori, R.S., Gould, R.J., Fujioka, T., Saito, T., Kurita, J., Strüssmann, C.A., Yokota, M., Watanabe, S., 2007. Temperature-dependent sex determination in Hd-rR medaka Oryzias latipes: gender sensitivity, thermal threshold, critical period, and Dmrt1 expression profile. Sexual development 1, 138-146.

Hayes, T.B., 1998. Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. Journal of Experimental Zoology 281, 373-399.

He, C.L., Du, J.L., Wu, G.C., Lee, Y.H., Sun, L.T., Chang, C.F., 2003. Differential Dmrt1 transcripts in gonads of the protandrous black porgy, Acanthopagrus schlegeli. Cytogenetic and Genome Research 101, 309-313.

Hendry, C.I., Martin-Robichaud, D.J., Benfey, T.J., 2002. Gonadal sex differentiation in Atlantic halibut. Journal of Fish Biology 60, 1431-1442.

Hermann, A., Schmitt, S., Jeltsch, A., 2003. The human Dnmt2 has residual DNA-(Cytosine-C5) methyltransferase activity. Journal of Biological Chemistry 278, 31717-31721.

Herpin, A., Rohr, S., Riedel, D., Kluever, N., Raz, E., Schartl, M., 2007. Specification of primordial germ cells in medaka (Oryzias latipes). BMC Developmental Biology 7, 3.

Hett, A.K., Ludwig, A., 2005. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (Acipenser sturio). Genome 48, 181-186.

Higa, M., Ogasawara, K., Sakaguchi, A., Nagahama, Y., Nakamura, M., 2003. Role of steriod hormones in sex change of protogynous wrasse. Fish Physiology and Biochemistry 28, 149-150.

Page 334: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-296-

Hinshelwood, M.M., Smith, M.E., Murry, B.A., Mendelson, C.R., 2000. A 278 bp region just upstream of the human CYP19 (aromatase) gene mediates ovary-specific expression in transgenic mice. Endocrinology 141, 2050-2053.

Hu, J.F., Oruganti, H., Vu, T.H., Hoffman, A.R., 1998. Tissue-specific imprinting of the mouse insulin-like growth factor II receptor gene correlates with differential allele-specific DNA methylation. Molecular Endocrinology 12, 220-232.

Huang, X., Guo, Y., Shui, Y., Gao, S., Yu, H., Cheng, H., Zhou, R., 2005. Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biology of Reproduction 73, 1017-1024.

Hudson, Q.J., Smith, C.A., Sinclair, A.H., 2005. Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Developmental Dynamics 233, 1052-1055.

Hunter, G.A., Donaldson, E.M., 1983. Hormonal sex control and its application to fish culture. Fish Physiology 9, 223–303.

Ijiri, S., Takei, N., Andachi, S., Yamauchi, K., 2003. Immunolocalization of steroidogenic enzymes (P450scc, P450c17, P450arom) in gonad of Japanese eel. Fish Physiology and Biochemistry 28, 209-210.

Ijiri, S., Kaneko, H., Kobayashi, T., Wang, D.-S., Sakai, F., Paul-Prasanth, B., Nakamura, M., Nagahama, Y., 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile Tilapia Oreochromis niloticus. Biology of Reproduction 78, 333-341.

Ikeda, Y., 1993. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydroxylase gene expression. Molecular Endocrinology 7, 852-860.

Ikeda, Y., 1994. Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Molecular Endocrinology 8, 654-662.

Ikeda, Y., 1995. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Molecular Endocrinology 9, 478-486.

Ito, M., Yu, R.N., Jameson, J.L., 1997. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Molecular and Cellular Biology 17, 1476-1483.

Jabbari, K., Bernardi, G., 2004. Body temperature and evolutionary genomics of vertebrates: a lesson from the genomes of Takifugu rubripes and Tetraodon nigroviridis. Gene 333, 179-181.

Jaenisch, R., Bird, A., 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33 Suppl, 245-254.

Janzen, F.J., Krenz, J.G., 2004. Phylogenetics: Which was first, TSD or GSD? In: Valenzuela, N., Lance, V. (Eds.), Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washigton, pp. 121-130.

Page 335: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-297-

Jordan, B.K., Mohammed, M., Ching, S.T., Délot, E., Chen, X.N., Dewing, P., Swain, A., Rao, P.N., Elejalde, B.R., Vilain, E., 2001. Up-regulation of WNT-4 signalling and dosage-sensitive sex reversal in humans. American Journal of Human Genetics 68, 1102-1109.

Kajiura-Kobayashi, H., Kobayashi, T., Nagahama, Y., 2003. Estrogen-induced and suppressed gene expression during XY sex reversal in a teleost fish, tilapia. Fish Physiology and Biochemistry 28, 153-153.

Kanai, Y., Kanai-Azuma, M., Noce, T., Saido, T.C., Shiroishi, T., Hayashi, Y., Yazaki, K., 1996. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. Journal of Cell Biology 133, 667-681.

Kanda, H., Kojima, M., Miyamoto, N., Ito, M., Takamatsu, N., Yamashita, S., Shiba, T., 1998. Rainbow trout Sox24, a novel member of the Sox family, is a transcriptional regulator during oogenesis. Gene 211, 251-257.

Kanda, H., Okubo, T., Omori, N., Niihara, H., Matsumoto, N., Yamada, K., Yoshimoto, S., Ito, M., Yamashita, S., Shiba, T., Takamatsu, N., 2006. Transcriptional regulation of the rainbow trout CYP19a gene by FTZ-F1 homologue. The Journal of Steroid Biochemistry and Molecular Biology 99, 85-92.

Karube, M., Fernandino, J.I., Strobl-Mazzulla, P., Strussmann, C.A., Yoshizaki, G., Somoza, G.M., Patino, R., 2007a. Characterization and expression profile of the ovarian cytochrome P-450 aromatase (cyp19A1) gene during thermolabile sex determination in pejerrey, Odontesthes bonariensis. Journal of Experimental Zoology. Part A, Comparative Experimental Biology. Journal of Experimental Zoology. Part A Ecological Genetics and Physiology 307A, 625-636.

Kato, K., Miyashita, S., Murata, O., Kumai, H., 2003. Gonadal sex differentiation and sex control in red sea bream, Pagrus major. Fish Physiology and Biochemistry 28, 155-156.

Kato, T., Matsui, K., Takase, M., Kobayashi, M., Nakamura, M., 2004. Expression of P450 aromatase protein in developing and in sex-reversed gonads of the XX/XY type of the frog Rana rugosa. General and Comparative Endocrinology 137, 227-236.

Kawano, K., Furusawa, S., Matsuda, H., Takase, M., Nakamura, M., 2001. Expression of steroidogenic factor-1 in frog embryo and developing gonad. General and Comparative Endocrinology 123, 13-22.

Kawano, K., Miura, I., Morohashi, K., Takase, M., Nakamura, M., 1998. Molecular cloning and expression of the SF-1/Ad4BP gene in the frog, Rana rugosa. Gene 222, 169-176.

Kemkes-Grottenthaler, A., 2005. Sex determination by discriminant analysis: an evaluation of the reliability of patella measurements. Forensic Science International 147, 129-133.

Kent, J., Wheatley, S.C., Andrews, J.E., Sinclair, A.H., Koopman, P., 1996. A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813-2822.

Page 336: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-298-

Kettlewell, J.R., Raymond, C.S., Zarkower, D., 2000. Temperature-dependent expression of turtle Dmrt1 prior to sexual differentiation. Genesis 26, 174-178.

Kiefer, J.C., 2007. Back to basics: sox genes. Developmental Dynamics 236, 2356.

Kim, Y., Capel, B., 2006. Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Developmental Dynamics 235, 2292-2300.

Kiparissis, Y., Metcalfe, T.L., Balch, G.C., Metcalfe, C.D., 2003. Effects of the antiandrogens, vinclozolin and cyproterone acetate on gonadal development in the Japanese medaka (Oryzias latipes). Aquatic Toxicology 63, 391-403.

Kitamura, E., Igarashi, J., Morohashi, A., Hida, N., Oinuma, T., Nemoto, N., Song, F., Ghosh, S., Held, W.A., Yoshida-Noro, C., Nagase, H., 2007. Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 89, 326-337.

Kitano, T., Takamune, K., Nagahama, Y., Abe, S.I., 2000. Aromatase inhibitor and 17alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Molecular Reproduction and Development 56, 1-5.

Kitano, T., Takamune, K., Kobayashi, T., Nagahama, Y., Abe, S.I., 1999. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus). Journal of Molecular Endocrinology 23, 167-176.

Klose, R.J., Bird, A.P., 2006. Genomic DNA methylation: the mark and its mediators. Trends in Biochemical Sciences 31, 89-97.

Kobayashi, Y., Sunobe, T., Kobayashi, T., Nakamura, M., Suzuki, N., Nagahama, Y., 2005. Molecular cloning and expression of Ad4BP/SF-1 in the serial sex changing gobiid fish, Trimma okinawae. Biochemical and Biophysical Research Communications 332, 1073-1080.

Kondo, M., Nanda, I., Hornung, U., Asakawa, S., Shimizu, N., Mitani, H., Schmid, M., Shima, A., Schartl, M., 2003. Absence of the candidate male sex-determining gene dmrt1b(Y) of medaka from other fish species. Current Biology 13, 416-420.

Koopman, P., 1999. Sry and Sox9: mammalian testis-determining genes. Cellular and Molecular Life Sciences 55, 839-856.

Koopman, P., Loffler, K.A., 2003. Sex determination: the fishy tale of dmrt1. Current Biology 13, R177-R179.

Koopman, P., Schepers, G., Brenner, S., Venkatesh, B., 2004. Origin and diversity of the SOX transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 328, 177-186.

Page 337: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-299-

Koopman, P., Muensterberg, A., Capel, B., Vivian, N., Lovell-Badge, R., 1990. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 348, 450-452.

Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., Lovell-Badge, R., 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121.

Koumoundouros, G., Divanach, P., Anezaki, L., Kentouri, M., 2001. Temperature-induced ontogenetic plasticity in sea bass (Dicentrarchus labrax). Marine Biology 139, 817-830.

Koumoundouros, G., Pavlidis, M., Anezaki, L., Kokkari, C., Sterioti, K., Divanach, P., Kentouri, M., 2002. Temperature sex determination in the European sea bass, Dicentrarchus labrax (L., 1758) (Teleostei, Perciformes, Moronidae): critical sensitive ontogenetic phase. Journal of Experimental Zoology 292, 573-579.

Kroon, F.J., Munday, P.L., Pankhurst, N.W., 2003. Steroid hormone levels and bi-directional sex change in Gobiodon histrio. Journal of Fish Biology 62, 153-167.

Kroon, F.J., Munday, P.L., Westcott, D.A., Hobbs, J.P., Liley, N.R., 2005. Aromatase pathway mediates sex change in each direction. Proceedings of the Royal Society Biological Sciences Series B 272, 1399-1405.

Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827.

Kudo, T., Yamamoto, H., Sato, S., Sutou, S., 1996. Comparison of 5'upstream regions of chicken and quail aromatase genes. Journal of Reproduction and Development 42, 101-107.

Kuntz, S., Chardard, D., Chesnel, A., Grillier-Vuissoz, I., Flament, S., 2003a. Steroids, aromatase and sex differentiation of the newt Pleurodeles walt. Cytogenetic and Genome Research 101, 283-288.

Kuntz, S., Chesnel, A., Duterque-Coquillaud, M., Grillier-Vuissoz, I., Callier, M., Dournon, C., Flament, S., Chardard, D., 2003b. Differential expression of P450 aromatase during gonadal sex differentiation and sex reversal of the newt Pleurodeles waltl. The Journal of Steroid Biochemistry and Molecular Biology 84, 89-100.

Kuntz, S., Chardard, D., Ko, C.I., Dumond, H., Ducatez, M., Callier, M., Flament, S., Chesnel, A., 2006. Female-enriched and thermosensitive expression of steroidogenic factor-1 during gonadal differentiation in Pleurodeles waltl. Journal of Molecular Endocrinology 36, 175-186.

Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., 2008. Nutritional Control of Reproductive Status in Honeybees via DNA Methylation. Science 319, 1827.

Kwon, J.Y., McAndrew, B.J., Penman, D.J., 2001. Cloning of brain aromatase gene and expression of brain and ovarian aromatase genes during sexual differentiation in genetic male and female Nile tilapia Oreochromis niloticus. Molecular Reproduction and Development 59, 359-370.

Page 338: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-300-

Kwon, J.Y., McAndrew, B.J., Penman, D.J., 2002. Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. Journal of Fish Biology 60, 625-636.

Kwon, J.Y., Haghpanah, V., Kogson-Hurtado, L.M., McAndrew, B.J., Penman, D.J., 2000. Masculinization of genetic female Nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation. Journal of Experimental Zoology 287, 46-53.

La Salle, S., Mertineit, C., Taketo, T., Moens, P.B., Bestor, T.H., Trasler, J.M., 2004. Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Developmental Biology 268, 403-415.

Lala, D.S., 1992. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Molecular Endocrinology 6, 1249-1258.

Lalli, E., Melner, M.H., Stocco, D.M., Sassone-Corsi, P., 1998. DAX-1 blocks steroid production at multiple levels. Endocrinology 139, 4237-4243.

Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., 2007. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689-694.

Lance, V., A., 2008. Is regulation of aromatase expression in reptiles the key to understanding temperature-dependent sex determination? Journal of Experimental Zoology 309(A), DOI: 10.1002/jez.1465.

Lance, V.A., Bogart, M.H., 1992. Disruption of ovarian development in alligator embryos treated with an aromatase inhibitor. General and Comparative Endocrinology 86, 59-71.

Lande-Diner, L., Cedar, H., 2005. Silence of the genes/mechanisms of long-term repression. Nature Reviews Genetics 6, 648-654.

Laudet, V., Stehelin, D., Clevers, H., 1993. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Research 21, 2493-2501.

Lee, Y.H., Yueh, W.S., Du, J.L., Sun, L.T., Chang, C.F., 2002. Aromatase inhibitors block natural sex change and induce male function in the protandrous black porgy, Acanthopagrus schlegeli Bleeker: possible mechanism of natural sex change. Biology of Reproduction 66, 1749-1754.

Legendre, P., Legendre, L., 1998. Numerical ecology. Elsevier, Amsterdam, 853 pp.

Liu, L., Zhou, R., 2001. Isolation of Sox11a, Sox11b and Sox19 genes from Rice field eel (Monopterus albus) using degenerate primers and nested PCR. Aquatic Sciences 63, 191-195.

Liu, S., Govoroun, M., D'Cotta, H., Ricordel, M.J., Lareyre, J.J., McMeel, O.M., Smith, T., Nagahama, Y., Guiguen, Y., 2000. Expression of cytochrome P45011ß (11ß-hydroxylase) gene during gonadal sex differentiation and spermatogenesis in rainbow trout,

Page 339: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-301-

Oncorhynchus mykiss. Journal of Steroid Biochemistry and Molecular Biology 75, 291-298.

Loomis, A.K., Thomas, P., 2000. Effects of estrogens and xenoestrogens on androgen production by atlantic croaker testes in vitro: evidence for a nongenomic action mediated by an estrogen membrane receptor. Biology of Reproduction 62, 995-1004.

Lopez-Albors, O., Ayala, M.D., Gil, F., Garcia-Alcazar, A., Abellan, E., Latorre, R., Ramirez-Zarzosa, G., Vazquez, J.M., 2003. Early temperature effects on muscle growth dynamics and histochemical profile of muscle fibres of sea bass Dicentrarchus labrax L., during larval and juvenile stages. Aquaculture 220, 385-406.

Lu, H., Huang, X., Zhang, L., Guo, Y., Cheng, H., Zhou, R., 2007. Multiple alternative splicing of mouse Dmrt1 during gonadal differentiation. Biochemical and Biophysical Research Communications 352, 630-634.

Luckenbach, J.A., Godwin, J., Daniels, H.V., Borski, R.J., 2003. Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture 216, 315-327.

Luckenbach, J.A., Early, L.W., Rowe, A.H., Borski, R.J., Daniels, H.V., Godwin, J., 2005. Aromatase cytochrome P450: cloning, intron variation, and ontogeny of gene expression in southern flounder (Paralichthys lethostigma). Journal of Experimental Zoology 303, 643-656.

Lynch, J.P., 1993. Steroidogenic factor 1, an orphan nuclear receptor, regulates the expression of the rat aromatase gene in gonadal tissues. Molecular Endocrinology 7, 776-786.

Mackenzie, C.A., Berrill, M., Metcalfe, C., Pauli, B.D., 2003. Gonadal differentiation in frogs exposed to estrogenic and antiestrogenic compounds. Environmental Toxicology and Chemistry 22, 2466-2475.

Marchand, O., Govoroun, M., D'Cotta, H., McMeel, O., Lareyre, J., Bernot, A., Laudet, V., Guiguen, Y., 2000. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochimica et Biophysica Acta 1493, 180–187.

Martin, C.C., Laforest, L., Akimenko, M.A., Ekker, M., 1999. A Role for DNA Methylation in Gastrulation and Somite Patterning. Developmental Biology 206, 189-205.

Martinez, G., Rodríguez, L., Carrillo, M., Zanuy, S., 1999. Attempts for the development of sex-specific DNA probes in the European sea bass (Dicentrarchus labrax L.) using subtractive hybridization. Aquaculture 173, 12.

Martins, R.S.T., Deloffre, L.A.M., Mylonas, C.C., Power, D.M., Canário, A.V.M., 2007. Developmental expression of DAX1 in the European sea bass, Dicentrarchus labrax: lack of evidence for sexual dimorphism during sex differentiation. Reproductive Biology and Endocrinology 5, 19.

Page 340: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-302-

Matsuda, M., Sato, T., Toyazaki, Y., Nagahama, Y., Hamaguchi, S., Sakaizumi, M., 2003. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zoological Science 20, 159-161.

Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559-563.

Matsuoka, M.P., van Nes, S., Andersen, Ø., Benfey, T.J., Reith, M., 2006. Real-time PCR analysis of ovary-and brain-type aromatase gene expression during Atlantic halibut (Hippoglossus hippoglossus) development. Comparative Biochemistry and Physiology, Part B 144, 128-135.

Mayer, L.P., Overstreet, S.L., Dyer, C.A., Propper, C.R., 2002. Sexually dimorphic expression of steroidogenic factor 1 (SF-1) in developing gonads of the American bullfrog, Rana catesbeiana. General and Comparative Endocrinology 127, 40-47.

McElreavey, K., Vilain, E., Abbas, N., Herskowitz, I., Fellous, M., 1993. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proceedings of the National Academy of Sciences of the United States of America 90, 3368-3372.

Means, G.D., Mahendroo, M.S., Corbin, C.J., Mathis, J.M., Powell, F.E., Mendelson, C.R., Simpson, E.R., 1989. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. Journal of Biological Chemistry 264, 19385-19391.

Merchant-Larios, H., Ruiz-Ramirez, S., Moreno-Mendoza, N., Marmolejo-Valencia, A., 1997. Correlation among thermosensitive period, estradiol response, and gonad differentiation in the sea turtle Lepidochelys olivacea. General and Comparative Endocrinology 107, 373-385.

Mertin, S., McDowall, S.G., Harley, V.R., 1999. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Research 27, 1359-1364.

Metivier, R., Gallais, R., Tiffoche, C., Le Peron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., Benes, V., Jeltsch, A., Gannon, F., Salbert, G., 2008. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45-50.

Meyer, A., Schartl, M., 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Current Opinion in Cell Biology 11, 699-704.

Meyer, J., Sudbeck, P., Held, M., Wagner, T., Schmitz, M.L., Bricarelli, F.D., Eggermont, E., Friedrich, U., Haas, O.A., Kobelt, A., Leroy, J.G., Van Maldergem, L., Michel, E., Mitulla, B., Pfeiffer, R.A., Schinzel, A., Schmidt, H., Scherer, G., 1997. Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Human Molecular Genetics 6, 91-98.

Page 341: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-303-

Mhanni, A.A., McGowan, R.A., 2002. Variations in DNA (cytosine-5)-methyltransferase-1 expression during oogenesis and early development of the zebrafish. Development Genes and Evolution 212, 530-533.

Mhanni, A.A., Yoder, J.A., Dubesky, C., McGowan, R.A., 2001. Cloning and sequence analysis of a zebrafish cDNA encoding DNA(cytosine-5)-methyltransferase-1. Genesis 30, 213-219.

Michael, M.D., Kilgore, M.W., Morohashi, K., Simpson, E.R., 1995. Ad4BP/SF-1 regulates cyclic AMP-induced transcription from the proximal promoter (PII) of the human aromatase P450 (CYP19) gene in the ovary. Journal of Biological Chemistry 270, 13561-13566.

Minamitani, N., Strussmann, C.A., 2003. Effect of temperature on the efficiency of feminization of medaka (Oryzias latipes) by hormonal (estradiol) manipulation. Fish Physiology and Biochemistry 28, 163-164.

Mittwoch, U., 1992. Sex determination and sex reversal: genotype, phenotype, dogma and semantics. Human Genetics 89, 467-479.

Miura, T., Miura, C.I., 2003. Molecular control mechanisms of fish spermatogenesis. Fish Physiology and Biochemistry 28, 181-186.

Moniot, B., Berta, P., Scherer, G., Südbeck, P., Poulat, F., 2000. Male specific expression suggests role of DMRT1 in human sex determination. Mechanisms of Development 91, 323-325.

Monk, M., Boubelik, M., Lehnert, S., 1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99, 371-382.

Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A., Lovell-Badge, R., 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genetics 14, 62-68.

Morohashi, K., Honda, S., Inomata, Y., Handa, H., Omura, T., 1992. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. Journal of Biological Chemistry 267, 17913-17919.

Morrey, C., Kobayashi, M., Nakamura, M., Grau, E.G., Nagahama, Y., 1998. Loss of gonadal P450 aromatase mRNA corresponds with the de-differentiation of the ovary in the protogynous wrasse Thalassoma duperrey. Journal of Experimental. Zoology 281, 507–508.

Moyer, J.T., Nakazono, A., 1978. Protandrous hermaphroditism in six species of the anemonefish genus Amphiprion in Japan. Japanese Journal of Ichthyology 25, 101-106.

Murdock, C., Wibbels, T., 2003. Expression of Dmrt1 in a turtle with temperature-dependent sex determination. Cytogenetic and Genome Research 101, 302-308.

Page 342: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-304-

Mylonas, C.C., Anezaki, L., Divanach, P., Zanuy, S., Piferrer, F., Ron, B., Peduel, A., Ben Atia, I., Gorshkov, S., Tandler, A., 2005. Influence of rearing temperature during the larval and nursery periods on growth and sex differentiation in two Mediterranean strains of Dicentrarchus labrax. Journal of Fish Biology 67, 652-668.

Nagahama, Y., 1994. Endocrine regulation of gametogenesis in fish. International Journal of Developmental Biology 38, 217-229.

Nagahama, Y., 1997. 17-alpha, 20-beta-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids 62, 190-196.

Nagahama, Y., 1999. Gonadal steroid hormones: major regulators of gonadal sex differentiation and gametogenesis in fish, Sixth International Symposium on the Reproductive Physiology of Fish Bergen, Norway.

Nagahama, Y., 2000. Gonadal steroid hormones: major regulators of gonadal sex differentiation and gametogenesis in fish. In: Norberg, B., Kjesbu, O.S., Taranger, G.L., Andersson, E., Stefansson, S.O. (Ed.), Sixth Int. Symp. on the Reproductive Physiology of Fish Univ. Bergen, pp. 211-222.

Nagahama, Y., 2005. Molecular mechanisms of sex determination and gonadal sex differentiation in fish. Fish Physiology and Biochemistry 31, 105-109.

Nagahama, Y., May 23-28, 2005. DMY: the second sex-determining gene in vertebrates, 15th International Congress of Comparative Endocrinology, Boston, MA, pp. 159.

Nagahama, Y., Yamashita, M., 1989. Mechanisms of synthesis and action of 17a, 20ß-dihydroxy-4-pregnen-3-one, a teleost maturation-inducing substance. Fish Physiology and Biochemistry 7, 193-200.

Nagahama, Y., Kagawa, H., Young, G., 1982. Cellular sources of sex steroids in teleost gonads. Canadian Journal of Fisheries and Aquatic Sciences 39, 56-64.

Nagai, K., 2001. Molecular evolution of Sry and Sox gene. Gene 270, 161-169.

Nakamoto, M., Suzuki, A., Matsuda, M., Nagahama, Y., Shibata, N., 2005a. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications 333, 729-736.

Nakamoto, M., Matsuda, M., Wang, D.S., Nagahama, Y., Shibata, N., 2006. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications 344, 353-361.

Nakamoto, M., Wang, D.S., Suzuki, A., Matsuda, M., Nagahama, Y., Shibata, N., 2007. Dax1 suppresses P450arom expression in medaka ovarian follicles. Molecular Reproduction and Development 74, 1239-1246.

Page 343: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-305-

Nakamura, M., Nagahama, Y., 1989. Differentiation and development of Leydig cells, and changes of testosterone levels during testicular differentiation in tilapia Oreochromis niloticus. Fish Physiology and Biochemistry 7, 211-219.

Nakamura, M., Specker, J.L., Nagahama, Y., 1993. Ultrastructural analysis of the developing follicle during early vitellogenesis in tilapia, Oreochromis niloticus, with special reference to the steroid-producing cells. Cell and Tissue Research 272, 33-39.

Nakamura, M., Bhandari, R.K., Higa, M., 2003. The role estrogens play in sex differentiation and sex changes of fish. Fish Physiology and Biochemistry 28, 113-117.

Nakamura, M., Kobayashi, T., Chang, X.T., Nagahama, Y., 1998. Gonadal sex differentiation in teleost fish. Journal of Experimental Zoology 281, 362-372.

Nakamura, M., Hourigan, T.F., Yamauchi, K., Nagahama, Y., Grau, E.G., 1989. Histological and ultrastructural evidence for the role of gonadal steroid hormones in sex change in the protogynous wrasse Thalassoma duperrey. Environmental Biology of Fishes 24, 117-136.

Namer, M., 1988. Clinical applications of antiandrogens. Journal of Steroid Biochemistry and Molecular Biology 31, 719-729.

Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proceedings of the National Academy of Sciences of the United States of America 99, 11778-11783.

Nishino, K., Hattori, N., Tanaka, S., Shiota, K., 2004. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. Journal of Biological Chemistry 279, 22306-22313.

Ohta, K., Sundaray, J.K., Okida, T., Sakai, M., Kitano, T., Yamaguchi, A., Takeda, T., Matsuyama, M., 2003. Bi-directional sex change and its steroidogenesis in the wrasse, Pseudolabrus sieboldi. Fish Physiology and Biochemistry 28, 173-174.

Okano, M., Xie, S., Li, E., 1998. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Research 26, 2536-2540.

Okano, M., Bell, D.W., Haber, D.A., Li, E., 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247-257.

Okuda, Y., Yoda, H., Uchikawa, M., Furutani-Seiki, M., Takeda, H., Kondoh, H., Kamachi, Y., 2006. Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution. Developmental Dynamics 235, 811-825.

Ospina-Álvarez, N., Piferrer, F., 2008. Temperature-dependent sex determination in Fish. Prevalence, existence of a single sex ratio response pattern, and possible effects on climate change. Public Library of Science One 3, e2837.

Page 344: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-306-

Pannetier, M., Fabre, S., Batista, F., Kocer, A., Renault, L., Jolivet, G., Mandon-Pepin, B., Cotinot, C., Veltla, R., Pailhoux, E., 2006. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. Journal of Molecular Endocrinology 36, 399-413.

Papadaki, M., Piferrer, F., Zanuy, S., Maingot, E., Divanach, P., Mylonas, C.C., 2005. Growth, sex differentiation and gonad and plasma levels of sex steroids in male and female dominant populations of Dicentrarchus labrax obtained through repeated size grading. Journal of Fish Biology 66, 938-956.

Park, I.S., Kim, J.H., Cho, S.H., Kim, D.S., 2004. Sex differentiation and hormonal sex reversal in the bagrid catfish Pseudobagrus fulvidraco (Richardson). Aquaculture 232, 183-193.

Park, J.W., Hecker, M., Murphy, M.B., Jones, P.D., Solomon, K.R., Van Der Kraak, G., Carr, J.A., Smith, E.E., du Preez, L., Kendall, R.J., 2006. Development and optimization of a Q-RT PCR method to quantify CYP19 mRNA expression in testis of male adult Xenopus laevis: comparisons with aromatase enzyme activity. Comparative Biochemistry and Physiology, Part B 144, 18-28.

Park, Y., Teyssier, C., Vanacker, J., Choi, H., 2007. Distinct repressive properties of the mammalian and fish orphan nuclear receptors SHP and DAX-1. Molecules and Cells 23, 331-339.

Parker, G.A., 1985. Population consequences of evolutionarily stable strategies. In: Sibly, R.M., Smith, R.H. (Eds.), Behaviournal ecology: ecological consequences of adaptative behaviour. Blackwell Scientific, Oxford, UK, pp. 33-58.

Parker, K., 1980. A direct method for estimating northern anchovy, Engraulis mordax, spawning biomass. Fishery Bulletin US 78, 541-544.

Parker, K.L., Schimmer, B.P., 1997. Steroidogenic factor 1: a key determinant of endocrine development and function. Endocrine Reviews 18, 361-377.

Parma, P., Pailhoux, E., Cotinot, C., 1999. Reverse transcription-polimersase chain Reaction analysis of genes involved in gonadal differentiation in pigs. Biology of Reproduction 61, 741-748.

Parma, P., Pailhoux, E., Servel, N., Greppi, G.F., Cotinot, C., 1998. Porcine DAX-1 gene: cloning and expression in fetal gonads. In: Lance, V.A., Bogart, M.H. (Eds.), First International Symposium on Vertebrate Sex Determination. The Journal of Experimental Zoology, pp. 525.

Patiño, R., Davis, K.B., Schoore, J.E., Uguz, C., Strüssmann, C.A., Parker, N.C., Simco, B.A., Goudie, C.A., 1996. Sex differentiation of channel catfish gonads: normal development and effects of temperature. Journal of Experimental Zoology 276, 209-218.

Pavlidis, M., Koumoundouros, G., Sterioti, A., Somarakis, S., Divanach, P., Kentouri, M., 2000. Evidence of temperature-dependent sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 287, 225-232.

Page 345: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-307-

Payen, E., Pailhoux, E., Abou Merhi, R., Gianquinto, L., Kirszenbaum, M., Locatelli, A., Cotinot, C., 1996. Characterization of ovine SRY transcript and developmental expression of genes involved in sexual differentiation. International Journal of Developmental Biology 40, 567-575.

Penman, D.J., Piferrer, F., 2008. Fish Gonadogenesis. Part 1. Genetic and environmental mechanisms of sex determination. Reviews in Fisheries Science 16 S1, in press.

Person-Le Ruyet, J., Mahe, K., Le Bayon, N., Le Delliou, H., 2004. Effects of temperature on growth and metabolism in a Mediterranean population of European sea bass, Dicentrarchus labrax. Aquaculture 237, 269-280.

Petrini, S., Zaccanti, F., 1998. The effects of aromatase and 5 alpha-reductase inhibitors, antiandrogen, and sex steroids on Bidder's organs development and gonadal differentiation in Bufo bufo tadpoles. Journal of Experimental Zoology 280, 245-259.

Pevny, L.H., Lovell-Badge, R., 1997. Sox genes find their feet. Current Opinion in Genetics and Development 7, 338-344.

Pieau, C., 1996. Temperature variation and sex determination in reptiles. BioEssays 18, 19-26.

Pieau, C., Dorizzi, M., Richard-Mercier, N., 1999. Temperature-dependent sex determination and gonadal differentiation in reptiles. Multi-author Review article: Genes and mechanisms in vertebrate sex determination. Cellular and Molecular Life Sciences (CMLS) 55, 887-900.

Pieau, C., Dorizzi, M., Richard-Mercier, N., 2001. Temperature-dependent sex determination and gonadal differentiation in reptiles. Genes and Mechanisms in Vertebrate Sex Determination, pp. 117-141.

Pieau, C., Girondot, M., Richard-Mercier, N., Desvages, G., Dorizzi, M., Zaborski, P., 1994. Temperature sensitivity of sexual differentiation on gonads in the European pond turtle: hormonal involvement. The Journal of Experimental Zoology 270, 86-94.

Piferrer, F., 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197, 229-281.

Piferrer, F., 2008. Determinación y diferenciación sexual en los peces. In: Espinosa, J., Carrrillo, M. (Eds.), Reproducción en acuicultura. CSIC, Madrid, pp. in press.

Piferrer, F., Guiguen, Y., 2008. Fish gonadogenesis. Part 2. Molecular biology and genomics of fish sex differentiation. Reviews in Fisheries Science 16 S1, in press.

Piferrer, F., Donaldson, E.M., 1989. Gonadal differentiation in coho salmon, Oncorhynchus

kisutch, after a single treatment with androgen or estrogen at different stages during ontogenesis. Aquaculture 77, 251-262.

Page 346: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-308-

Piferrer, F., Donaldson, E.M., 1991. Dosage-dependent differences in the effect of aromatizable and nonaromatizable androgens on the resulting phenotype of coho salmon (Oncorhynchus kisutch). Fish Physiology and Biochemistry 9, 145-150.

Piferrer, F., Donaldson, E.M., 1993. Sex control in Pacific salmon. In: Bromage, N., Donaldson, E.M., Zanuy, S., Carrillo, M., Planas, J. (Eds.), Recent Advances in Aquaculture IV. Blackwell, Oxford, pp. 69–77.

Piferrer, F., Blázquez, M., 2005. Aromatase distribution and regulation in fish. Fish Physiology and Biochemistry 31, 215-226.

Piferrer, F., Baker, I.J., Donaldson, E.M., 1993. Effects of natural, synthetic, aromatizable, and nonaromatizable androgens in inducing male sex differentiation in genotypic female chinook salmon (Oncorhynchus tshawytscha). General and Comparative Endocrinology 91, 59-65.

Piferrer, F., Blázquez, M., Navarro, L., González, A., 2005. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). General and Comparative Endocrinology 142, 102-110.

Piferrer, F., Zanuy, S., Carrillo, M., Solar, I.I., Devlin, R.H., Donaldson, E.M., 1994. Brief treatment with an aromatase inhibitor during sex-differentiation causes chromosomally female salmon to develop as normal, functional males. Journal of Experimental Zoology 270, 255-262.

Pilon, N., Behdjani, R., Daneau, I., Lussier, J.G., Silversides, D.W., 1998. Porcine steroidogenic factor-1 gene (pSF-1). Expression and analysis of embryonic pig gonads during sexual differentiation. Endocrinology 139, 3803-3812.

Ramsey, M., Crews, D., 2007. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans). Journal of Experimental Zoology. Part A. Ecological genetics and physiology 307, 463-470.

Ramsey, M., Shoemaker, C., Crews, D., 2007. Gonadal expression of Sf1 and aromatase during sex determination in the red-eared slider turtle (Trachemys scripta), a reptile with temperature-dependent sex determination. Differentiation 75, 978-991.

Rao, M.K., Wilkinson, M.F., 2006. Identification of a CpG-free methylation boundary that serves as an insulator between alternative sex-specific promoters. Society of the Study of reproduction. Annual meeting. Biology of reproduction, Omaha, Nebraska, pp. 73.

Rastogi, R.K., Chieffi, G., 1975. The effects of antiandrogens and antiestrogens in nonmammalian vertebrates. General and Comparative Endocrinology 26, 79-91.

Raymond, C.S., Kettlewell, J.R., Hirsch, B., Bardwell, V.J., Zarkower, D., 1999. Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Developmental Biology 215, 208-220.

Page 347: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-309-

Raymond, C.S., Murphy, M.W., O'Sullivan, M.G., Bardwell, V.J., Zarkower, D., 2000. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes & Development 14, 2587-2595.

Raymond, C.S., Shamu, C., Shen, M., Seifert, K., Hirsch, B., Hodgking, J., Zarkower, D., 1998. Evidence for evolutionary conservation of sex-determining genes. Nature 391, 691-695.

Razin, A., Riggs, A.D., 1980. DNA methylation and gene function. Science 210, 604-610.

Reinboth, R., 1979. On steroidogenic pathways in ambisexual fishes. Proceedings of the Indian Academy of Sciences Animal Sciences 45, 421-428.

Reinboth, R., Bruslé-Sicard, S., 1997. Histological and ultraestructural studies on the effects of hCG on sex inversion in the protogynous teleost Coris julis. Journal of Fish Biology 51, 738-749.

Rhen, T., Metzger, K., Schroeder, A., Woodward, R., 2007. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle Chelydra serpentina. Sexual Development 1, 255-270.

Richard-Mercier, N., Dorizzi, M., Desvages, G., Girondot, M., Pieau, C., 1995. Endocrine sex reversal of gonads by the aromatase inhibitor letrozole (CGS 20267) in Emys orbicularis, a turtle with temperature-dependent sex determination. General and Comparative Endocrinology 100, 314-326.

Roblin, C., Bruslé, J., 1983. Ontogenèse gonadique et différenciation sexuelle du loup Dicentrarchus labrax, en conditions d’elevage. Reprod. Nutr. Dévelop 23, 115-127.

Rodríguez-Marí, A., Yan, Y., BreMiller, R.A., Wilson, C., Cañestro, C., Postlethwait, J.H., 2005. Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonadal development. Gene Expression Patterns 5, 655-667.

Rodriguez, L., Carrillo, M., Sorbera, L.A., Zohar, Y., Zanuy, S., 2004. Effects of photoperiod on pituitary levels of three forms of GnRH and reproductive hormones in the male European sea bass (Dicentrarchus labrax L.) during testicular differentiation and first testicular recrudescence. General and Comparative Endocrinology 136, 37-48.

Rouse, E.F., Coppenger, C.J., Barnes, P.R., 1977. The effect of an androgen inhibitor on behavior and testicular morphology in the stickleback Gasterosteus aculeatus. Hormones and Behavior 9, 8-18.

Saal, F.S., 1989. Sexual differentiation in litter-bearing mammals: influence of sex of adjacent fetuses in utero. Journal of Animal Science 67, 1824-1840.

Sadovy de Mitcheson, Y., Liu, M., 2008. Functional hermaphroditism in teleosts. Fish and Fisheries 9, 1-43.

Page 348: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-310-

Saillant, E., Dupont-Nivet, M., Haffray, P., Chatain, B., 2006. Estimates of heritability and genotype-environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139-147.

Saillant, E., Fostier, A., Menu, B., Haffray, P., Chatain, B., 2001. Sexual growth dimorphism in sea bass Dicentrarchus labrax. Aquaculture 202, 371-387.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Thimonier, J., Chatain, B., 2002. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). Journal of Experimental Zoology 292, 494-505.

Saillant, E., Chatain, B., Menu, B., Fauvel, C., Vidal, M.O., Fostier, A., 2003a. Sexual differentiation and juvenile intersexuality in the European sea bass (Dicentrarchus labrax). Journal of Zoology 260, 53-63.

Saillant, E., Fostier, A., Haffray, P., Menu, B., Laureau, S., Thimonier, J., Chatain, B., 2003b. Effects of rearing density, size grading and parental factors on sex ratios of the sea bass (Dicentrarchus labrax L.) in intensive aquaculture. Aquaculture 221, 183-206.

Sasaki, H., 2005. DNA methylation in epigenetics, development and imprinting. In: Wiley (Ed.), Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, pp. 285-291.

Sawyer, S.J., Gerstner, K.A., Callard, G.V., 2006. Real-time PCR analysis of cytochrome P450 aromatase expression in zebrafish: gene specific tissue distribution, sex differences, developmental programming, and estrogen regulation. General and Comparative Endocrinology 147, 108-117.

Schafer, A.J., 1995. Sex determination and its pathology in man. Advantages in Genetics 33, 275-329.

Schartl, M., 2004a. Sex chromosome evolution in non-mammalian vertebrates. Current Opinion in Genetics & Development 14, 634-641.

Schartl, M., 2004b. A comparative view on sex determination in medaka. Mechanisms of Development 121, 639-645.

Scheib, D., 1983. Effects and role of estrogens in avian gonadal differentiation. Differentiation 23, S87-92.

Scherer, G., 1999. Introduction: vertebrate sex determination and gonadal differentiation. Cellular and Molecular Life Sciences (CMLS) 55, 821-823.

Shan, Z., Nanda, I., Wang, Y., Schmid, M., Vortkamp, A., Haaf, T., 2000. Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds. Cytogenetics and Cell Genetics 89, 252-257.

Shen, W.H., Moore, C.C., Ikeda, Y., Parker, K.L., Ingraham, H.A., 1994. Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 77, 651-661.

Page 349: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-311-

Shiau, A.K., Barstad, D., Loria, P.M., Cheng, L., Kushner, P.J., Agard, D.A., Greene, G.L., 1998. The Structural Basis of Estrogen Receptor/Coactivator Recognition and the Antagonism of This Interaction by Tamoxifen. Cell 95, 927-937.

Shibata, K., Takase, M., Nakamura, M., 2002. The Dmrt1 expression in sex-reversed gonads of amphibians. General and Comparative Endocrinology 127, 232-241.

Shimoda, N., Yamakoshi, K., Miyake, A., Takeda, H., 2005. Identification of a gene required for de novo DNA methylation of the zebrafish no tail gene. Developmental Dynamics 233, 1509-1516.

Shiota, K., 2004. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenetic and Genome Research 105, 325-334.

Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell-Badge, R., Goodfellow, P.N., 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240-244.

Singh, M.S., Joy, K.P., 1998. Effects of administration of cyproterone acetate on seminal vesicle and testicular activity, and serum testosterone and estradiol-17-beta levels in the catfish Clarias batrachus. Acta Biologica Hungarica 49, 143-154.

Smith, C.A., Smith, M.J., Sinclair, A.H., 1999a. Expression of chicken steroidogenic factor-1 during gonadal sex differentiation. General and Comparative Endocrinology 113, 187-196.

Smith, C.A., McClive, P.J., Western, P.S., Reed, K.J., Sinclair, A.H., 1999b. Evolution: Conservation of a sex-determining gene. Nature 402, 601-602.

Smith, C.W.J., Valcárcel, J., 2000. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends in Biochemical Sciences 25, 381-388.

Socorro, S., Martins, R.S., Deloffre, L., Mylonas, C.C., Canario, A.V.M., 2007. A cDNA for European sea bass (Dicentrachus labrax) 11ß-hydroxylase: Gene expression during the thermosensitive period and gonadogenesis. General and Comparative Endocrinology 150, 164-173.

Sola, L., Bressanello, S., Rossi, A.R., Iaselli, V., Crosetti, D., Cataudella, S., 1993. A karyotype analysis of the genus Dicentrarchus by different staining techniques. Journal of Fish Biology 43, 329-337.

Song, C.S., Her, S., Slomczynska, M., Choi, S.J., Jung, M.H., Roy, A.K., Chatterjee, B., 1993. A distal activation domain is critical in the regulation of the rat androgen receptor gene promoter. Biochemical Journal 294, 779.

Song, F., Smith, J.F., Kimura, M.T., Morrow, A.D., Matsuyama, T., Nagase, H., Held, W.A., 2005. Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proceedings of the National Academy of Sciences 102, 3336-3341.

Page 350: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-312-

Soto, C.G., Leatherland, J.F., Noakes, D.L.G., 1992. Gonadal histology in the self-fertilizing hermaphroditic fish Rivulus marmoratus (Pisces, Cyprinodontidae). Canadian Journal of Zoology 70, 2338-2347.

Spotila, L.D., Spotila, J.R., Hall, S.E., 1998. Sequence and expression analysis of WT1 and Sox9 in the red-eared slider turtle, Trachemys scripta. Journal of Experimental Zoology 281, 417-427.

Sreenivasan, R., Cai, M., Bartfai, R., Wang, X., Christoffels, A., Orban, L., 2008. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS ONE 3, e1791.

Sreenivasulu, K., Ganesh, S., Raman, R., 2002. Evolutionarily conserved, DMRT1, encodes alternatively spliced transcripts and shows dimorphic expression during gonadal differentiation in the lizard, Calotes versicolor. Mechanisms of Development 119, S55-S64.

Stancheva, I., Meehan, R.R., 2000. Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes & Development 14, 313.

Stancheva, I., El-Maarri, O., Walter, J., Niveleau, A., Meehan, R.R., 2002. DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos. Developmental Biology 243, 155-165.

Steele, R.E., Mellor, L.B., Sawyer, W.K., Wasvary, J.M., Browne, L.J., 1987. In vitro and in vivo studies demonstrating potent and selective estrogen inhibition with the nonsteroidal aromatase inhibitor CGS 16949A. Steroids 50, 147-161.

Stocco, D.M., Clark, B.J., 1996. Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochemical Pharmacology 51, 197-205.

Strussmann, C.A., Nakamura, M., 2002. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiology and Biochemistry 26, 13-29.

Sudhakumari, C.C., Senthilkumaran, B., Kobayashi, T., Wang, D.S., Chang, X.T., Nagahama, Y., 2003. Expression of cytochrome P450aromatases in the sex-reversed Nile tilapia. Fish Physiology and Biochemistry 28, 177-178.

Sugita, J., Takase, M., Nakamura, M., 2001. Expression of Dax-1 during gonadal development of the frog. Gene 280, 67-74.

Sunobe, T., Nakazono, A., 1993. Sex change in both directions by alteration of social dominance in Trimma okinawae (Pisces: Gobiidae). Ethology 94, 339-345.

Sunobe, T., Nakamura, M., Kobayashi, Y., Kobayashi, T., Nagahama, Y., 2005. Aromatase immunoreactivity and the role of enzymes in steroid pathways for inducing sex change in the hermaphrodite gobiid fish Trimma okinawae. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 141, 54-59.

Page 351: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-313-

Suzuki, A., Tanaka, M., Shibata, N., 2004. Expression of Aromatase mRNA and effects of aromatase inhibitor during ovarian development in the medaka, Oryzias latipes. Journal of Experimental Zoology. Part A, Comparative Experimental Biology 301A, 266-273.

Swain, A., Lovell-Badge, R., 1997. A molecular approach to sex determination in mammals. Acta Paediatrica. Supplement 423, 46-49.

Swain, A., Zanaria, E., Hacker, A., Lovell-Badge, R., Camerino, G., 1996. Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nature Genetics 12, 404-409.

Swain, A., Narvaez, V., Burgoyne, P., Camerino, G., Lovell-Badge, R., 1998a. Dax1 antagonises SRY action in mammalian sex determination. Nature 391.

Swain, A., Narvaez, V., Morais da Silva, S., Vivian, N., Bar, I., Woolley, K., Hacker, A., Camerino, G., Lovell-Badge, R., 1998b. Molecular Genetics of Sex Determination in the Mouse. In: Lance, V.A., Bogart, M.H. (Eds.), First International Symposium on Vertebrate Sex Determination. The Journal of Experimental Zoology, pp. 517.

Takahashi, H., 1997. Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bulletin of the Faculty of Fisheries 28, 57-65.

Takahashi, H., Shimizu, M., 1983. Juvenile intersexuality in a cyprinid fish, the Sumatra barb, Barbus tetrazona. Bulletin of Faculty of Fisheries 34,.

Takamatsu, N., Kanda, H., Ito, M., Yamashita, A., Yamashita, S., Shiba, T., 1997. Rainbow trout SOX9: cDNA cloning, gene structure and expression. Gene 202, 167-170.

Takamatsu, N., Kanda, H., Tsuchiya, I., Yamada, S., Ito, M., Kabeno, S., Shiba, T., Yamashita, S., 1995. A gene that is related to SRY and is expressed in the testes encodes a leucine zipper-containing protein. Molecular and Cellular Biology 15, 3759-3766.

Tanaka, M., Fukada, S., Matsuyama, M., Nagahama, Y., 1995. Structure and promoter analysis of the cytochrome P-450 aromatase gene of the teleost fish, medaka (Oryzias latipes). Journal of Biochemistry (Tokyo) 117, 719-725.

Tang, L.Y., Reddy, M.N., Rasheva, V., Lee, T.L., Lin, M.J., Hung, M.S., Shen, C.K.J., 2003. The eukaryotic DNMT2 genes encode a new class of cytosine-5 DNA methyltransferases. Journal of Biological Chemistry 278, 33613-33616.

Tessema, M., Müller-Belecke, A., Hörstgen-Schwark, G., 2006. Effects of rearing temperatures on the sex ratios of Oreochromis niloticus populations. Aquaculture 258, 270-277.

Tiersch, T.R., Mitchell, M.J., Wachtel, S.S., 1991. Studies on the phylogenetic conservation of the SRY gene. Human Genetics 87, 571-573.

Tiersch, T.R., Simco, B.A., Davis, K.B., Wachtel, S.S., 1992. Molecular genetics of sex determination in channel catfish: studies on SRY, ZFY, Bkm, and human telomeric repeats. Biology of Reproduction 47, 185-192.

Page 352: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-314-

Todo, T., Ikeuchi, T., Kobayashi, T., Nagahama, Y., 1999. Fish androgen receptor: cDNA cloning, steroid activation of transcription in transfected mammalian cells, and tissue mRNA levels. Biochemical and Biophysical Research Communications 254, 378-383.

Trant, J.M., Gavasso, S., Ackers, J., Chung, B.-C., Place, A.R., 2001. Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio). Journal of Experimental Zoology 290, 475-483.

Tudela, S., Coll, M., Palomera, I., 2005. Developing an operational reference framework for fisheries management on the basis of a two-dimensional index of ecosystem impact. ICES Journal of Marine Science: Journal du Conseil 62, 585-591.

Uchida, D., Yamashita, M., Kitano, T., Iguchi, T., 2004. An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology 137, 11-20.

Urbatzka, R., Lutz, I., Kloas, W., 2007. Aromatase, steroid-5-alpha-reductase type 1 and type 2 mRNA expression in gonads and in brain of Xenopus laevis during ontogeny. General and Comparative Endocrinology 153, 280-288.

Vaillant, S., Dorizzi, M., Pieau, C., Richard-Mercier, N., 2001. Sex reversal and aromatase in chicken. Journal of Experimental Zoology 290, 727-740.

Valenzuela, N., Lance, V., 2004. Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, pp.194.

Valenzuela, N., Adams, D.C., Janzen, F.J., 2003. Pattern does not equal process: Exactly when is sex environmentally determined? American Naturalist 161, 676-683.

van Nes, S., Andersen, O., 2006. Temperature effects on sex determination and ontogenetic gene expression of the aromatases cyp19a and cyp19b, and the estrogen receptors esr1 and esr2 in Atlantic halibut (Hippoglossus hippoglossus). Molecular Reproduction and Development 73, 1481-1490.

van Nes, S., Moe, M., Andersen, O., 2005. Molecular characterization and expression of two cyp19 (P450 aromatase) genes in embryos, larvae, and adults of Atlantic halibut (Hippoglossus hippoglossus). Molecular Reproduction and Development 72, 437-449.

Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Chatain, B., 2007. A polygenic hypothesis for sex determination in the European sea bass Dicentrarchus labrax. Genetics 176, 1049-1057.

Vanselow, J., Pohland, R., Fürbass, R., 2005. Promoter-2-derived Cyp19 expression in bovine granulosa cells coincides with gene-specific DNA hypo-methylation. Molecular and Cellular Endocrinology 233, 57-64.

Vanselow, J., Fürbass, R., Zsolnai, A., Kalbe, C., Said, H.M., Schwerin, M., 2001. Expression of the aromatase cytochrome P450 encoding gene in cattle and sheep. Journal of Steroid Biochemistry and Molecular Biology 79, 279-288.

Page 353: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-315-

Varriale, A., Bernardi, G., 2006a. DNA methylation and body temperature in fishes. Gene 385, 111-121.

Varriale, A., Bernardi, G., 2006b. DNA methylation in reptiles. Gene 385, 122-127.

Vassena, R., Schramm, R.D., Latham, K.E., 2005. Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. molecular reproduction and development 72, 430-436.

Veith, A.M., Froschauer, A., Korting, C., Nanda, I., Hanel, R., Schmid, M., Schartl, M., Volff, J.N., 2003. Cloning of the dmrt1 gene of Xiphophorus maculatus: dmY/dmr1Y is not the master sex-detertnining gene in the platyfish. Gene 317, 59-66.

Vidal, V.P., Chaboissier, M.C., de Rooij, D.G., Schedl, A., 2001. Sox9 induces testis development in XX transgenic mice. Nature Genetics 28, 216-217.

Viñas, J., Piferrer, F., 2008. Stage-specific gene expression during fish spermatogenesis as determined by laser-capture microdissection and quantitative-PCR in sea bass (Dicentrarchus labrax) gonads. Biology of Reproduction, DOI:10.1095/biolreprod.1108.069708.

Vitturi, R., Mazzola, A., Catalano, E., Conte, M.R., 1990. Karyotype analysis, nucleolar organizer regions (NORs), and C-banding pattern of Dicentrarchus labrax (L.) and Dicentrarchus punctatus (Block, 1792)(Pisces, Perciformes) with evidence of chromosomal structural polymorphism. Cytologia 55, 425-430.

Vizziano, D., Randuineau, G., Baron, D., Cauty, C., Guiguen, Y., 2007a. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev Dyn 236, 2198-2206.

Vizziano, D., Randuineau, G., Baron, D., Cauty, C., Guiguen, Y., 2007b. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Developmental Dynamics 236, 2198.

Vizziano, D., Baron, D., Randuineau, G., Mahe, S., Cauty, C., Guiguen, Y., 2008. Rainbow trout gonadal masculinization induced by inhibition of estrogen synthesis is more physiological than masculinization induced by androgen supplementation. Biology of Reproduction, doi: 10.1095/biolreprod.1107.065961.

Volff, J.N., Schartl, M., 2001. Variability of genetic sex determination in poeciliid fishes. Genetica 111, 101-110.

Volff, J.N., Kondo, M., Schartl, M., 2003. Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish. Trends in Genetics 19, 196-199.

Vriz, S., Lovell-Badge, R., 1995. The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene 153, 275-276.

Page 354: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-316-

Vriz, S., Joly, C., Boulekbache, H., Condamine, H., 1996. Zygotic expression of the zebrafish Sox-19, an HMG box-containing gene, suggests an involvement in central nervous system development. Brain Research. Molecular Brain Research 40, 221-228.

Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., Pasantes, J., Bricarelli, F.D., Keutel, J., Hustert, E. et al., 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111-1120.

Wang, D.S., Kobayashi, T., Zhou, L.Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K., Morohashi, K., Nagahama, Y., 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Molecular Endocrinology 21, 712-725.

Wang, D.S., Kobayashi, T., Senthilkumaran, B., Sakai, F., Chery Sudhakumari, C., Suzuki, T., Yoshikuni, M., Matsuda, M., Morohashi, K., Nagahama, Y., 2002. Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, Oreochromis niloticus. Biochemical and Biophysical Research Communications 297, 632-640.

Wang, R., Cheng, H.H., Xia, L.X., Guo, Y.Q., Huang, X., Zhou, R.J., 2003. Molecular cloning and expression of Sox17 in gonads during sex reversal in the rice field eel, a teleost fish with a characteristic of natural sex transformation. Biochemical and Biophysical Research Communications 303, 452-457.

Wang, X.G., Orban, L., 2007. Anti-Mullerian hormone and 11 beta-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males. Developmental Dynamics 236, 1329-1338.

Wassermann, G.J., Afonso, L.O.B., 2003. Sex reversal in Nile tilapia (Oreochromis niloticus Linnaeus) by androgen immersion. Aquaculture Research 34, 65-71.

Watanabe, M., Tanaka, M., Kobayashi, D., Yoshiura, Y., Oba, Y., Nagahama, Y., 1999. Medaka (Oryzias latipes) FTZ-F1 potentially regulates the transcription of P-450 aromatase in ovarian follicles: cDNA cloning and functional characterization. Molecular and Cellular Endocrinology 149, 221-228.

Waterland, R.A., Jirtle, R.L., 2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology 23, 5293.

Wegner, M., 1999. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Research 27, 1409-1420.

Wells, K., van der Kraak, G., 2000. Differential binding of endogenous steroids and chemicals to androgen receptors in rainbow trout and goldfish. Environmental Toxicology and Chemistry 19, 2059-2065.

Wennstrom, K.A., Crews, D., 1995. Making males from females: the effects of aromatase inhibitors on a parthenogenetic species of Whiptail lizard. General and Comparative Endocrinology 99, 316-322.

Page 355: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-317-

Wernerus, F.M., Tessari, V., 1991. The influence of population density on the mating system of Thalassoma pavo, a protogynous Mediterranean labrid fish. Marine Ecology 12, 361-368.

West-Eberhard, M.J., 1989. Phenotypic plasticity and the origins of diversity. Annual Reviews in Ecology and Systematics 20, 249-278.

Westerfield, M., 1995. The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press Eugene, OR.

Western, P.S., Sinclair, A.H., 2001. Sex, genes, and heat: triggers of diversity. Journal of Experimental Zoology 290, 624-631.

Western, P.S., Harry, J.L., Graves, J.A.M., Sinclair, A.H., 1999a. Temperature-dependent sex determination: upregulation of SOX9 expression after commitment to male development. Developmental Dynamics 214, 171-177.

Western, P.S., Harry, J.L., Graves, J.A.M., Sinclair, A.H., 1999b. Temperature-dependent sex determination in the American alligator: AMH precedes SOX9 expression. Developmental Dynamics 216, 411-419.

Western, P.S., Harry, J.L., Graves, J.A.M., Sinclair, A.H., 2000. Temperature-dependent sex determination in the American alligator: expression of SF1, WT1 and DAX1 during gonadogenesis. Gene 241, 223-232.

Whitworth, D.J., Pask, A.J., Shaw, G., Marshall Graves, J.A., Behringer, R.R., Renfree, M.B., 2001. Characterization of steroidogenic factor 1 during sexual differentiation in a marsupial. Gene 277, 209-219.

Wibbels, T., Crews, D., 1994. Putative aromatase inhibitor induces male sex determination in a female unisexual lizard and in a turtle with temperature-dependent sex determination. Journal of Endocrinology 141, 295.

Wibbels, T., Crews, D., 1995. Steroid-induced sex determination at incubation temperatures producing mixed sex ratios in a turtle with TSD. General and Comparative Endocrinology 100, 53-60.

Wibbels, T., Bull, J.J., Crews, D., 1991. Synergism between temperature and estradiol: a common pathway in turtle sex determination. Journal of Experimental Zoology 260, 130-134.

Wibbels, T., Cowan, J., LeBoeuf, R., 1998. Temperature-dependent sex determination in the red-fared slider turtle, Trachemys scripta. Journal of Experimental Zoology 281, 409-416.

Wilhelm, D., Palmer, S., Koopman, P., 2007. Sex determination and gonadal development in mammals. Physiology Reviews 87, 1-28.

Wilhelm, D., Martinson, F., Bradford, S., Wilson, M.J., Combes, A.N., Beverdam, A., Bowles, J., Hirofumi, M., Koopman, P., 2005. Sertolli cell differentiation is induced both

Page 356: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-318-

cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology 287, 111-124.

Winkler, C., Hornung, U., Kondo, M., Neuner, C., Duschl, J., Shima, A., Schartl, M., 2004. Developmentally regulated and non-sex-specific expression of autosomal dmrt genes in embryos of the Medaka fish (Oryzias latipes). Mechanisms of Development 121, 997-1005.

Wu, G.C., Du, J., Lee, Y., Lee, M.F., Chang, C.F., 2005. Current status of genetic and endocrine factors in the sex change of protandrous black porgy, Acanthopagrus schlegeli (Teleostean). Annals of the New York Academy of Sciences 1040, 206.

Yamaguchi, A., Lee, K.H., Fujimoto, H., Kadomura, K., Yasumoto, S., Matsuyama, M., 2006. Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comparative Biochemistry and Physiology. Part D, Genomics and Proteomics 1, 59-68.

Yamaguchi, T., Yamaguchi, S., Hirai, T., Kitano, T., 2007. Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochemical and Biophysical Research Communications 359, 935-940.

Yamamoto, E., 1999. Studies on sex-manipulation and production of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture 173, 235-246.

Yamamoto, T., 1969. Sex differentiation. In: W.H. Hoar, D.J.R., E.M. Donaldson (Ed.), Fish Physiology. Academic Press, New York, pp. 117-175.

Yamashita, A., Suzuki, S., Fujitani, K., Kojima, M., Kanda, H., Ito, M., Takamatsu, N., Yamashita, S., Shiba, T., 1998. cDNA cloning of a novel rainbow trout SRY-type HMG box protein, rtSox23, and its functional analysis. Gene 209, 193-200.

Yoder, J.A., Soman, N.S., Verdine, G.L., Bestor, T.H., 1997. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. studies with a mechanism-based probe. Journal of Molecular Biology 270, 385-395.

Yokoi, H., Kobayashi, T., Tanaka, M., Nagahama, Y., Wakamatsu, Y., Takeda, H., Araki, K., Morohashi, K., Ozato, K., 2002. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Molecular Reproduction and Development 63, 5-16.

Yoshiura, Y., Senthilkumaran, B., Watanabe, M., Oba, Y., Kobayashi, T., Nagahama, Y., 2003. Synergistic expression of Ad4BP/SF-1 and cytochrome P-450 aromatase (ovarian type) in the ovary of Nile tilapia, Oreochromis niloticus, during vitellogenesis suggests transcriptional interaction. Biology of Reproduction 68, 1545-1553.

Yu, N.W., Hsu, C.Y., Ku, H.H., Chang, L.T., Liu, H.W., 1993. Gonadal differentiation and secretions of estradiol and testosterone of the ovaries of Rana catesbeiana tadpoles treated with 4-hydroxyandrostenedione. Journal of Experimental Zoology 265, 252-257.

Page 357: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

References

-319-

Yu, R.N., Achermann, J.C., Ito, M., Jameson, J.L., 1998. The Role of DAX-1 in Reproduction. Trends in Endocrinology and Metabolism 9, 169-175.

Zanuy, S., Carrillo, M., Felip, A., Rodríguez, L., Blázquez, M., Ramos, J., Piferrer, F., 2001. Genetic, hormonal and environmental approaches for the control of reproduction in the European sea bass (Dicentrarchus labrax L.). Aquaculture 202, 187-203.

Zhang, L., Lin, D., Zhang, Y., Ma, G., Zhang, W., 2008. A homologue of Sox11 predominantly expressed in the ovary of the orange-spotted grouper Epinephelus coioides. Comparative Biochemistry and Physiology. B, Comparative Biochemistry 149, 345-353.

Zhong, L., 2006. Sox genes in grass carp (Ctenopharyngodon idella) with their implications for genome duplication and evolution. Genetics, Selection and evolution 38, 673-687.

Zhou, R., Zhang, Q., Tiersch, T.R., Cooper, R.K., 2001. Four members of the Sox gene family in channel catfish. Journal of Fish Biology 58, 891-894.

Zhou, R., Liu, L., Guo, Y., Yu, H., Cheng, H., Huang, X., Tiersch, T.R., Berta, P., 2003. Similar gene structure of two Sox 9 a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Molecular Reproduction and Development 66, 211-217.

Zhou, R.R., 2002. SRY-related genes in the genome of the rice field eel (Monopterus albus). Genetics, Selection and evolution 34, 129-137.

Zohar, Y., Abraham, M., Gordin, H., 1978. The gonadal cycle of the captivity-reared hermaphroditic teleost Sparus aurata (L.) during the first two years of life. Annales de Biologie Animale, Biochimie, Biophysique 18, 877-882.

Page 358: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 359: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Annexes

Page 360: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 361: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Annexes

-321-

ANNEXES Informes del director de tesi

Informe del director sobre la contribució de Laia Navarro Martín a cada un dels articles

originats a partir d’aquesta tesi.

Article I. Masculinization of the European sea bass (Dicentrarchus labrax) by treatment with

androgen or aromatase inhibitor involves different gene expression and has lasting effects on

male maturation.

Autors: Laia Navarro-Martín, Mercedes Blázquez i Francesc Piferrer

Revista: General and Comparative Endocrinology (en premsa)

Experiment independent on la Laia va tenir cura dels tractaments hormonals, mostrejos,

anàlisi de les dades i redacció del manuscrit. Participà també activament en la selecció dels

tractaments.

Article II. Expression profiles of gonadal differentiation-related genes during ontogenesis in

the European sea bass acclimated to two different temperatures.

Autors: Mercedes Blázquez, Laia Navarro-Martín i Francesc Piferrer

Revista: Journal of Experimental Zoology. Part B (sotmés)

Aquest article s’origina amb les mostres obtingudes de l’article V (que comprèn els aspectes

més zootècnics però que no conté fisiologia ni biologia molecular). La Laia, per tant, no

només va tenir cura dels animals i dels mostrejos sinó que va contribuir decisivament a

l’estructura d’aquest treball en proposar alguns dels anàlisis duts a terme. Amb estreta

col·laboració amb la Dra. Mercedes Blázquez participà en les qPCR, anàlisi de les dades i

contribuí a la redacció del manuscrit.

Article III. Different Sox17 transcripts during sex differentiation in sea bass, Dicentrarchus

labrax.

Autors: Laia Navarro-Martín, Malyka Galay-Burgos, Glen Sweeney i Francesc Piferrer

Revista: Molecular and Cellular Endocrinology (acceptat per a publicació)

Page 362: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

-322-

Article fruit de la cooperació amb el laboratori del Dr. Glen Seny, de la Universitat de

Cardiff, al Regne Unit. El darrer treball executat a la tesi i investigació plantejada per la

pròpia doctoranda, qui va fer gairebé tota la feina experimental a partir d’un fragment de

Sox17 clonat en un projecte anterior. La Laia va plantejar les diferents tasques per completar

l’article i de forma molt independent les va dur a terme. Va analitzar les dades, completar el

que creia convenient i escriure una primera versió del manuscrit que només amb poques

indicacions i suggeriments del Dr. Sweeney i del director va ser estar llest per submissió.

Article IV. An epigenetic mechanism involved in temperature-induced sex ratio shifts in fish

populations.

Autors: Laia Navarro-Martín, Jordi Viñas, Arantxa Gutierrez, Luciano di Croce i Francesc

Piferrer

Revista: Nature (per sotmetre durant Oct-Nov 2008)

Aquesta recerca va veure la llum verda després d’un “brainstorming” de tot el grup durant un

cap de setmana. Després, durant molts mesos, un cop es tenia la idea embastada, en

successives reunions es va anar perfilant el disseny experimental fins que podés donar

respostes clares a les nostres preguntes. També es va decidir quins peixos usar i com analitzar

les mostres. La Laia va jugar un paper fonamental en aquest procés. Va realitzar tot el treball

de laboratori ella, amb l’ajuda d’ Arantxa Gutiérrez, del laboratori del Dr. Luciano di Croce

del Centre de Regulació Genòmica, qui li va ensenyar a fer les transfeccions. Va fer les

clonacions i va preparar el material per a la seqüenciació. Va analitzar totes les dades, excepte

l’anàlisi de la variabilitat genètica de les seqüències, cosa que va fer el Dr. Jordi Viñas. Va

preparar una primera versió del manuscrit seguint un esquelet acordat amb el director.

Article V. Balancing the effects of rearing at low temperature during early development on

sex ratios, growth and maturation in the European sea bass. Limitations and opportunities for

the production of all-females stocks.

Autors: Laia Navarro-Martín, Mercedes Blázquez, Jordi Viñas i Francesc Piferrer

Revista: Aquaculture (sotmés)

Page 363: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Annexes

-323-

Encara que el darrer article de la tesi, aquesta feina va ser la primera i va ser la base per altres

articles. La Laia va encarregar-se del cultiu i manteniment dels animals, i, amb la ajuda de la

Dra. Mercedes Blázquez, va realitzar tots els mostrejos. El Dr. Viñas va col·laborar amb

l’anàlisi dels microsatèlits. La Laia va fer l’anàlisi histològica, tot l’anàlisi estadístics, la

generació de taules i gràfiques i va preparar una primera versió del manuscrit que fou

complementada amb les aportacions dels altres autors.

El director de la tesi,

Dr. Francesc Piferrer i Circuns

Page 364: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

-324-

Page 365: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

Annexes

-325-

Informe del director sobre el factor d’impacte de les revistes on han estat o seràn aviat

sotmesos els articles originats a partir de la tesi de Laia Navarro Martín.

Factor d’impacte obtingut del Journal of Citacions Reports ScienceEdition, edició 2007, de

The Thomson Corporatiu

Article I. Masculinization of the European sea bass (Dicentrarchus labrax) by treatment with

androgen or aromatase inhibitor involves different gene expression and has lasting effects on

male maturation.

Autors: Laia Navarro-Martín, Mercedes Blázquez i Francesc Piferrer

Revista: General and Comparative Endocrinology (en premsa)

Factor impacte: 2.562

Article II. Expression profiles of gonadal differentiation-related genes during ontogenesis in

the European sea bass acclimated to two different temperatures.

Autors: Mercedes Blázquez, Laia Navarro-Martín i Francesc Piferrer

Revista: Journal of Experimental Zoology. Part B (sotmés)

Factor impacte: 3.578

Article III. Different Sox17 transcripts during sex differentiation in sea bass, Dicentrarchus

labrax.

Autors: Laia Navarro-Martín, Malyka Galay-Burgos, Glen Sweeney i Francesc Piferrer

Revista: Molecular and Cellular Endocrinology (acceptat per a publicació)

Factor impacte: 2.971

Article IV. An epigenetic mechanism involved in temperature-induced sex ratio shifts in fish

populations.

Autors: Laia Navarro-Martín, Jordi Viñas, Arantxa Gutierrez, Luciano di Croce i Francesc

Piferrer

Revista: Nature (per sotmetre durant Oct-Nov 2008)

Factor impacte: 28.751

Page 366: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles

-326-

Article V. Balancing the effects of rearing at low temperature during early development on

sex ratios, growth and maturation in the European sea bass. Limitations and opportunities for

the production of all-females stocks.

Autors: Laia Navarro-Martín, Mercedes Blázquez, Jordi Viñas i Francesc Piferrer

Revista: Aquaculture (sotmés)

Factor impacte:1.735

El director de la tesi,

Dr. Francesc Piferrer i Circuns

Page 367: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles
Page 368: Ph.D. Thesis REGULATORY MECHANISMS AND EFFECTS OF TEMPERATURE …digital.csic.es/bitstream/10261/104044/4/Navarro_Thesis_2008.pdf · Al meu sol, al meu cel i a totes les estrelles