pharos university me 253 fluid mechanics ii

75
1 PHAROS UNIVERSITY ME 253 FLUID MECHANICS II Boundary Layer (Two Lectures)

Upload: dung

Post on 04-Jan-2016

38 views

Category:

Documents


0 download

DESCRIPTION

PHAROS UNIVERSITY ME 253 FLUID MECHANICS II. Boundary Layer (Two Lectures). Flow Past Flat Plate. Dimensionless numbers involved. for external flow: Re>100 dominated by inertia, Re

TRANSCRIPT

Page 1: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

1

PHAROS UNIVERSITYME 253 FLUID MECHANICS II

Boundary Layer (Two Lectures)

Page 2: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Flow Past Flat Plate• Dimensionless numbers involved Re Ma Fr

Ul U U

c gl

• for external flow: Re>100 dominated by inertia, Re<1 – by viscosity

Page 3: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary Layer

Flows over bodies. Examples include the flows over airfoils, ship hulls, etc.

Boundary layer flow over a flat plate with no external pressure variation.

laminar turbulenttransition

Dye streakU U U

U

Page 4: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary layer characteristicsfor large Reynolds number flow can be dividedinto boundary region where viscous effect are important and outside region where liquid can be treated as inviscid Rex

Ux

Page 5: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

The Boundary-Layer Concept

Page 6: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

The Boundary-Layer Concept

Page 7: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary Layer Thicknesses

Page 8: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary Layer Thicknesses

• Disturbance Thickness,

Displacement Thickness, *

Momentum Thickness,

Page 9: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary Layer Thickness

Boundary layer thickness is defined as the height above the surface where the velocity reaches 99% of the free stream velocity.

Page 10: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

10

Boundary Layer(BL)

Three Thicknesses of a Boundary Layer

d*

1

Page 11: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

11

Displacement Thickness *

Volume flux:0

udy Q

Ideal flux: 1Q U 10

udy U

1 0

udy

U

*1 0

(1 )u

dyU

Page 12: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

12

Velocity Distribution

U

SolidBoundary

Equivalent Flow Rate

U

Velocity Defect

VelocityDefect

*

Ideal FluidFlow

Page 13: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

13

Eqn. for Displacement Thickness

• By equating the flow rate for velocity defect to flow rate for ideal fluid

• If density is constant, this simplifies to

* would always be smaller than

0

* dyuUU

0

* 1 dyU

u

Page 14: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Displacement Thickness Laminar B.L.

Page 15: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

15

Eqn. for Momentum Thickness

• By equating the momentum flux rate for velocity defect to that for ideal fluid

• If density is constant, this simplifies to

would always be smaller than * and

0

2 uUudyU

01 dyU

u

U

u

Page 16: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Momentum ThicknessThe rate of mass flow across an element of the boundary layer is ( u dy) and the mass has a momentum ( u2 dy ) The same mass outside the boundary layer has the momentum ( u ue dy)

is a measure of the reduction in momentum transport in the B. Layer

Page 17: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Empirical Equations of Laminar B. Layer Parameters

• Boundary Layer Thickness

• Momentum Thickness

• Displacement Thickness

• Skin Friction Coefficient

Page 18: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Skin Friction Coefficient

Page 19: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary layer characteristics• Boundary layer thickness

• Boundary layer displacement thickness: *

0

1u

dyU

• Boundary layer momentum thickness (defined in terms of momentum flux):

2

0 0

1u u

bU b u U u dy bU U

Page 20: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Drag on a Flat Plate

• Drag on a flat plate is related to the momentum deficit within the boundary layer

2

0

2

1

w

u ubU b

U U

db bU

dx x

D

D

• Drag and shear stress can be calculated by assuming velocity profile in the boundary layer

Page 21: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary Layer Definition Boundary layer thickness (d): Where the local velocity reaches to 99% of the free-stream velocity. u(y=d)=0.99U Displacement thickness (δ*): Certain amount of the mass has been displaced (ejected) by the presence of the boundary layer ( mass conservation). Displace the uniform flow away from the solid surface by an amount δ*

0 0* ( ) , or * (1 )

uU w U u wdy dy

U

Amount of fluid being displaced outward

*

U-u

equals

Page 22: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Laminar Flat-PlateBoundary Layer: Exact Solution

• Governing Equations

Page 23: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Laminar Flat-PlateBoundary Layer: Exact Solution

• Boundary Conditions

Page 24: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Laminar Flat-PlateBoundary Layer: Exact Solution

• Results of Numerical Analysis

Page 25: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

25

MOMENTUM INTEGRAL EQN

• BOUNDARY LAYER EQUATIONS

• BOUNDARY CONDITIONS y=0, u=v=0 & y = δ , u= U

• Integrating the momentum equation w.r.t y in the interval [0,δ]

0

y

v

x

u

2

2

)(y

u

dx

dUU

y

uv

x

uu

Page 26: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

26

MOMENTUM INTEGRAL EQN

dyy

udy

dx

dUUdy

y

uvdy

x

uu

0

2

2

000

dyy

udy

dx

dUUdy

y

vuUvdy

x

uu y

0

2

2

00

0

0

)(

000

0

0

)(

y

y y

udy

dx

dUUdy

x

uuUvdy

x

uu

0000

2

y

y

udy

dx

dUUdy

x

uUdy

x

uu

dyy

udy

dx

dUUdy

y

uvdy

x

uu

0

2

2

000

dyy

udy

dx

dUUdy

y

vuUvdy

x

uu y

0

2

2

00

0

0

)(

dyy

udy

dx

dUUdy

y

uvdy

x

uu

0

2

2

000

dyy

udy

dx

dUUdy

y

vuUvdy

x

uu y

0

2

2

00

0

0

)(

dyy

udy

dx

dUUdy

y

uvdy

x

uu

0

2

2

000

dyy

udy

dx

dUUdy

y

vuUvdy

x

uu y

0

2

2

00

0

0

)(

dyy

udy

dx

dUUdy

y

uvdy

x

uu

0

2

2

000

Page 27: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

27

MOMENTUM INTEGRAL EQN

dyU

u

dx

dUUdy

U

u

dx

dUdy

U

uU

dx

dUudy

dx

dU

dyU

u

dx

dUUdy

U

u

dx

dUdy

U

uU

dx

ddyu

dx

d

dydx

dUUdyu

dx

dUdyu

dx

d

00

2

00

0

22

0

2

0

22

0

2

0

000

2

2

)( 00 )(

yy

u

dyUuUu )/1(/0

UdyuU /)(*0

DISPLACEMENT THICKNESS

MOMENTUM THICKNESS

Page 28: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

28

MOMENTUM INTEGRAL EQN

0

00

2

0

0000

2

0

000

2

0

000

2

0

22

0

2

0

000

2

112

12

121

2

)(

dyU

u

dx

dUUdy

U

u

U

u

dx

dUU

dx

dU

dyU

u

dx

dUUdy

U

u

dx

dUUdy

dx

dUUdy

U

u

U

u

dx

dUU

dx

dU

dydx

dUUdy

U

u

U

u

dx

dUUdy

U

u

U

u

dx

dU

dydx

dUUdy

U

u

dx

dUUdy

U

u

dx

dUdy

U

u

dx

dUUdy

U

u

dx

dU

dydx

dUUdyu

dx

dUdyu

dx

d

/)2( 0

*2 dx

dUU

dx

dU

Page 29: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

29

MOMENTUM INTEGRAL EQN

• VON KARMAN MOMENTUM INTEGRAL EQUATION

/)2( 0

*2 dx

dUU

dx

dU

Page 30: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

30

KARMAN POHLHAUSEN METHOD FOR FLOW OVER FLAT PLATE

/)2(

0

0

2

1

0*2

2

dx

dUU

dx

dU

dx

dUU

dx

dpdx

dUU

dx

dp

constUp BERNOULLI’S EQUATION

xU

2

21 2

0REVISED KARMAN EQUATION

FOR NO EXTERNAL PRESSURE

NO IMPOSED PRESSURE

VON KARMAN EQUATION

Page 31: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

31

KARMAN POHLHAUSEN METHOD FOR FLOW OVER FLATE PLATE

• Dimensionless velocity u/U can be expressed at any location x as a function of the dimensionless distance from the wall y/δ.

• Boundary (at wall) conditions y=0, u=0 ; d2u/dy2 = 0• At outer edge of boundary layer (y=δ) u=U, du/dy=0• Applying boundary conditions a=0,c=0, b=3/2, d= -1/2

32

y

dy

cy

bay

U

u

3

2

1

2

3

yy

U

uVelocity profile

Page 32: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

32

KARMAN POHLHAUSEN METHOD FOR FLOW OVER FLATE PLATE

3

2

1

2

3

yy

U

u

xU

2

21 2

0

INSERT INTO THIS EQUATION

Page 33: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

33

KARMAN POHLHAUSEN METHOD FOR FLOW OVER FLATE PLATE

xU

dyyyyyy

xU

dyyyyy

xU

dyU

u

U

u

xU

xU

2

0

64322

0

32

0

220

280

39

4

1

2

3

2

1

4

9

2

3

2

1

2

3*

2

1

2

31

1

Page 34: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

34

KARMAN POHLHAUSEN METHOD FOR FLOW OVER FLATE PLATE

• At the solid surface, Newton’s Law of Viscosity gives:

xU

U

therefore

U

yU

yU

yy

u

yy

2

0

3

0

0

280

39

2

3

2

3

2

1

2

3

Page 35: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

35

KARMAN POHLHAUSEN METHOD FOR FLOW OVER FLATE PLATE

Re

64.4

*13

2*140

0,0,0

13

140

2

13

140

2

x

xUx

Cx

CU

x

xU

eRx

0.5

KARMAN POHLHAUSEN SOLUTION

BLASIUS SOLUTION

Page 36: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

36

Boundary Layer Parameters• BOUNDARY LAYER THICKNESS INCREASES AS THE

SQUARE ROOT OF THE DISTANCE x FROM THE LEADING EDGE AND INVERSELY AS SQUARE ROOT OF FREE STREAM VELOCITY.

• WALL SHEAR STRESS IS INVERSELY PROPORTIONAL TO THE SQUARE ROOT OF x AND DIRECTLY PROPORTIONAL TO 3/2 POWER OF U

• LOCAL & AVERAGE SKIN FRICTION VARY INVERSELY AS SQUARE ROOT OF BOTH x & U

Page 37: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Simplify Momentum Integral Equation(Item 1)

The Momentum Integral Equation becomes

Page 38: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Laminar Flow– Example: Assume a Polynomial Velocity Profile

(Item 2)

• The wall shear stress w is then (Item 3)

Page 39: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Laminar Flow Results(Polynomial Velocity Profile)

Compare to Exact (Blasius) results!

Page 40: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Turbulent Flow– Example: 1/7-Power Law Profile (Item 2)

Page 41: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Use of the Momentum Equation for Flow with Zero Pressure Gradient

• Turbulent Flow Results(1/7-Power Law Profile)

Page 42: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Example

Assume a laminar boundary layer has a velocity profile as u(y)=U(y/ for 0y and u=U for y>, as shown. Determine the shear stress and the boundary layer growth as a function of the distance x measured from the leading edge of the flat plate.

u(y)=U(y/

u=U y

x

2

w 0

0 0

U

For a laminar flow ( ) from the profile.

Substitute into the definition of the momentum thickness:

U y(1 ) (1 ) , since u

.6

w

y

d

dxUu

y

u u y ydy dy

U U

Page 43: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

2 2

2 2

x

3 2

1U , U

66 12

Separation of variables: , integrate 12( ) ,U U U

13.46 3.46 , where Re

Re

3.46 ,

0.289 10.289 ,

Re

w

x

w w

x

Ud d

dx dx

d x xx

U x

x U x

xx

U

U U U

x x

Note: In general, the velocity distribution is not a straight line. A laminar flat-plate boundary layer assumes a Blasius profile. The boundary layer thickness and the wall shear stress w behave as:

(9.14). ,Re

332.0.(9.13) ,

Re

0.50.5 2

x

w

x

Ux

xU

Page 44: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Laminar Boundary Layer Development

x( )

x0 0.5 1

0

0.5

1• Boundary layer growth: x• Initial growth is fast• Growth rate d/dx 1/x, decreasing downstream.

w x( )

x0 0.5 1

0

5

10

• Wall shear stress: w 1/x• As the boundary layer grows, the wall shear stress decreases as the velocity gradient at the wall becomes less steep.

Page 45: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

45

Momentum Integral Relation for Flat-plate BL

xx

y

hU

CV

Stream line

P

d

Free stream

U=const P=const z b

Steady & incompressible

Page 46: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

46

Momentum Integral Relation for Flat-plate BL

:X Outlet2

0b u dy

Inlet2b u h

.2 2

0M bU h b u dy

2 2

0D bU h b u dy

Continuity0

hU udy

0

uh dy

U

0( )D b u U u dy

2bU 2dD d

bUdx dx

Page 47: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

47

Meantime

0( ) ( )

x

wD x b x dx

w

dDb

dx

2w

dU

dx

For flat plate boundary layer

U const 0dU

dx

Page 48: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

48

2wd

dx U

' '

K a m a n

0(1 )

u udy

U U

2u a by cy

0 0y u y u U 0u

y

2

20, , -

U Ua b c

2

2

2u y y

U 0 ( )y x

Page 49: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

49

2 2

2 20

2 2( )(1 )

y y y ydy

y

令 =

1 2 2

0(2 )(1 2 )dy

2

15

2

15

d d

dx dx

2d

dx U

2|w y o

u U

y

15d x

U

Page 50: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

50

0, 0x

21 15

2x

U

5.5 5.5x

xU Ux

5.5

Rex x

*( ) 1.83

Re

x

x x

( ) 0.74

Re

x

x x

*3 7.5 *

H

Shape factor

Page 51: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

51

2

0.73

1 2w

f

x

CU Re

Skin-friction coefficient

0

l

f wX bdx

21 2f

D

XC

U bl Drag coefficient

Page 52: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

52

Boundary Layer Equation

Inviscid

Page 53: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

53

3 Boundary Layer Equation

Page 54: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

54

Page 55: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

55

Boundary Layer Equation

2-D,steady,incompressible,neglect body force

0u v

x y

2 2

2 2

1( )

u u p u uu v

x y x x y

2 2

2 2

1( )

v v p v vu v

x y y x y

1[ ]Re

[ ]L

[ ]L

[ ]L

[ ]L

[1][1] [1] [1]

Page 56: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

56

For BL, 1L

2

2

1( )

u u p uu v

x y x y

0u v

x y

0p

y

( )P P x

dp

dx

External flow U U 0V (Inviscid Flow)

Page 57: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

57

Euler Equation1dU dP

Udx dX

2

2

u u dU uu v U

x y dx y

2

2( )

u u

y y y

1( )

u

y y

1

y

u

y

____

' 'uu v

y

0, 0y u v , ( )y u U x

Laminar flow

Turbulent flow

Page 58: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

58

Blasius 1908

u

U ( )

y y

x x U

'( ) ( )u

fU

( ) ( )f d '' '1

( ( ) ) 02

d

''' ''1( ) 0

2f f f

0, 0y '0, ( ) 0u f

, by ', 1u U f

Page 59: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

59

5.0

xx Re

* 1.721

xx Re

0.664

xx Re

|w o

u U

y x U

''| (0)o

f Uf

x U

2

0.66412

wf

x

CReU

1.328

ReD

L

C

Page 60: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

60

U =10m/s, =17x10-6 m2/s

DISPLACEMENT AND MOMENTUN THICKNESS

• Typical distribution of , * and

Page 61: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Influence of Adverse Pressure GradientAdverse Pressure Gradient dp/dx>0 can cause flow separation

Page 62: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Pressure Gradients in Boundary-Layer Flow

Page 63: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Boundary Layer and separation

gradient pressure

favorable ,0

x

P

gradient no ,0

x

P

0, adverse

pressure gradient

P

x

Flow accelerates Flow decelerates

Constant flow

Flow reversalfree shear layerhighly unstable

Separation point

Page 64: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Flow Separation

SeparationBoundary layer

Wake

Stagnation point

21/ 2

P PCp

U

Inviscid curve 21 4sinCp

Turbulent

Laminar

1.0

0

-1.0

-2.0

-3.0

Page 65: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Drag Coefficient: CD

Supercritical flowturbulent B.L.

Stokes’ Flow, Re<1

Relatively constant CD

Page 66: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Drag

• Drag Coefficient

with

or

Page 67: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

Influence of Adverse Pressure GradientAdverse Pressure Gradient dp/dx>0 can cause flow separation

Page 68: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

WHY DOES BOUNDARY LAYER SEPARATE?• Adverse pressure gradient interacting with velocity profile through B.L.• High speed flow near upper edge of B.L. has enough speed to keep moving

through adverse pressure gradient• Lower speed fluid (which has been retarded by friction) is exposed to same

adverse pressure gradient is stopped and direction of flow can be reversed• This reversal of flow direction causes flow to separate

– Turbulent B.L. more resistance to flow separation than laminar B.L. because of fuller velocity profile

– To help prevent flow separation we desire a turbulent B.L.

Page 69: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

69

EXAMPLE OF FLOW SEPARATION

• Velocity profiles in a boundary layer subjected to a pressure rise– (a) start of pressure rise– (b) after a small pressure rise– (c) after separation

• Flow separation from a surface– (a) smooth body– (b) salient edge

Page 70: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

70

BOUNDARY LAYER SEPARATION

• Separation takes place due to excessive momentum loss near the wall in a boundary layer trying to move downstream against increasing pressure, i.e., which is called adverse pressure gradient.

dx

dp

y

u

dx

dp

dx

dUU

y

u

y

ydx

dUU

y

uv

x

uu

wall

wallwall

1

1)(

2

2

2

2

MOMENTUM EQUATION

AT WALL v=u=0

Page 71: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

71

BOUNDARY LAYER SEPARATION

• In adverse gradient, the second derivative of velocity is positive at the wall, yet it must be negative at the outer layer (y=δ) to merge smoothly with the mainstream flow U(x).

• It follows that the second derivative must pass through zero somewhere in between, at the point of inflexion, and any boundary layer profile in an adverse must exhibit a characteristic S –shape.

Page 72: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

72

BOUNDARY LAYER SEPARATION

• In FAVOURABLE GRADIENT, profile is rounded, no point of inflexion, no separation.

• In ZERO PRESSURE GRADIENT, point of inflexion is at the wall itself. No separation.

• In ADVERSE GRADIENT, point of inflexion (PI) occurs in the boundary layer, its distance from the wall increasing with the strength of the adverse gradient

• CRITICAL CONDITION is reached where the wall shear is exactly zero (∂u/∂y =0). This is defined as separation point

0w SHEAR STRESS AT WALL IS ZERO

Page 73: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

73

BOUNDARY LAYER SEPARATION

Page 74: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

74

BOUNDARY LAYER SEPARATION• The mathematical explanation of flow-separation :

– The point of separation may be defined as the limit between forward and reverse flow in the layer very close to the wall, i.e., at the point of separation

– This means that the shear stress at the wall, .But at this point, the adverse pressure continues to exist and at the downstream of this point the flow acts in a reverse direction resulting in a back flow.

Page 75: PHAROS UNIVERSITY ME 253 FLUID MECHANICS II

EXAMPLE: SLATS AND FLAPS