ph1012 - review of mechanics; electric fields

10
= + ; = 1 2 + ; = + 1 2 2 ; 2 = 2 + 2 Constant Acceleration Displacement Downwards Initial velocity Upwards Acceleration, a Downwards throughout It is important to set convention, either Upwards as +ve or Downwards as +ve and apply it consistently to displacement, velocity and acceleration when using equations. = 9.8 / 2 Example: Tut 1 Q1 For PH1012, 2015 Ho SY, SPMS NTU Constant Speed / Velocity; acel = 0 = Any Acceleration (constant or non-constant) = β‡’ = βˆ’1 Eg. = 4 2 +3β‡’ = 8 + 0 = 1 +1 +1 (β„Ž β‰  βˆ’1) Eg. ∫ 8 = 8 Γ— 1 2 2 + = 4 2 + where C is an arbitrary constant Basic Calculus , = βˆ’ βˆ’ = Ξ”x Ξ” , = lim Ξ”β†’0 Ξ”x Ξ” = , = βˆ’ βˆ’ = Ξ”v Ξ” , = lim Ξ”β†’0 Ξ”v Ξ” = = = 2 2 Speed constant (magnitude of arrows fixed) [tangential acceleration=0; angular acceleration=0] However, velocity is changing, (direction of arrows changing). Hence, change in velocity and centripetal acceleration are not zero: = 2 = 2 In time Ξ”, angular displacement is ; Hence angular velocity = Ξ” . Constant Speed ( = ; = ) Constant Angular Acceleration ( β‰  = ; = ) r = = = 2 T – time to complete one round = = = 2 = = + = 1 2 + = + 1 2 ; 2 = 2 + 2 = 2 = 2 But note that is changing so the magnitude of is changing. Resultant acceleration =a +

Upload: fahmy-muhd

Post on 02-Dec-2015

241 views

Category:

Documents


2 download

DESCRIPTION

weqfwerqwer

TRANSCRIPT

Page 1: PH1012 - Review of Mechanics; Electric Fields

𝑣𝑓 = 𝑣𝑖 + π‘Žπ‘‘;

𝑠 =1

2𝑣𝑖 + 𝑣𝑓 𝑑;

𝑠 = 𝑣𝑖𝑑 +1

2π‘Žπ‘‘2; 𝑣𝑓

2 = 𝑣𝑖2 + 2π‘Žπ‘ 

Constant Acceleration

Displacement 𝑦 Downwards

Initial velocity 𝑣𝑖 Upwards

Acceleration, a Downwards throughout

It is important to set convention, either Upwards as +ve or Downwards as +ve and apply it consistently to displacement, velocity and acceleration when using equations.

𝑔 = 9.8 π‘š/𝑠2

Example: Tut 1 Q1 For

PH

10

12

, 20

15

H

o S

Y, S

PM

S N

TU

Constant Speed / Velocity; acel = 0

𝑠𝑝𝑒𝑒𝑑 =π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

π‘‘π‘–π‘šπ‘’

Any Acceleration (constant or non-constant)

π‘₯ = π‘˜π‘‘π‘› β‡’ 𝑑π‘₯

𝑑𝑑= π‘˜ π‘›π‘‘π‘›βˆ’1

Eg. π‘₯ = 4𝑑2 + 3 ⇒𝑑π‘₯

𝑑𝑑= 8𝑑 + 0

π‘₯π‘š 𝑑π‘₯ =1

π‘š + 1π‘₯π‘š+1 (π‘€β„Žπ‘’π‘Ÿπ‘’ π‘š β‰  βˆ’1)

Eg. ∫ 8𝑑 𝑑𝑑 = 8 Γ—1

2𝑑2 + 𝐢 = 4𝑑2 + 𝐢

where C is an arbitrary constant

Basic Calculus

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦, 𝑣 =π‘₯𝑓 βˆ’ π‘₯𝑖

𝑑𝑓 βˆ’ 𝑑𝑖=Ξ”x

Δ𝑑

πΌπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘›π‘’π‘œπ‘’π‘  π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦,

𝑣 = limΔ𝑑→0

Ξ”x

Δ𝑑=𝑑π‘₯

𝑑𝑑

π΄π‘£π‘’π‘Ÿπ‘Žπ‘”π‘’ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›,

π‘Ž =𝑣𝑓 βˆ’ 𝑣𝑖

𝑑𝑓 βˆ’ 𝑑𝑖=Ξ”v

Δ𝑑

πΌπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘›π‘’π‘œπ‘’π‘  π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›,

π‘Ž = limΔ𝑑→0

Ξ”v

Δ𝑑=𝑑𝑣

𝑑𝑑=𝑑

𝑑𝑑

𝑑π‘₯

𝑑𝑑=𝑑2π‘₯

𝑑𝑑2

Speed constant 𝑣 (magnitude of arrows fixed) [tangential acceleration=0; angular acceleration=0] However, velocity is changing, (direction of arrows changing). Hence, change in velocity and centripetal acceleration are not zero:

π‘Žπ‘Ÿ =𝑣2

π‘Ÿ= π‘Ÿπœ”2

πœƒ

In time Δ𝑑, angular displacement is πœƒ;

Hence angular velocity πœ” =πœƒ

Δ𝑑.

Constant Speed (𝜢 = 𝟎; 𝒂𝒕𝒂𝒏 = 𝟎)

Constant Angular Acceleration (𝜢 β‰  𝟎 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕;𝒂𝒕𝒂𝒏 = π’“πœΆ)

r

𝑠 = π‘Ÿπœƒ

𝑣 = π‘Ÿπœ” = π‘Ÿ2πœ‹

𝑇

T – time to complete one round

πœƒ

𝑠 = π‘Ÿπœƒ

𝑣 = π‘Ÿπœ” = π‘Ÿ2πœ‹

𝑇

π‘Žπ‘‘π‘Žπ‘› = π‘Ÿπ›Ό

πœ”π‘“ = πœ”π‘– + 𝛼𝑑

πœƒ =1

2πœ”π‘– +πœ”π‘“ 𝑑

πœƒ = πœ”π‘–π‘‘ +1

2𝛼𝑑; πœ”π‘“

2 = πœ”π‘–2 + 2π›Όπœƒ

π‘Žπ‘Ÿ =𝑣2

π‘Ÿ= π‘Ÿπœ”2

But note that πœ” is changing so the magnitude of π‘Žπ‘Ÿ is changing.

Resultant acceleration π‘Ž = aπ‘‘π‘Žπ‘› + π‘Ž π‘Ÿ

Page 2: PH1012 - Review of Mechanics; Electric Fields

For extended objects in equilibrium: βˆ‘πœ = 0 βˆ‘πΉ = 0

𝜏 = 𝐹𝑅 sin πœƒ

Torque

𝐹 𝐴𝐡 - Force pointing from A to B 𝑣 π‘Šπ‘† - Water with respect to Shore

𝑣 𝐡𝑆 = 𝑣 π΅π‘Š + 𝑣 π‘Šπ‘†

Relative Velocity

𝐹𝐴𝐡

Impt – duration of flight, t Horizontal: π‘₯ = 𝑒π‘₯𝑑

Vertical: 𝑦 = 𝑒𝑦𝑑 +1

2π‘Žπ‘‘2

Horizontal velocity: 𝑣π‘₯ = 𝑒π‘₯ Vertical Velocity: 𝑣𝑦 = 𝑒𝑦 + π‘Žπ‘‘

Projectile Motion

𝑣𝑓

𝑣𝑖

𝑣𝑖

𝑣𝑓 Δ𝑣

𝑣 𝑓 = 𝑣 𝑖 + Δ𝑣

Δ𝑣 = 𝑣 𝑓 βˆ’ 𝑣 𝑖

Velocity change

Note that the meaning of the subscripts changes with the context of the problem.

Vector addition

v πœƒ

𝑣π‘₯ = 𝑣 cosπœƒ

𝑣𝑦 = 𝑣 sin πœƒ

tan πœƒ =𝑣𝑦𝑣π‘₯

𝑣2 = 𝑣π‘₯2 + 𝑣𝑦

2

Components of vectors

Page 3: PH1012 - Review of Mechanics; Electric Fields

Types of Forces

Weight, mg (due to gravitational attraction)

Contact Forces Normal Force, 𝑭𝑡 (90∘ to surface) Frictional Force,

𝐹𝑓 = πœ‡πΉπ‘

πœ‡π‘  - static πœ‡π‘˜- kinetic, moving

Tension, 𝑭𝑻 (Pulling force, in strings etc, always pointing away from objects.)

Upthrust, 𝑼 (= weight of fluid displaced by obj.)

Viscous Force , 𝑭𝒗 = π’Œπ’— or 𝑭𝒗 = π’Œπ’—

𝟐 (depends on velocity of object moving through fluid.)

Spring Force , 𝑭𝒔 (Spring-mass system, depends on displacement of mass from equilibrium position.

Other Forces Gravitational Force Electrostatic Force Magnetic Force

βˆ‘πΉ = π‘šπ‘Ž

Force (thrust)

𝐹 = π‘£π‘‘π‘š

𝑑𝑑

Related to Newton’s 2nd/3rd Law, conservation of momentum

𝐹𝑁 Friction, Fk

q

mg

π‘šπ‘”π‘ π‘–π‘› πœƒ π‘šπ‘”π‘π‘œπ‘  πœƒ

𝐹𝑁 βˆ’π‘šπ‘”π‘π‘œπ‘ πœƒ = 0 π‘šπ‘”π‘ π‘–π‘›πœƒ βˆ’ πΉπ‘˜ = π‘šπ‘Ž

πΉπ‘˜ = πœ‡πΎπΉπ‘ = πœ‡πΎπ‘šπ‘”π‘π‘œπ‘ πœƒ (sliding down slope)

+

m1

m2

T T

m2g

m1g

𝑇 βˆ’π‘š1𝑔 = π‘š1π‘Ž π‘š2𝑔 βˆ’ 𝑇 = π‘š2π‘Ž

1. Same tension 𝑇 and π‘Ž for frictionless pulleys

mg

𝐹𝑣 = π‘˜π‘£2

π‘šπ‘” βˆ’ π‘˜π‘£2 = π‘šπ‘Ž 1. Upthrust negligible in air here. 2. Set π‘Ž = 0 to obtain terminal velocity, 𝑣𝑇. 3. Moving in viscous fluid use 𝐹𝑣 = π‘˜β€™π‘£. Moving

thru’ air

Spring Force 𝐹 = βˆ’π‘˜π‘₯

π‘₯ = π΄π‘π‘œπ‘  πœ”π‘‘ + πœ™ or π‘₯ = 𝐴𝑠𝑖𝑛(πœ”π‘‘ + πœ™)

Stationary helicopter

π‘šπ‘” βˆ’ π‘£π‘‘π‘š

𝑑𝑑= 0 Fo

r P

H1

01

2, 2

01

5

Ho

SY,

SP

MS

NTU

Page 4: PH1012 - Review of Mechanics; Electric Fields

Basics : Momentum: 𝑝 = π‘šπ‘£

Force: βˆ‘πΉ = π‘šπ‘Ž =π‘š(π‘£βˆ’π‘’)

βˆ†π‘‘

Kinetic energy: 𝐾. 𝐸.=1

2π‘šπ‘£2 =

𝑝2

2π‘š

Work done: W = FDx cos q

F

t

F

t πΌπ‘šπ‘π‘’π‘™π‘ π‘’ = π‘€π‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘β„Žπ‘Žπ‘›π‘”π‘’; 𝐹 = Δ𝑝/Δ𝑑

1. Stop gently (prolong βˆ†π‘‘). 2. Deliver large pf (maximize Fβˆ†π‘‘).

Conservation of linear momentum (two body collision): π‘šπ‘’1 +π‘šπ‘’2 = π‘šπ‘£1 +π‘šπ‘£2

1. Elastic collision (KE conserved): use 𝑒1 βˆ’ 𝑒2 = βˆ’(𝑣1 βˆ’ 𝑣2 ) also 2. 2-D collision: resolve 𝑝 and apply COLM in both directions 3. When appropriate, use sine rule or cosine rule; sin2 πœƒ + cos2 πœƒ = 1; tan πœƒ = sin πœƒ/ cos πœƒ

Area -> impulse -> Momentum change

Work-Energy theorem: 1

2π‘šπ‘£π‘“

2 βˆ’1

2π‘šπ‘£π‘–

2 = πΉβˆ†π‘₯

Change in 𝐾. 𝐸. = π‘Šπ‘œπ‘Ÿπ‘˜ π·π‘œπ‘›π‘’

Conservation of Energy: 𝐾. 𝐸. 𝑖 + 𝑃. 𝐸. 𝑖 = 𝐾. 𝐸. 𝑓 + 𝑃. 𝐸. 𝑓 1. Zero of G.P.E. is arbitrary 2. + Fx if frictional / dissipative forces present

F

x e.g. E.P.E. = Β½ Fx = Β½ kx2

F

x e.g. G.P.E. = mgh , Work done against friction

π‘ƒπ‘œπ‘€π‘’π‘Ÿ: 𝑃 =πΈπ‘›π‘’π‘Ÿπ‘”π‘¦

βˆ†π‘‘= 𝐹𝑣

Area -> work done -> K.E. change

For PH1012, 2015 Ho SY, SPMS NTU

Concepts Related to Forces, Momentum and Energy

Newton’s laws of Motion 1st law: Inertia, reluctance to change state of motion 2nd law: Force proportional to rate of change of momentum;

βˆ‘π‘­ = π’Žπ’‚ 3rd law: (Two objects) Action-reaction pair. Equal and opposite forces (of same nature) acting on two objects

Applying force 𝑭 over period of time 𝚫𝐭 results in change in momentum

𝐼 = 𝐹Δ𝑑 = 𝑝𝑓 βˆ’ 𝑝𝑖

(Impulse-momentum relation)

Conservation of Momentum (No external forces acting) π‘‡π‘œπ‘‘π‘Žπ‘™ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘π‘’π‘“π‘œπ‘Ÿπ‘’= π‘‘π‘œπ‘‘π‘Žπ‘™ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘Žπ‘“π‘‘π‘’π‘Ÿ

Applying force 𝑭 on object along diaplacement 𝚫𝐱 results in change in Kinetic energy

π‘Š = 𝐹Δπ‘₯ = 𝐾𝐸𝑓 βˆ’ 𝐾𝐸𝑖

(Work energy Theorem)

Conservation of Energy π‘‡π‘œπ‘‘π‘Žπ‘™ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ π‘Žπ‘‘ 𝑝𝑑 𝐴= π‘‘π‘œπ‘‘π‘Žπ‘™ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ π‘Žπ‘‘ 𝑝𝑑 𝐡

Page 5: PH1012 - Review of Mechanics; Electric Fields

q

T

mg

π‘‡π‘π‘œπ‘  πœƒ βˆ’ π‘šπ‘” = 0

𝑇𝑠𝑖𝑛 πœƒ =π‘šπ‘£2

π‘Ÿ

= π‘šπ‘Ÿπœ”2 q

π‘Ÿ

Conical pendulum (Uniform, constant horizontal circle) vtop

vmid

vbot

mg

mg

mg

Ttop

Tbot

Tmid

π‘‡π‘‘π‘œπ‘ +π‘šπ‘” =π‘šπ‘£π‘‘π‘œπ‘

2

π‘Ÿ

π‘‡π‘π‘œπ‘‘ βˆ’π‘šπ‘” =π‘šπ‘£π‘π‘œπ‘‘

2

π‘Ÿ

π‘‡π‘šπ‘–π‘‘ =π‘šπ‘£π‘šπ‘–π‘‘

2

π‘Ÿ

inwards +ve

Vertical circle (Non-uniform) (consider conservation of energy)

Non-uniform circular motion with constant angular acceleration 𝛼,

Same analysis for banking, planes making turns etc

𝐹 =πΊπ‘€πΈπ‘š

π‘Ÿ2=π‘šπ‘£2

π‘Ÿ π‘œπ‘Ÿ π‘šπ‘Ÿπœ”2; πœ” =

2πœ‹

𝑇

𝑔 =πΊπ‘€πΈπ‘Ÿ2

𝐹 = πœ‡π‘ πΉπ‘› =π‘šπ‘£2

π‘Ÿ

Turning on fan 𝛼 > 0, π‘Žπ‘‘π‘Žπ‘› > 0 At steady speed 𝛼 = 0, π‘Žπ‘‘π‘Žπ‘› = 0 (uniform circular motion, only centripetal accn.) Turning off fan 𝛼 < 0, π‘Žπ‘‘π‘Žπ‘› < 0

πœ”π‘“ = πœ”π‘– + 𝛼𝑑

π‘Ž 𝑅 = π‘Ÿπœ”π‘“2; π‘Ž ta𝑛 = π‘Ÿπ›Ό

π‘Ž = π‘Ž 𝑅 + π‘Ž π‘‘π‘Žπ‘›

Tut 6 Q7 (Non-uniform)

βˆ‘πΉπ‘‘π‘Žπ‘› = π‘šπ‘”cosπœƒ = π‘šπ‘Žπ‘‘π‘Žπ‘›

βˆ‘πΉπ‘Ÿπ‘Žπ‘‘ = 𝐹𝑇 βˆ’π‘šπ‘” sinπœƒ = π‘šπ‘Žπ‘Ÿπ‘Žπ‘‘ =π‘šπ‘£2

π‘Ÿ

Circular Motion For PH1012, 2015 (Key concepts) Ho SY, SPMS NTU

Page 6: PH1012 - Review of Mechanics; Electric Fields

Q

|𝐹| = π‘˜π‘„π‘ž

π‘Ÿ2

π‘ˆ(π‘Ÿ) = π‘˜π‘„π‘ž

π‘Ÿ

𝐸 = π‘˜π‘„

π‘Ÿ2 π‘Ÿ

𝑉(π‘Ÿ) = π‘˜π‘„

π‘Ÿ

When a charge q is placed in the E-field of charge Q.

𝐹 = π‘žπΈ

π‘ˆ = π‘žπ‘‰

πΈπ‘Ÿ = βˆ’πœ•π‘‰

πœ•π‘Ÿ

𝑉𝑏 βˆ’ π‘‰π‘Ž = βˆ’ 𝐸. π‘‘π‘Ÿ

𝑏

π‘Ž

𝐸 = 𝐸1+ 𝐸2+ 𝐸3+β‹―

For a system of charges, the electric field and potential at any point due to charges q1, q2 etc is given by

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 +β‹―

To sketch E-field or equipotential lines for system of charges: 1. Check for charge magnitudes and

geometry of charge distribution; making use of any symmetry.

2. Check for possible any points/lines with E = 0 or components of E which vanishes.

3. More field lines entering / leaving larger charge

4. E-fields lines are perpendicular to equipotential lines.

1 2

Point Charges (Radial Fields)

Parallel Plates (Uniform Fields)

𝐹 = π‘žπΈ ; U = qV Since the E-field is uniform (except near the edges), the force acting on a charge q is the same anywhere in the uniform field

𝐸 =Δ𝑉

𝑑

Dipole Field and Equipotential lines

3 4

Solving for resultant E-fields

1. Sketch arrows to indicate the contributions from various charges at a point.

2. Identify charge to point distances for application of Coulomb’s law

3. Identify angles for resolving of E-fields. 4. Combine E fields vectorially.

Very often, conservation of energy is used when the force is not constant when a charge is moving through a non-uniform E field.

For PH1012, 2015 (Key concepts)

Ho SY, SPMS NTU

Electric Field

Page 7: PH1012 - Review of Mechanics; Electric Fields

Electrostatic Equilibrium (no net motion of charges) Fo

r PH

10

12

20

15

(Lectu

re Sum

ma

ry an

d K

ey con

cepts)

Ho

SY, SPM

S NTU

Φ𝐸 = 𝐸 βˆ™ d𝐴 =π‘ž

πœ–π‘œ Φ𝐸 = 𝐸 βˆ™ d𝐴 = 0

Infinite plane of uniform charge Infinite line of uniform charge

s = Q/A – charge per unit area

Φ𝐸 = 𝐸 βˆ™ d𝐴 = 2𝐸𝐴 =𝜎𝐴

πœ–π‘œ

𝑬 =𝝈

πŸππ’

πœ† =𝑄

𝑙– - charge per unit length

Φ𝐸 = 𝐸 βˆ™ d𝐴 = 𝐸 𝑑𝐴 =πœ†π‘™

πœ–π‘œ

𝐸 2πœ‹π‘Ÿπ‘™ =πœ†π‘™

πœ–π‘œβ‡’ 𝑬 =

𝝀

πŸπ…ππ’π’“

𝐸 =𝜎

πœ–π‘œ

𝑄 - total charge, 𝜌 – charge density

Φ𝐸 = 𝐸 βˆ™ d𝐴 = 𝐸 𝑑𝐴 =𝑄

πœ–π‘œ

𝐸 4πœ‹π‘Ÿ2 =𝑄

πœ–π‘œβ‡’ 𝑬 =

𝑸

πŸ’π…ππ’π’“πŸ

(or E =πœŒπ‘Ž3

3πœ–π‘Ÿ2 where 𝜌 is charge density)

1. The electric field is zero everywhere inside the conductor (hollow or solid).

2. If conductor is isolated (from external E-fields), charges reside on the surface.

3. The electric field near the surface of the conductor points perpendicular to the surface.

4. For irregularly shaped conductor, the surface density is greatest at locations where the radius of curvature of the surface is smallest.

βˆ†π‘‰ = βˆ’ 𝐸. π‘‘π‘Ÿ 𝑏

π‘Ž

= 𝐸𝑑 =πœŽπ‘‘

πœ–π‘œ=𝑄𝑑

π΄πœ–π‘œ

𝐢 =𝑄

βˆ†π‘‰=πœ–π‘œπ΄

𝑑

βˆ†π‘‰ = βˆ’ 𝐸. 𝑑𝑙 𝑏

π‘Ž

= βˆ’ πœ†

2πœ‹πœ–π‘œπ‘Ÿπ‘‘π‘Ÿ

𝑏

π‘Ž

= βˆ’π‘„

2πœ‹πœ–π‘œπ‘™ln(𝑏

π‘Ž)

𝐢 =𝑄

βˆ†π‘‰=2πœ‹πœ–π‘œπ‘™

ln(π‘Žπ‘)

βˆ†π‘‰ = βˆ’ 𝐸. π‘‘π‘Ÿ 𝑏

π‘Ž

= βˆ’ 𝑄

4πœ‹πœ–π‘œπ‘Ÿ2π‘‘π‘Ÿ

𝑏

π‘Ž

= βˆ’π‘„

4πœ‹πœ–π‘œ(1

π‘βˆ’1

π‘Ž)

𝐢 =𝑄

βˆ†π‘‰=4πœ‹πœ–π‘œπ‘Žπ‘

(π‘Ž βˆ’ 𝑏)

Gauss’s Law:

Capacitance:

Potential Difference:

Sphere of uniform charge

5 6

convention βˆ’ d𝐴 π‘π‘œπ‘–π‘›π‘‘π‘–π‘›π‘” π‘œπ‘’π‘‘π‘€π‘Žπ‘Ÿπ‘‘π‘  𝑖𝑠 + 𝑣𝑒

7

a b

b

a

a

b

See footnote pg 631 of Giancoli, concerning –ve signs

On Capacitance Included for completeness, not required for PH1012

Page 8: PH1012 - Review of Mechanics; Electric Fields

Moment of inertia / Rotational Dynamics

Discrete mass: 𝐼 = π‘š1π‘Ÿ1

2 +π‘š2π‘Ÿ22 +β‹―+π‘šπ‘› π‘Ÿπ‘›

2 = βˆ‘ π‘šπ‘–π‘Ÿπ‘–2𝑛

𝑖=1 Continuous mass distribution: 𝐼 = βˆ«π‘…2π‘‘π‘š

If the masses are the same, which has larger MI?

π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ β†’ π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘šπ‘Žπ‘ π‘  π‘š β†’ π‘€π‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ πΌπ‘›π‘’π‘Ÿπ‘‘π‘–π‘Ž 𝐼; π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑣 β†’ π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ πœ”;

π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› π‘Ž β†’ π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› 𝛼 For a fixed axis in inertia reference frame,

𝐹 = π‘šπ‘Ž β†’ 𝜏 = 𝐼𝛼 ; 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ =1

2mv2 β†’

1

2Iπœ”2

Pure rotational motion (Involving height change) Conservation of energy:

𝐺𝑃𝐸 + πΎπΈπ‘Ÿπ‘œπ‘‘ 𝑖 = 𝐺𝑃𝐸 + πΎπΈπ‘Ÿπ‘œπ‘‘ 𝑓

Newton’s 2nd law (rotation) βˆ‘πœ = 𝐼𝛼 (about pivot)

For PH1012, 2015 (Key concepts)

Ho SY, SPMS NTU

For forces acting on extended objects in general:

βˆ‘πœ = 𝐼𝛼 βˆ‘πΉ = π‘šπ‘Ž

Cannot assume that π‘Ž and 𝛼 are related.

e.g. βˆ‘πΉ = 0 But βˆ‘πœ β‰  0 = 𝐹𝑅

For forces acting on extended objects (rolling without slipping):

βˆ‘πœπΆπ‘€ = 𝐼𝐢𝑀𝛼𝐢𝑀 βˆ‘πΉ = π‘šπ‘Ž

π‘Ž = π‘Ÿπ›Ό or 𝑣 = π‘Ÿπœ”

𝐾. 𝐸.β†’ 𝐾. 𝐸.π‘‘π‘Ÿπ‘Žπ‘›π‘ +𝐾. 𝐸.π‘Ÿπ‘œπ‘‘

π‘€π‘”β„Ž =1

2𝑀𝑣𝐢𝑀

2 +1

2πΌπΆπ‘€πœ”

2 +π‘€π‘”β„Žβ€²

π‘Ž = π‘Ÿπ›Ό or 𝑣 = π‘Ÿπœ”

(Rolling without slipping):

Parallel Axis theorem IX = ICM +Mh

2

𝑣 = π‘Ÿπœ”

Rotational Dynamics

Page 9: PH1012 - Review of Mechanics; Electric Fields

Non-uniform circular motion with constant angular acceleration 𝛼,

πœ”π‘“ = πœ”π‘– + 𝛼𝑑

π‘Ž 𝑅 = π‘Ÿπœ”π‘“2; π‘Ž ta𝑛 = π‘Ÿπ›Ό

π‘Ž = π‘Ž 𝑅 + π‘Ž π‘‘π‘Žπ‘›

Moment of inertia / Rotational Dynamics

Discrete mass: 𝐼 = π‘š1π‘Ÿ1

2 +π‘š2π‘Ÿ22 +β‹―+π‘šπ‘› π‘Ÿπ‘›

2 = βˆ‘ π‘šπ‘–π‘Ÿπ‘–2𝑛

𝑖=1 Continuous mass distribution: 𝐼 = βˆ«π‘…2π‘‘π‘š

If the masses are the same, which has larger MI? Parallel Axis theorem IX = ICM +Mh

2

π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ β†’ π‘…π‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘šπ‘Žπ‘ π‘  π‘š β†’ π‘€π‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ πΌπ‘›π‘’π‘Ÿπ‘‘π‘–π‘Ž 𝐼; π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ 𝑣 β†’ π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘£π‘’π‘™π‘œπ‘π‘–π‘‘π‘¦ πœ”;

π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› π‘Ž β†’ π‘Žπ‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘Žπ‘π‘π‘’π‘™π‘’π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘› 𝛼 For a fixed axis in inertia reference frame,

𝐹 = π‘šπ‘Ž β†’ 𝜏 = 𝐼𝛼 ; 𝐾𝑖𝑛𝑒𝑑𝑖𝑐 π‘’π‘›π‘’π‘Ÿπ‘”π‘¦ =1

2mv2 β†’

1

2Iπœ”2

Perpendicular axis theorem 𝐼𝑧 = 𝐼π‘₯ + 𝐼𝑦

𝐿 = πΌπœ” = πΌπœ”π‘œ; βˆ‘πΏπ‘– = βˆ‘πΏπ‘“

E.g. π‘šπ‘Ÿπ‘£ = πΌπœ” + π‘šπ‘…π‘œ

2 πœ”

Conservation of Angular Momentum

Pure rotational motion (Involving height change) Conservation of energy:

𝐺𝑃𝐸 + πΎπΈπ‘Ÿπ‘œπ‘‘ 𝑖 = 𝐺𝑃𝐸 + πΎπΈπ‘Ÿπ‘œπ‘‘ 𝑓

Newton’s 2nd law (rotation) βˆ‘πœ = 𝐼𝛼 (about pivot)

For PH1012, 2015 (Key concepts, Mechanics II)

Ho SY, SPMS NTU

For extended objects in equilibrium: βˆ‘πœ = 0 βˆ‘πΉ = 0

For forces acting on extended objects in general:

βˆ‘πœ = 𝐼𝛼 βˆ‘πΉ = π‘šπ‘Ž

Cannot assume that π‘Ž and 𝛼 are related.

e.g. βˆ‘πΉ = 0 But βˆ‘πœ β‰  0 = 𝐹𝑅

For forces acting on extended objects (rolling without slipping):

βˆ‘πœπΆπ‘€ = 𝐼𝐢𝑀𝛼𝐢𝑀 βˆ‘πΉ = π‘šπ‘Ž

π‘Ž = π‘Ÿπ›Ό or 𝑣 = π‘Ÿπœ”

𝐾. 𝐸.β†’ 𝐾. 𝐸.π‘‘π‘Ÿπ‘Žπ‘›π‘ +𝐾. 𝐸.π‘Ÿπ‘œπ‘‘

π‘€π‘”β„Ž =1

2𝑀𝑣𝐢𝑀

2 +1

2πΌπΆπ‘€πœ”

2 +π‘€π‘”β„Žβ€²

π‘Ž = π‘Ÿπ›Ό or 𝑣 = π‘Ÿπœ”

(rolling without slipping):

Page 10: PH1012 - Review of Mechanics; Electric Fields

- Mass of (non uniform) rod - mixing water; heat capacities - class averages - turning moments

10

Total Mass Center of Mass Moment of Inertia (about an axis)

Discrete

Continuous

For PH1012, 2015 (Key concepts)

Ho SY, SPMS NTU