p.g. pelfer university of florence and infn, firenze, italy f. dubecky

74
P.G. Pelfer University of Florence and INFN, Firenze, Italy F. Dubecky Institute of Electrical Engineering, Slovak Academy of Sciences Bratislava, Slovakia A.Owens ESA/ESTEC Noordwijk,Netherland Solar Neutrino Spectrometer with InP Detectors P.G.Pelfer SIENA2002

Upload: shaeleigh-cross

Post on 01-Jan-2016

19 views

Category:

Documents


0 download

DESCRIPTION

P.G.Pelfer SIENA2002. Solar Neutrino Spectrometer with InP Detectors. P.G. Pelfer University of Florence and INFN, Firenze, Italy F. Dubecky Institute of Electrical Engineering, Slovak Academy of Sciences Bratislava, Slovakia A.Owens ESA/ESTEC Noordwijk,Netherland. - PowerPoint PPT Presentation

TRANSCRIPT

P.G. PelferUniversity of Florence and INFN, Firenze, Italy

F. DubeckyInstitute of Electrical Engineering, Slovak Academy of Sciences

Bratislava, Slovakia

A.OwensESA/ESTEC

Noordwijk,Netherland

P.G. PelferUniversity of Florence and INFN, Firenze, Italy

F. DubeckyInstitute of Electrical Engineering, Slovak Academy of Sciences

Bratislava, Slovakia

A.OwensESA/ESTEC

Noordwijk,Netherland

Solar Neutrino Spectrometer with InP Detectors

Solar Neutrino Spectrometer with InP Detectors

P.G.Pelfer SIENA2002

P.G.Pelfer , SIENA2002

Why InP Solar Neutrino Experiment ?Why InP Solar Neutrino Experiment ?

Semi Insulting InP Material

base material for:

Hard X-Ray Detectors

Fast Electronics and Optoelectronics

InP Spectrometer,

the Smallest, Real Time, Lower Energy

pp Solar Neutrino Spectrometer

The Solar Neutrino Spectrometer from/for R&D on InP X-Ray Detectors ?

Requirements for Hard X-Ray Detectors of the New GenerationRequirements for Hard X-Ray

Detectors of the New Generation

• Room temperature (RT) operation• Portability• Fast reaction rate• Universal detection ability• Good detection parameters: CCE, FWHM, DE• Radiation hardness• Well established material technology • Well established device technology (10 m)• FE Electronics and Optoelectronics

integration on the Detector

• LOW COST

RT OPERATION: EG > 1.2 eV POLARISATION EFFECT: EG < 2.5 eV HIGH ENERGY RESOLUTION: EG small HIGH STOPPING POWER: Z > 30 HIGH CARRIER MOBILITY: > 2000 cm2/Vs

CANDIDATES

CdTe, HgI2, GaAs, InP

P.G.Pelfer , SIENA2002

P.G.Pelfer SIENA2002

• BASIC KNOWLEDGE

• Solar Neutrino Physics• X-ray astronomy

• X-ray physics

• MEDICINE• Digital X-ray radiology (stomatology, mammography, ...)

• Positron emission tomography• Dosimetry

• NONDESTRUCTIVE ON-LINE PROCESS CONTROL• Material defectoscopy

• MONITORING• Environmental control

• Radioactive waste management• Metrology (testing of radioactive sources, spectrometry...)

• NATIONAL SECURITY• Contraband inspections: cargo control

• Detection of drugs and plastic explosives • Cultural heritage study

DETECTOR APPLICATIONSDETECTOR APPLICATIONS

P.G.Pelfer SIENA2002

SemiInsulating InP Wafer6” 6” diameter, diameter, 1 mm1 mm thick

Pad Detectors

Basic Component ofNeutrino Spectrometer

Present InP Material and Detector TechnologyPresent InP Material and Detector Technology

Neutrino from the SunNeutrino from the Sun

ChlorineHomestakee + 37Cl 37Ar + e-

GalliumSAGE, Gallex, GNOe + 71Ga 71Ge + e-

WaterKamioka, SuperKx + e- x + e- (ES)

D2OSNOx + e- x + e- (ES)e + d p + p + e- (CC)x + d n + p + e- (NC)

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

Requirements for Indium Solar Neutrino SpectrometerRequirements for Indium Solar Neutrino Spectrometer

1. Indium incorporated into the detector

2. Energy resolution ∆E/E of the order of 25% at 600 keV. Important for spectrometry as well as background reduction.

3. Time resolution of the order of 100 ns for ~ 100 keV radiations.

4. Position resolution ∆V/V 10-7 at a reasonable cost. Very important for background reduction

5. Good energy resolution for low energy radiations ( ~ 50 keV )

6. Made with materials of high radiactive purity

497.33 keV

E e(E - 118 keV ) + 115 Sn*

Delay = 4.76 sec

115Sn* 115Sn + e-(88 112 keV)/1 (115.6 keV) + 2(497.33 keV)

1/2= 4.76 sec

-

e

115In (95.7%)

1/2=6x1014 y

115Sn

612.81 keV9/2+

7/2+

1/2+

3/2+1

2

0

Neutrino Detection by In TargetNeutrino Detection by In Target

P.G.Pelfer , SIENA2002

P.G.Pelfer SIMC XIIJuly 2002, Smolenice Castle

The Neutrino TagThe Neutrino Tag

a - e delay = 10 sec ( e/1 + 2 ) coincidence

b - ( e/1 + 2 ) in prompt coincidence ( gate 100 ns )

c - ( e + e ) in spatial coincidence in a microcell ( few mm3 )

d - 1 contained in a “ 1 cm3 cell “ surrounding primary microcell

e - 2 shower trigger in at least two “ 1 cm3 cell “

f - 2 contained in a macrocell ( more than 27 “ 1 cm3 cell “ ) surrounding primary microcell

g - E( e/1 ) = 50-200 keV

h - E( 2 ) = 450-750 keV

i- E(1 + 2 ) = 500-750 keV

P.G.Pelfer , SIENA2002

" prompt event “ in a “1 cm3 cell”

“ delayed event “ in a 27 cm3 macrocell

12

3 4 5

6

789

12

3 4 5

6

789

e

1

2

10 s

time

Solar Neutrino Eventin InP Detector

Solar Neutrino Eventin InP Detector

Calorimeter Module

1 cm3 cell

106 InP “1 cm3 cell”

1 neutrino event once a day for 1011 background events

100 mm 200 mm

Spectrometer Module

Spectrometer Building Block

Pad Detectors

V microcell 1 mm3

N microcell /cm3 1000

FULL NEUTRINO SPECTROMETERFULL NEUTRINO SPECTROMETER

Nmodules 125

P.G.Pelfer , SIENA2002

pp

Be(384)

spectrum of In (*10 )115 -11

Be (862)

pep (1442)

d

*

[S

NU

per

20

keV

]

E [keV]e

Expected Electron Energy Spectrumfrom In Solar Neutrino Experiment

Expected Electron Energy Spectrumfrom In Solar Neutrino Experiment

P.G.Pelfer , SIENA2002

SI InP Material and Detector TechnologySI InP Material and Detector Technology

P.G.Pelfer , SIENA2002

Original BUFFERS realised using ion implantation in backside (PATENTED)

Symmetrical circular contact configuration, 2mm , using both-sided photolithography

Final metallisation: TiPtAu on top and AuGeNi on backside

Surface passivation by Silicon Nitride

Producer:

JAPAN ENERGY Co., Japan

Growth Technique:

LECHigh-Temperature Wafer Annealing

Resistivity (300 K): 4.9x107 cm

Hall Mobility (300K): 4410 cm2/Vs

Fe Content: 2x1015 cm-3

Orientation: <100>

Final Wafer Thickness: ~ 200 m

InP Detector Test SetupInP Detector Test Setup

3.142 mm2 x 200 m

P.G.Pelfer , SIENA2002

E=2.4 keV at 5.9 keV : 8.5 keV at 59.54 keV

P.G.Pelfer , SIENA2002

Energy Resolution vs Shaping Time andSpectral Response in InP Laboratory Measurements

Energy Resolution vs Shaping Time andSpectral Response in InP Laboratory Measurements

2

12355.2/355.2

a

EaeEFE

Linearity and Resolution vs X Ray Energyin InP Laboratory Measurements

Linearity and Resolution vs X Ray Energyin InP Laboratory Measurements

P.G.Pelfer , SIENA2002

Synchrotron Radiation MeasurementsSynchrotron Radiation Measurements

Beamline set-up

XY stage

detectorslits

Beam pipe

To mono/focusing optics

Beam profile ~20 20 m2, E/E > 104

Optical bench

HASYLAB X-1, BESSY-II WLS beamlines. Energy range 10 keV to 100 keV

P.G.Pelfer , SIENA2002

Pulse Height Spectra in InP HASYLAB MeasurementsPulse Height Spectra in InP HASYLAB Measurements

P.G.Pelfer , SIENA2002

2

12355.2/355.2

a

EaeEFE

InP Derectors Linearity and Energy Resolution in the Measurements at HASYLAB

InP Derectors Linearity and Energy Resolution in the Measurements at HASYLAB

P.G.Pelfer , SIENA2002

InP Spatial DistributionsInP Spatial Distributions

Count rate

Peak centroid

Resolvingpower

contact

bond wire

The detectors spatial response measured at HASYLAB using a 50 50 m2, 15 keV X-ray

beam.

P.G.Pelfer , SIENA2002

InP Detector BESSY-II Measurements: Detection Efficiency vs Energy and Thickness

InP Detector BESSY-II Measurements: Detection Efficiency vs Energy and Thickness

Depletion depth derived from C/V measurements = 170 mEfficiency measured relative to a calibrated Ge(HP) detectorFitted depth from efficiency measurements = (191 40) m

))(exp(1))(exp()(1

dEtEE InPii

n

d= Aor/C

WLS beamline

P.G.Pelfer , SIENA2002

InP Spectra Laboratory Cryogenic Measurements InP Spectra Laboratory Cryogenic Measurements

T=-60oC T=-170oC

E=2.4 keV at 5.9 keV : 8.5 keV at 59.54 keV E=0.9 keV at 5.9 keV : 2.5 keV at 59.54 keV

ST=10sST=2s

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

Present Radiation Detectors based on Bulk SI InP Fe doped have very good Detection Parameters

for the X ray Detection

from HASYLAB SR FaciltyFWHM from 2.5 KeV at 5.9 KeV to 5.5 KeV at 100 KeV

DE 10% at 100 KeV for 200 m thick Detector

dueto Better Material from Japan Energyand to Improved Interface Technology

Some Problems for Detector Polarisation

Detectors performance good for Solar Neutrino Spectrometer

Optimisation is our next research goal

Summary and DiscussionSummary and Discussion

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

InP and In-Liquid Scintillator

pp Solar Neutrino Detector

InP DETECTROR In-Liquid Scintillator DETECTOR

Radiation Damage Studies by 10 MeV Proton Beam Radiation Damage Studies by 10 MeV Proton Beam

Tests carried out at the accelerator facility of the Department of Chemistry, University of Helsinki, The incident beam energy was 10 MeV. Irradiations were carried out at room temperature and unbiased.

Bottom line: Si energy resolution degraded by a factor of 6 for a proton fluence of 8 x 1010 protons cm-2 (=60 krad), whereas InP degraded by only 20% for fluence of 1.6 x 1011 protons cm-2 (however the initial resolution was much worse).

Detectors tested [email protected] Area thickness [email protected] Area thickness

Si 245 eV 0.9 mm2, 500m CdZnTe 450 eV 3.1 mm2, 2500m GaAs 470 eV 0.9 mm2, 40m HgI2 600 eV 7.0 mm2, 500m InP 2.5 keV 3.1 mm2, 180m TlBr 900 eV 3.1 mm2, 800m

P.G.Pelfer , SIENA2002

Radiation Damage Studies. Energy Resolution vs Proton Fluence Radiation Damage Studies. Energy Resolution vs Proton Fluence

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

ACKNOWLEDGEMENTSACKNOWLEDGEMENTS

Authors are grateful to:

Slovak Academy of Sciences

Slovak Grant Agency and

Slovak Ministry of Economy,

European Spatial Agency,

Istituto Nazionale di Fisica Nucleare,

University of Florence

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

Good energy resolution in the interval

50÷150 keV

Large detector volume or thickness (mm)

High ratio between peak to valleyNo high applied bias voltage

Low dark currentShort charge collection time

High fabrication yield ofgood quality detectors

Radiation Hardness

Stability of detector in environmental conditions and ageing

Relevant requirements depend from specific detector applications

Detector RequirementsDetector Requirements Materials RequirementsMaterials Requirements

Bulk Material

1- , ee, hh :high mobility, long carrier lifetime and high product mobiliiy lifetime

2-material homogeneity in term of purity, stoichiometry, absence of structural defects.

Highly uniform material critical for fabrication of thick X-Rays detectors.

3-high resistivity generally required (107 cm) , high breakdown voltage, low dark

current

Epitaxial Materials not examined

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

Pad and Double Side Strip Detector ArrayPad and Double Side Strip Detector Array

PAMELA EMCal Si Microstrips Layers

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

NeutronSpectrography

NeutronSpectrography

•Possible room temperature operation

•High stopping power

•Electron mobilities 3 times that of Si

•Possible neutrino detection medium

•Epitaxial and bulk growth available

•Standard semiconductor processing

Indium phosphide X-ray detectors

Beam pipe

To mono/focusing optics

Optical bench

Beamline set-up

slits

Beam profile ~20 20 m2, E/E > 104

Synchrotron radiation measurementsHASYLAB X-1 and BESSY-II WLS beamlines. Energy range 10 keV to 100 keV

detector

XY stage

Radiation damage studies: experimental

Tests carried out at the accelerator facility of the Department of Chemistry, University of Helsinki using an IBA Cyclone 10/5, proton cyclotron, The incident beam energy was 10 MeV. Irradiations were carried out at room temperature and unbiased. Devices were tested using 55Fe, 109Cd and 241Am radioactive sources, with initial and final characterizations at HASYLAB

Bottom line: Si energy resolution degraded by a factor of 6 for a proton fluence of 8 x 1010 protons cm-2 (=60 krad), whereas InP degraded by only 20% for fluence of 1.6 x 1011 protons cm-2 (120 krads Si equivalent), however the initial resolution was much worse.

Detectors tested [email protected] Area thickness [email protected] Area thickness

Si 245 eV 0.9 mm2, 500m CdZnTe 450 eV 3.1 mm2, 2500m GaAs 470 eV 0.9 mm2, 40m HgI2 600 eV 7.0 mm2, 500m InP 2.5 keV 3.1 mm2, 180m TlBr 900 eV 3.1 mm2, 800m

Science Payloads and Advanced Concepts

Radiation damage studies: dose history

Science Payloads and Advanced Concepts

P.G.Pelfer , SIENA2002

Linear ScannerLinear Scanner

X Rays

Linear array of 32 InP pixels

Linear array of 32 InP pixel and FE electronics cooled with a Peltier cooler

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

Termonuclear Neutrino Sources from the SunTermonuclear Neutrino Sources from the Sun

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

P.G.Pelfer SIMC XIIJuly 2002, Smolenice Castle

Detector PrototypeDetector Prototype

Unitarz Cell

Basic Arraz Lazer

Prototype Technology

6“ Wafer VGF Technology (U.Sahr, Erlangen)

PADS / STRIPS

1 cm thick / << 1 cm thick

ELECTRONICS: problem only for a number of the channels

P.G.Pelfer , SIENA2002

PAMELA Electromagnetic CalorimeterPAMELA Electromagnetic Calorimeter

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

Figura del wafer 6 inches con il pattern

Dei pixel

Tecnologia 6inch

Semiisolante Fe doped

P.G.Pelfer , SIENA2002

SMALLEST; REAL TIME,

LOWER ENERGY pp SOLAR NEUTRINO

DETECTOR

Module dimension

Module number ( 1 neutrino per day )

Easy shielding from environmental radiation

Many possible topological configuration

Challenging readout solutions

10 “ WAFERS InP ?

P.G.Pelfer , SIENA2002

MODULO ELEMENTAREUNITARIO

PER IL RIVELATORE DI InP

P.G.Pelfer , SIENA2002

MODULO ELEMENTAREUNITARIO

PER IL RIVELATORE DI InP

- Large Groups from many different Countries High Concentration of the needed Expertise

High Experiment Budget ( >100 Meuro, cost of a standard SN exp.)

Interest of the Companies for the Experiment itself No limited time for developing and testing Devices and

Detectors.

P.G.Pelfer , SIENA2002

Calorimeter Module

1 cm3 cell

106 InP “1 cm3 cell”

1 neutrino event once a day for 1011 background events

Solar Neutrino EventSolar Neutrino Event

Solar Neutrino DetectorSolar Neutrino Detector

P.G.Pelfer , SIENA2002

1 macrocell = 27 “1 cm3 cell”

Nmodules 125

•Possible room temperature operation

•High stopping power

•Electron mobilities 3 times that of Si

•Possible neutrino detection medium

•Epitaxial and bulk growth available

•Standard semiconductor processing

Indium Phosphide X-ray DetectorsIndium Phosphide X-ray Detectors

P.G.Pelfer SIENA2002

InP detector construction

3.142 mm2 x 180m thick Fe doped device

Science Payloads and Advanced Concepts

EBIC technique - SI InP: Carrier extraction??EBIC technique - SI InP: Carrier extraction??

Bias voltage: 0, - 60 V, + 60 V

SI InP:

MASPECP+ electrode

JEImplanted bufferEXTRACTION??

Energy Resolution vs Shaping Time andSpectral Response in InP Laboratory Measurements

Energy Resolution vs Shaping Time andSpectral Response in InP Laboratory Measurements

E=2.4 keV at 5.9 keV : 8.5 keV at 59.54 keV

P.G.Pelfer , SIENA2002

P.G.Pelfer , SIENA2002

2

12355.2/355.2

a

EaeEFE

Linearity and Resolution vs X Ray Energyin InP Laboratory Measurements

Linearity and Resolution vs X Ray Energyin InP Laboratory Measurements

P.G.Pelfer , SIENA2002

Beam pipe

To mono/focusing optics

Optical bench

Beamline set-up

slits

Beam profile ~20 20 m2, E/E > 104

Synchrotron radiation measurementsHASYLAB X-1 and BESSY-II WLS beamlines. Energy range 10 keV to 100 keV

detector

XY stage

Energy Spectra in InP HASYLAB MeasurementsEnergy Spectra in InP HASYLAB Measurements

P.G.Pelfer , SIENA2002

InP Derectors Linearity and Energy Resolution in the Measurements at HASYLAB

InP Derectors Linearity and Energy Resolution in the Measurements at HASYLAB

2

12355.2/355.2

a

EaeEFE

P.G.Pelfer , SIENA2002

contact

Count rate

Peak centroid

Resolvingpower

bond wire

The detectors spatial response measured at HASYLAB using a 50 50 m2, 15 keV X-ray beam.

P.G.Pelfer , SIENA2002

Detection Efficiency vs X-Ray Energy and Detector ThicknessDetection Efficiency vs X-Ray Energy and Detector Thickness

InP new laboratory cryogenic measurements

T=-60oC T=-170oC

E=2.4 keV at 5.9 keV : 8.5 keV at 59.54 keV E=0.9 keV at 5.9 keV : 2.5 keV at 59.54 keV

ST=10sST=2s

Science Payloads and Advanced Concepts