pfwhelp

57
#$K+ Index Program Description Options Input Formats 1. IEEE Common Format 2. WSCC Format 3. FACTS Format Menu Toolbar Mouse # INDEX $ Index K Index + PFLOWWIN:005

Upload: cyrus188

Post on 26-Dec-2014

485 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: pfwhelp

#$K+ Index

Program Description

Options

Input Formats

1. IEEE Common Format

2. WSCC Format

3. FACTS Format

Menu

Toolbar

Mouse

# INDEX$ IndexK Index+ PFLOWWIN:005

Page 2: pfwhelp

Examples:

1. 173 bus ac-dc-FACTS system (173sys.bat)

2. IEEE 300 bus system (ieee300.bat)

Page 3: pfwhelp

#$K+ Program Description

UWPFLOWContinuation and Direct Methods to Locate Fold Bifurcations

in AC/DC/FACTS Power Systems

By

Claudio A. CanizaresUniversity of Waterloo

Waterloo, Ontario N2K-2C4CANADA

[email protected]://www.power.uwaterloo.ca

Fernando L. AlvaradoUniversity of Wisconsin-Madison

Madison, Wisconsin 53706USA

[email protected]

November 18, 1999(First Version: December 20, 1996)

This program is provided without charge for testing purposes only. The programor any of its parts may not be used for any commercial applications.

The authors would appreciate any comments and suggestions on how toimprove the program. Any reports of problems should be directed to the

# DESCRIPTION$ Program DescriptionK Program Applications; Program Description; References+ PFLOWWIN:07

Page 4: pfwhelp

authors, who reserve their right to modify the program at any time withoutprevious notification.

DISCLAIMER: THE AUTHORS DO NOT GUARANTEE THE ACCURACY OFTHE RESULTS OBTAINED WITH THIS PROGRAM, NOR ITSPERFORMANCE.

BRIEF PROGRAM DESCRIPTION:

UWPFLOW is a research tool that has been designed to calculate localbifurcations related to system limits or singularities in the system Jacobian. Theprogram also generates a series of output files that allow further analyses, suchas tangent vectors, left and right eigenvectors at a singular bifurcation point,Jacobians, power flow solutions at different loading levels, voltage stabilityindices, etc.

The program reads ac/dc power flow data in WSCC/BPA/EPRI formats [1,3] orIEEE common format [2]; FACTS devices data in a special format described inthe on-line help file (WINDOWS) and using the models described in [5]; steady-state load model data in OH format [4] and steady-state generator data in asimple free format as explained in the on-line help. The program also reads acdata in other formats of interest to only some particular users (see on-line help).

Additional unformatted data is required for bifurcation analysis, such as thedirection of generation change, direction of load change, and maximumgenerator powers. The program assumes that one parameter, the "loadingfactor," is allowed to change. All steady state system controls remainoperational unless otherwise specified through the program options.

The program has been developed in C and C++ and runs under WINDOWS 95and UNIX environments. It has no limitations on system size, other than thoseimposed by memory limitations in the corresponding environment, i.e., RAM andswap space in UNIX and WINDOWS. The program has been successfully usedto study a real 2158 bus ac/dc system in PC machines, and HP, DEC and SUNSPARC UNIX stations.The program has the following features:

Page 5: pfwhelp

1. Adequate handling of generators limits, with generators being able torecover from a variety of limits, including S limits.

2. Steady state models of generators and their control limits (AVR and Prime-mover limits) are included. This requires at least one additional input filedefining Ra, Xd, and Xq data, as well as Ia and Eq limits. Read the on-linehelp, examples and corresponding data files carefully to figure out how thisworks.

3. Voltage dependent load models for voltage stability analysis are alsoincluded. To use these models, an additional data file in OH (Ontario Hydro)or ADD (Italian COLAS program) formats is needed. Read the on-line help,examples and corresponding data files carefully to figure out how this works.

4. Either BPA/WSCC ac-dc input data formats (and variations) or IEEEcommon format may be used. An ac input data format based on an Italianpower flow format (.DAT files) and COLAS (.ADD files) can be used also. Afairly complete description of the WSCC and IEEE formats is now providedin the on-line help files.

5. Detailed and reliable steady state models of SVC, TCSC and STATCOMmodels, and their controls with the corresponding limits are included. Theinput data format is described on the on-line help files.

6. Secondary voltage control, as defined by ENEL, can be modeled andsimulated in the program.

7. The program is able to compute the minimum real eigenvalue and therelated right and left eigenvectors at any loading conditions. Several voltagestability indices and tangent vector information can be generated by theprogram as well. This information allows the user to carry on a variety ofsensitivity analyses.

8. The program generates a wide variety of output ASCII and MATLAB (.m)files as well as IEEE common format data files for analysis and plotting ofthe results.

Page 6: pfwhelp

9. The program has being designed to automatically run script files, i.e., DOSbatch or UNIX script files. This feature is used to run the tutorials providedwith the program.

For more details about the program capabilities, models and the techniquesused refer to [5,6,7,8,9,10,11,12]. For a PDF copy of most of these documents,access the WEB server URL: http://www.power.uwaterloo.ca

REFERENCES:

[1] "Extended Transient-Midterm Stability Package: User's Manual for thePower Flow Program," EPRI computer code manual EL-2002-CCM,January 1987.

[2] "Common Format for Exchange of Solved Load Flow Data," IEEE Trans.Power Apparatus and Systems, Vol. 92, No. 6, Nov./Dec. 1973, pp. 1916-1925. Working Group report.

[3] "Methodology for the Integration of HVDC Links in Large AC Systems-Phase 2: Advanced Concepts," Vol. 1, EPRI technical report EL-4365,April 1987.

[4] "Small Signal Stability Analysis Program Package," Version 2, EPRI usermanual EL-6678, January 1990.

[5] C. A. Cañizares, "Modeling of TCR and VSI Based FACTS Controllers,"Internal Report, ENEL and Politecnico di Milano, Milan, Italy, September9, 1999, 29 pages.

[6] C. A. Cañizares and F. L. Alvarado, "Point of Collapse and ContinuationMethods for Large AC/DC Systems," IEEE Trans. Power Systems, Vol. 8,No. 1, February 1993, pp. 1-8.

Page 7: pfwhelp

[7] C. A. Cañizares, F. L. Alvarado, C. L. DeMarco, I. Dobson, W. F. Long,"Point of Collapse Methods Applied to AC/DC Power Systems," IEEETrans. Power Systems, Vol. 7, No. 2, May 1992, pp. 673-683.

[8] C. A. Cañizares, "On Bifurcations, Voltage Collapse and Load Modeling,"IEEE Trans. Power Systems, 1995. Paper 94 SM 512-4 PWRS.

[9] C. A. Cañizares, A. Z. de Souza and V. H. Quintana, "ImprovingContinuation Methods for Tracing Bifurcation Diagrams in PowerSystems," Bulk Power System Voltage Phenomena-III Seminar, ECC Inc.,Davos, Switzerland, August 1994.

[10] A. Z. de Souza, C. A. Canizares and V. H. Quintana, "New Techniques toSpeed Up Voltage Collapse Computations Using Tangent Vectors," IEEETrans. Power Systems, Vol. 12, No. 3, August 1997, pp. 1380-1387.

[11] C. A. Cañizares and Z. Faur, "Analysis of SVC and TCSC Controllers inVoltage Collapse," IEEE Transactions on Power Systems, Vol. 14, No. 1,February 1999, pp. 158-165.

[12] C. A. Cañizares et al., "Voltage Stability Indices," Final Draft, Chapter 4 ofthe IEEE/PES Power Systems Stability Subcommittee Report on VoltageStability Assessment, Procedures and Guides, January 1999, 71 pages.

Page 8: pfwhelp

#$K+ Program Options

Define opitons using menu Execute|Command Line or pressing on Toolbar

Usage:Like any other UNIX program, i.e., command-line options (-option) withredirection of output (>) from screen into files:

uwpflow [-options] input_file [[>]output_file]

Input file:The input_file could be in WSCC/BPA/EPRI format (or Anarede's variation)or IEEE common format (or Electrocon's variation) for the ac system. OtherAC formats may be used (see options below). The dc data could be on eitherWSCC/BPA or multiterminal EPRI format, although it just deals with thestandard two-terminal HVDC problem. The FACTS devices format wasspecifically designed for this program and is explained in the help file andtest systems provided with the program.

Output files:The program writes the solution into the output_file in ASCII. It can alsowrite the solved case in a file in IEEE common format using the -W or -woption (HVDC links are written in EPRI’s ETMSP format and FACTS devicesare written in their own format). Additional files can be created for post-processing analyses (see options below), such as the bifurcation diagram(nose curve) in column form for plotting with MATLAB or other programs,Jacobians for SMMS or MATLAB studies, etc.

Solution Technique:

# OPTIONS$ Program OptionsK Command Line; Program Options+ PFLOWWIN:010

Page 9: pfwhelp

The power flows are solved with simultaneous N-R, allowing forasynchronous systems, area interchange, remote voltage control, and localand remote regulating transformers (LTCs and phase shifters controllingvoltages, angles, and/or active and reactive power flows).

Options:-a Turns off tap and angle limits in regulating transformers.

-A Turns off interchange area control.

-b Solve base case before changing the loading factorlambda.

-Bnum PQ bus number 'num' where the voltage is fixed in orderto find the loading factor (lambda) for voltage collapsestudies. Must be used with -K and -v options.

-cfile Increases the loading factor lambda using a continuationmethod for finding voltage profiles. The output (optional'file') is a list of max. 8 ac voltages that change themost, plus 3 additional variables for each dc bus (see -eoption). Must be used with the -K option.

-Cfile Direct method studies, i.e., find the max. loading factorlambda for a given generation and load direction. Thebase case loading can be initialized using the -L option;however, the program calculates an initial loading of thesystem before the direct method is applied. The left e-vector is written in 'file' (optional). Must be used with the-K option.

-d Generates some debug output.

-Dfile Read load model data from 'file', using Ontario Hydro(OH) format, which is based on the load model:Pl=Pn*V^a+Pz*V^2Ql=Qn*V^b+Qz*V^2

Page 10: pfwhelp

If a bus is not defined in the list, Pn=Qn=0 is assumed.

-e Output 3 dc variables per dc link, and 3 internalvariables for generators in the output list during thecontinuation process (see the -i option).

-Efile Print in 'file' the continuation method direction vector atthe maximum loading factor (PoC right e-vector).

-fnum Output Sensitivity Factors (SF) and Voltage SensitivityFactors (VSF and tangent vector) during continuationmethod computations. The number 'num' defines thebus for which the voltage entry and rank in the tangentvector are printed out (tanget vector index); if thisnumber is not defined, the program chooses the buswith the maximum initial voltage entry in the tangentvector.

-Fval Stability/sparsity value 'val' for factorization (def. 0.01).A value of 0 means choose a pivot based on sparsityonly; a value of 1 means choose a pivot based onstability only.

-g Force Q in generators to zero when reading data inIEEE common format, since sometimes a value of Qgcreates convergence problems.

-G Turns off recovery from some ac device limits in theprogram. For example, the program allows to recovervoltage control after a Q-limit is reached by monitoringthe voltage; this option eliminates that possibility.

-h Prints this message in standard output.

-Hfile Increases the loading factor lambda using aparameterized continuation method for finding voltageprofiles. The output (optional 'file') is a list of max. 8 ac

Page 11: pfwhelp

voltages that change the most, plus 3 additionalvariables for each dc bus (see -e option). Must be usedwith the -K option.

-ifile List of numbers and names in 'file' for printing variableprofiles with the -c and -H options. The input format is:Number Name [VarType].Use zero when either the number or the name areunknown. If Name has spaces, wrap it in double orsingle quotes.VarType is optional and can be: V for voltage (default),D for angle, PG for MW generated, QG for Mvargenerated, PL for MW load, QL for Mvar load, or PA forMW area flow.If Name and Number are both equal to 0 and VarType iseither PL, QL, PG or QG, the program will print thecorresponding total load or generation in MW or Mvar.

-I AC input data in IEEE common format.

-jname Write the Jacobian of the solved case in I J VALUEformat in 'name.jac'. The equation mismatches and thesystem variables are also written in 'name.mis' and'name.var', respectively.

-Jname With the -B option, it generates the Jacobian,mismatches and variables corresponding to the systemwithout the loading factor as a variable. For PoCstudies (-C option) it generates the nxn systemJacobian, mismatches and variables; for the complete(2n+1)x(2n+1) PoC Jacobian, use the -j option. Thecorresponding Jacobian, mismatches and variables arewritten in I J VALUE format in 'name.jac', 'name.mis'and 'name.var', respectively.

-kval Factor 'val' used in the homotopy continuation methodfor finding the increments in the loading factor lambda

Page 12: pfwhelp

(def. 1). Must be used with the -c and -H options.

-Kfile Read generation and load distribution factors from 'file'.All data is assumed p.u. and must be separated byspaces: BusNumber BusName DPg Pnl Qnl PgMax[Smax Vmax Vmin Pzl Qzl]. If the input variables DPg,Pnl, Qnl or PgMax are unknown, give them a value ofzero; Smax, Vmax, Vmin, Pzl and Qzl are optional.The generation factors DPg are normalized for eacharea, i.e., ||DPg||=1 per area.The load is represented by:Pl=(Pn+Pnl*lambda)*V^a+(Pz+Pzl*lambda)*V^2Ql=(Qn+Qnl*lambda)*V^b+(Qz+Qzl*lambda)*V^2where Pn, Qn, Pz, Qz, a, and b are defined with the -Doption, and lambda corresponds to the loading factor.If the -D option is not used, the load model defaultvalues are: a=b=0, Pz=Qz=0. Busses not in the list areassumed to have zero distribution factors. If BusNamehas spaces, wrap it in double or single quotes.

-lfile Write standard error output to 'file' (log file).

-Lval Loading factor 'val' (def. 0). Simulates load changes inconjunction with the load distribution factors (-K option).

-m Output continuation profiles in MATLAB format. If TEFprofiles are needed, use the -O option.

-Mnum Number 'num' of max. N-R iterations, overriding inputdata (default 50).

-n Turns off all ac system limits.

-N Turns off all ac system controls.

-otol The tolerance 'tol' controls the application of limitsduring the continuation process. The smaller this value,

Page 13: pfwhelp

the more steps required of the continuation method(default 0.000001).

-Onum This option is used together with -m to output ac/dc TEFinformation during the continuation method to determinethe energy profiles with the help of MATLAB. Theinteger 'num' corresponds to the number of significantdigits in TEF (default and min. 6; max. 10). If thesystem has HVDC links, the program defaults the PIcontroller gains (Kp and Ki) of all HVDC converters fordc computations to 'typical' values of Ki=75 and Kp=1.These values can later be changed in the MATLABoutput file. The program also generates two MATLAB'.m' files needed for plotting and computation of theac/dc energy function, namely, 'addtotef.m' (only if dclines present) and 'tefprof.m'.

-p Turns off P and Q limits in regulating transformers.

-P Turns off P and Q control by regulating transformers.

-q Turns off Q limits in PV busses.

-qx Turns off V limits in reactance-controlled (BX) busses.These busses are defined in the ETMSP/EPRI/BPAinput data file.

-qz Turns off Q limits in reactance-controlled (BZ) busses.These busses are defined in the Italian ADD input datafile.

-Q Turns off remote voltage generator control. Generatorswill control their own terminal voltages at their givenvalues.

-QX Turns off remote voltage control in reactance-controlled(BX) busses. The local bus voltage will be used for the

Page 14: pfwhelp

control.

-r Turns off V limits in regulating transformers and PVbusses.

-R Turns off V control by regulating transformers.

-s Suppress ASCII output_file.

-Sval Stop value 'val' for the loading factor lambda in thecontinuation method (-c and -H options), in p.u. of themaximum lambda. The default is 0 for a complete traceof the bifurcation diagram (min. 0; max. 1, i.e., lambdamaximum).

-ttol If the relative error of two consecutive iterationmismatches is larger than 'tol', voltage limits andregulating transformer limits are applied (default 0.1).

-Ttol P.U. tolerance 'tol' for N-R method (default 1e-4).

-uval Value 'val' of the tolerance used to reduce the number ofequations in the continuation method (-c and -Hoptions), based on the tangent vector technique. Thedefault is 1e-3 (min. 0 or no reduction, max. 0.2).WARNING: This option might produce cycling, back-tracking, or singularity problems. If this happens,increase the number of steps in the -U option and/orreduce the value of 'val' in -u.

-Unum Number 'num' of steps of the continuation method (-cand -H options) between system reductions. Used withthe -u option. The default number is 10 (min. 2, max.100).

-vmag Voltage magnitude 'mag' at the first PQ bus (unlessotherwise specified by -B option) to find the

Page 15: pfwhelp

corresponding lambda for voltage collapse studies.Must be used with -K option.

-Vfile Read initial guesses for ac and dc variables from 'file'.The data must be separated by spaces, i.e., BusNumberBusName V_mag V_ang(deg), for ac busses, andBusNumber BusName Variables Values, for dc busses.For defining the dc variable, use the same EPRI formatused to define the control modes in the dc lines (e.g.,ALGAPA, would represent the dc variables Alpha,Gamma and Power); the values must be given instandard units, i.e., MW, MVAR, kv, Amp, deg. If theinput variables are unknown give them a value of zero.Busses not in the list are given a flat start. If BusNamehas spaces, wrap it in double or single quotes.

-wfile Write solved case into 'file' using IEEE CARD commonformat.

-Wfile Similar to -w option, but the solved case is written in 'file'using IEEE TAPE common format.

-x Ignore distribution factors for generations during theinitial power flow solution (use only one slack bus).WARNING: This might create some convergenceproblems, as the Jacobian may be significantly affectedby this option.

-X Do not enforce maximum active generation limits(PgMax). See -K option.

-yfile Print in 'file' an approximation of the left e-vector of thesmallest real |e-value| at the current operating point.

-Yfile Print in 'file' an approximation of the right e-vector of thesmallest real |e-value| at the current operating point.

Page 16: pfwhelp

-znum Stop continuation method after 'num' steps. Togetherwith the -Z option, it can be used to print a tangentvector for a particular value of the loading parameterlambda.

-Zfile Print in 'file' the normalized tangent vector to thebifurcation manifold at step 'num' of the continuationmethod (as defined by -z). It is used with the -c or -Hoptions.

-0name Print in MATLAB format the Jacobian matrices neededto compute several voltage stability indices. Thesematrices are printed in the files 'name#.m', where #stands for the step number in the continuation method (-c or -H options). A file 'name.m' is also created with allthe MATLAB instructions to compute and plot 6 distinctindices:* Minimum |e-value| and singular value for full matrix.* Minimum |e-value| and singular value for reduced Qmatrix.* Test function and reduced determinant for a given bus(-1 option).The program generates the MATLAB 'inviter.m' fileneeded for the computation of these indices.WARNING: This option generates a lot of output filesthat might clutter your system; it must be used withcaution.

-1num Used with -0 option, and defines the load bus at whichthe test functions are computed. If this option is notused, or if the bus 'num' does not correspond to a loadbus, the program chooses the bus with the maximumvoltage entry in the initial tangent vector.

-2num Define the number 'num' of steps used to determine thechange of direction of the loading parameter lambda inthe continuation method (-c or -H options) due to

Page 17: pfwhelp

voltages increasing after Q-limits are encountered(default 5).

-3file Read generator steady-state data from 'file' using freeformat: BusNumber BusName Ra Xd Xq Ia_maxEq_max Eq_min. For BusNames with spaces, wrap theword in double or single quotes. The program useseither the BusNumber or the BusName to identify thebus; if one of this is not known, give it a 0 value. Forround-rotor machines, make Xd=Xq, or define Xq=0.The program assumes the following default values:Ra=0, Xq=<Xd, Ia_max=large, Eq_max=large,Eq_min=0.

-4 Turns off Eq limits in all generators. See -3 option.

-5 Turns off Ia limits in all generators. See -3 option.

-6file AC input data in ITALIAN format. If 'file' name is given,a COLAS ADD file is read, which defines: new bus kVlevels; min. and max. bus voltages; load voltagecoefficients 'a' and 'b', i.e.,Pl=(Pn+Pnl*lambda)*V^aQl=(Qn+Qnl*lambda)*V^bpilot nodes and generators for secondary voltagecontrol (-# option); and generator and load directions.This file may be used instead of the -K and -D files;however, these files take precedence over the ADD filein defining similar variables for collapse studies.

-7 Enforce Vmax and Vmin on system busses during thecontinuation process (-c or –H options).force Vmax and Vmin on system busses during thecontinuation process (-c or –H options).

-8 Enforce Imax limits on transmission elements during thecontinuation process (-c or –H options).

-9 Do not enforce maximum power generation limits

Page 18: pfwhelp

(Smax). See -K option.

-$val Define the base power value 'val', overriding the valuegiven in the input data file.

-# Use secondary voltage control as defined by ENEL, i.e.,remote voltage control of pilot busses by generators withparticipation factors defined as:* over excited -> qi=Qmaxi/Sum Qmax of pilot bus gens.* under excited -> qi=Qmini/Sum Qmin of pilot bus gens.

Page 19: pfwhelp

#$K+ IEEE Common FormatThe complete description of the IEEE Common Data Format can be found in thepaper "Common Data Format for the Exchange of Solved Load Flow Data,"Working Group on a Common Format for the Exchange of Solved Load FlowData, IEEE Transactions on Power Apparatus and Systems, Vol. PAS-92, No. 6,November/December 1973, pp. 1916-1925.

DC links can be defined using the WSCC format, and FACTS controllers can bedefined using the FACTS format.

The partial description presented here is based on a general descriptionavailable at the following web site:http://www.ee.washington.edu/research/pstca/pg_testcase.html

The data file has lines of up to 128 characters (TAPE option). The lines aregrouped into sections with section headers. Data items are entered in specificcolumns. No blank items are allowed, enter zeros instead. Floating point itemsshould have explicit decimal point. No implicit decimal points are used.

Data type codes:A - Alphanumeric (no special characters)I - Integer (right justified)F - Floating point (right justified)* - Mandatory item

Title Data *

Columns 2- 9 Date, in format DD/MM/YY with leading zeros. If no date provided, use 0b/0b/0b where b is blank.Columns 11-30 Originator's name [A]Columns 32-37 MVA Base [F] *Columns 39-42 Year [I]Column 44 Season (S - Summer, W - Winter)Column 46-73 Case identification [A]

Bus Data *

# IEEE$ IEEE Common FormatK Input Format; Common Format; AC Data+ PFLOWWIN:012

Page 20: pfwhelp

Section start card *:

Columns 1-16 BUS DATA FOLLOWS (not clear that any more than BUS in 1-3 is significant) *Columns 40?- ? NNNNN ITEMS (column not clear)

Bus data cards *:

Columns 1- 4 Bus number [I] *Columns 6-17 Name [A] (left justify) *Columns 19-20 Load flow area number [I]. Don't use zero! *Columns 21-23 Loss zone number [I]Columns 25-26 Type [I] * 0 - Unregulated (load, PQ) 1 - Hold MVAR generation within voltage limits, (gen, PQ) 2 - Hold voltage within VAR limits (gen, PV) 3 - Hold voltage and angle (swing, V-Theta; must always have one)Columns 28-33 Final voltage, p.u. [F] *Columns 34-40 Final angle, degrees [F] *Columns 41-49 Load MW [F] *Columns 50-59 Load MVAR [F] *Columns 60-67 Generation MW [F] *Columns 68-75 Generation MVAR [F] *Columns 77-83 Base kV [F]Columns 85-90 Desired volts (pu) [F] (This is desired remote voltage if this bus is controlling another bus.)Columns 91-98 Maximum MVAR or voltage limit [F]Columns 99-106 Minimum MVAR or voltage limit [F]Columns 107-114 Shunt conductance G (per unit) [F] *Columns 115-122 Shunt susceptance B (per unit) [F] *Columns 124-127 Remote controlled bus number

Section end card:

Columns 1- 4 -999

Branch Data *

Section start card *:

Columns 1-16 BRANCH DATA FOLLOWS (not clear that any more than BRANCH is significant) *Columns 40?- ? NNNNN ITEMS (column not clear)

Branch data cards *:

Columns 1- 4 Tap bus number [I] * For transformers or phase shifters, the side of the model the non-unity tap is on.Columns 6- 9 Z bus number [I] * For transformers and phase shifters, the side of the model

Page 21: pfwhelp

the device impedance is on.Columns 11-12 Load flow area [I]Columns 13-15 Loss zone [I]Column 17 Circuit [I] * (Use 1 for single lines)Column 19 Type [I] * 0 - Transmission line 1 - Fixed tap 2 - Variable tap for voltage control (TCUL, LTC) 3 - Variable tap (turns ratio) for MVAR control 4 - Variable phase angle for MW control (phase shifter)Columns 20-29 Branch resistance R, per unit [F] *Columns 30-40 Branch reactance X, per unit [F] * No zero impedance linesColumns 41-50 Line charging B, per unit [F] * (total line charging, +B)Columns 51-55 Line MVA rating No 1 [I] Left justify!Columns 57-61 Line MVA rating No 2 [I] Left justify!Columns 63-67 Line MVA rating No 3 [I] Left justify!Columns 69-72 Control bus numberColumn 74 Side [I] 0 - Controlled bus is one of the terminals 1 - Controlled bus is near the tap side 2 - Controlled bus is near the impedance side (Z bus)Columns 77-82 Transformer final turns ratio [F]Columns 84-90 Transformer (phase shifter) final angle [F]Columns 91-97 Minimum tap or phase shift [F]Columns 98-104 Maximum tap or phase shift [F]Columns 106-111 Step size [F]Columns 113-119 Minimum voltage, MVAR or MW limit [F]Columns 120-126 Maximum voltage, MVAR or MW limit [F]

Section end card:

Columns 1- 4 -999

Loss Zone Data

Section start card:

Columns 1-16 LOSS ZONES FOLLOWS (not clear that any more than LOSS is significant) *Columns 40?- ? NNNNN ITEMS (column not clear)

Loss Zone Cards:

Columns 1- 3 Loss zone number [I] *Columns 5-16 Loss zone name [A]

Section end card:

Columns 1- 3 -99

Interchange Data

Page 22: pfwhelp

Section start card:

Columns 1-16 INTERCHANGE DATA FOLLOWS (not clear that any more than first word is significant) *Columns 40?- ? NNNNN ITEMS (column not clear)

Interchange Data Cards:

Columns 1- 2 Area number [I], no zeros! *Columns 4- 7 Interchange slack bus number [I] *Columns 9-20 Alternate swing bus name [A]Columns 21-28 Area interchange export, MW [F] (+ = out) *Columns 30-35 Area interchange tolerance, MW [F] *Columns 38-43 Area code (abbreviated name) [A] *Columns 46-75 Area name [A]

Section end card:

Columns 1- 2 -9

Tie Line Data

Section start card:

Columns 1-16 TIE LINES FOLLOW (not clear that any more than TIE is significant) *Columns 40?- ? NNNNN ITEMS (column not clear)

Tie Line Cards:

Columns 1- 4 Metered bus number [I] *Columns 7-8 Metered area number [I] *Columns 11-14 Non-metered bus number [I] *Columns 17-18 Non-metered area number [I] *Column 21 Circuit number

Section end card:

Columns 1- 3 -999

Page 23: pfwhelp

#$K+ WSCC and EPRI's ETMSP FormatsThe complete description of these Formats can be found in EPRI’s ETMSPmanual "Extended Transient-Midterm Stability Package: User's Manual for thePower Flow Program," EPRI computer code manual EL-2002-CCM, January1987.

The following format is presented here in terms of the "input data" cards needed(see the 173-bus ac/dc/FACTS example). The dc data cards described belowcan be used to define dc links in the IEEE format and should be placed beforethe END OF DATA card.

CC Comment cards start with "C".CC Format of input data:C A -> Alphanumeric (no special characters)C I -> Integer (right justified)C F -> Floating point (right justified)CC*******************************************************************************CC Title cards start with the HDG cardHDG

THREE TITLE CARDS (A80) ARE PLACED BETWEEN THE HDG AND BAS CARDS

BASCC System data starts with the BAS cardC The order of the data cards does not matter.CC*******************************************************************************CC AC BUSSESCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C | SHUNT | |REMOTE BUSC |Ow|Name |kV |Z|PL |QL |MW |Mva|PM |P |QM |Qm |Vpu|Vm |Name |kV |%QBx BUS DATA CARDS FOLLOW THIS FORMATC

# WSCC$ WSCC and EPRI’s FormatK Input Format; WSCC and EPRI’s ETMPS Format; AC/DC Data+ PFLOWWIN:013

Page 24: pfwhelp

C Bus Input Data:C - Type (A2) -> "B " -> PQ load busC "BQ" -> PV generator bus with Q limitsC "BE" -> PV generator bus with no Q limitsC "BV" -> PQ generator bus with V limitsC "BX" -> PQ generator bus with local or remote V limits.C As these limits are reached, new capac. or indc. shuntC reactances are added to the bus, as defined on theC the "X" cards (see below)C "BG" -> PQ generator bus with Q limits controlling voltage onC a remote PV load busC "BC" -> PV load bus with remote voltage controlC "BT" -> PQ load bus with voltage controlled by LTC transformerC "BS" -> Swing busC - Ow (A3) -> OwnerC - Name (A8) -> Bus NameC - kV (F4.0) -> Bus kV baseC - Z (2A) -> ZoneC - PL (F5.0) -> P load in MWC - QL (F5.0) -> Q load in MVarsC - SHUNT (2F4.0) -> MW and MVars shunts (+ for Capacitors)C - PM (F4.0) -> Max. generator P power in MWC - P (F5.0) -> generator P power in MWC - QM (F5.0) -> Max. generator Q power in MVars (not needed for "BE"C PV bus types)C - Qm (F5.0) -> Min. generator Q power in MVars (not needed for "BE"C PV bus types)C - Vpu (F4.3)-> PV desired voltage magnitude in p.u. (max. voltage forC "BV" or "BX" busses)C - Vm (F4.3) -> Min. voltage for "BV" or "BX" busses.C - Remote Name (A8) -> Remote controlled bus name for "BG" busses.C - Remote kV (F4.0) -> Remote controlled bus kV for "BG" busses.C - Remote %Q (I3) -> Percentage of Q of remote bus control for "BG" busses.CC*******************************************************************************CC X CARDSCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C S1 S2 S3 S4 S5 S6 S7 S8C |Ow|Name_1 |kV1 |Name_2 |kV2||MVAr||MVAr||MVAr||MVAr||MVAr||MVAr||MVAr||MVArX DATA CARDS FOLLOW THIS FORMATCC X Input Data for BX Busses:C - Type (A2) -> "X "C - Ow (A3) -> OwnerC - Name_1 (A8) -> Name of controlling bus.C - kV1 (F4.0) -> kV base for controlling busC - Name_2 (A8) -> Name of controlled bus; not needed if it is the same as theC controlling busC - kV2 (F4.0) -> kV base for remote busC – S1 (I1) -> Number of MVAr (reactance) increments in step 1C – MVAr (F5.0) -> Value in MVAr of each step 1 increment:

Page 25: pfwhelp

C +MVAr for capacitors; -MVAr for inductorsC – S2 (I1) -> Number of MVAr (reactance) increments in step 2C – MVAr (F5.0) -> Value in MVAr of each step 2 incrementC – S3 (I1) -> Number of MVAr (reactance) increments in step 3C – MVAr (F5.0) -> Value in MVAr of each step 3 incrementC – S4 (I1) -> Number of MVAr (reactance) increments in step 4C – MVAr (F5.0) -> Value in MVAr of each step 4 incrementC – S5 (I1) -> Number of MVAr (reactance) increments in step 5C – MVAr (F5.0) -> Value in MVAr of each step 5 incrementC – S6 (I1) -> Number of MVAr (reactance) increments in step 6C – MVAr (F5.0) -> Value in MVAr of each step 6 incrementC – S7 (I1) -> Number of MVAr (reactance) increments in step 7C – MVAr (F5.0) -> Value in MVAr of each step 7 incrementC – S8 (I1) -> Number of MVAr (reactance) increments in step 8C – MVAr (F5.0) -> Value in MVAr of each step 8 incrementCC*******************************************************************************CC AC LINESCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C M CS NC |Ow|Name_1 |kV1||Name_2 |kV2|||In || R | X | G/2 | B/2 |Mil|L LINE DATA CARDS FOLLOW THIS FORMATCC Line Input Data:C - Type (A2) -> "L "C - Ow (A3) -> OwnerC - Name_1 (A8) -> Name of sending busC - kV1 (F4.0) -> kV base for sending busC - M (I1) -> Metered bus for flow interchangeC - Name_2 (A8) -> Name of receiving busC - kV2 (F4.0) -> kV base for receiving busC - C (I1) -> Circuit IDC - S (I1) -> Section numberC - In (F4.0) -> Rated Amps.C - N (I1) -> Circuit numberC - R (F6.5) -> p.u. series R of PI equivalentC - X (F6.5) -> p.u. series X of PI equivalentC - G/2 (F6.5) -> p.u. shunt G/2 of PI equivalentC - B/2 (F6.5) -> p.u. shunt B/2 of PI equivalentC - Mil (F4.1) -> Length in milesCC*******************************************************************************CC TRANSFORMERSCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C M CSC |Ow|Name_1 |kV1||Name_2 |kV2|||Sn | R | X | G | B |Tap1|Tap2|T CARDS FOLLOW THIS FORMATC

Page 26: pfwhelp

C Transformer Input Data:C - Type (A2) -> "T "C - Ow (A3) -> OwnerC - Name_1 (A8) -> Name of sending busC - kV1 (F4.0) -> kV base for sending busC - M (I1) -> Metered bus for flow interchangeC - Name_2 (A8) -> Name of receiving busC - kV2 (F4.0) -> kV base for receiving busC - C (I1) -> Circuit IDC - S (I1) -> Section numberC - Sn (F4.0) -> Rated MVAC - N (I1) -> Circuit numberC - R (F6.5) -> p.u. series R of equivalent circuitC - X (F6.5) -> p.u. series X of equivalent circuitC - G (F6.5) -> p.u. shunt G of equivalent circuitC - B (F6.5) -> p.u. shunt B of equivalent circuitC - Tap1 (F5.2) -> kV tap for sending busC - Tap2 (F5.2) -> kV tap for receiving busCC*******************************************************************************CC REGULATING TRANSFORMERSCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C |REMOTE BUS |Sch/|MinC |Ow|Name_1 |kV1||Name_2 |kV2| |Name |kV |Tmax|Tmin|#|Max |P/Q |RT CARDS FOLLOW THIS FORMATCC Regulating Transformer Input Data: A corresponding "T" card must be used toC define the impedance and ratingsC - Type (A2) -> "R " -> LTC controlling voltage on "BT" load bus withC tap limitsC "RQ" -> LTC controlling Q out of sending busC "RN" -> LTC keeping Q out of sending bus withinC Max/Min Mvar limitsC "RP" -> Phase Shifter controlling P out of sending busC "RM" -> Phase Shifter keeping P out of sending bus withinC Max/Min MW limitsC - Ow (A3) -> OwnerC - Name_1 (A8) -> Name of sending busC - kV1 (F4.0) -> kV base for sending busC - M (I1) -> Metered bus for flow interchangeC - Name_2 (A8) -> Name of receiving busC - kV2 (F4.0) -> kV base for receiving busC - Name (A8) -> Name of controlled busC – kV (F4.0) -> kV base for controlled busC – Tmax (F5.2) -> Max. tap in kV with respect to kV1 for LTCs, orC Max. phase angle in degrees for Phase ShiftersC – Tmin (F5.2) -> Min. tap in kV with respect to kV1 for LTCs, orC Min. phase angle in degrees for Phase ShiftersC – # (2I) -> Number of tap steps.C – Sch/Max (F5.0) -> Scheduled MVar or MW for "RQ" and "RP" types, orC Max. MVar or MW for "RN" and "RM" types

Page 27: pfwhelp

C – Min P/Q (F5.0) -> Min. MVar or MW for "RN" and "RM" typesCC*******************************************************************************CC AREA DATACC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C |Slack bus | | ZONES |C |Name |Name |kV ||MW Exp. |1||2||3||4||5||6||7||8||9||0| |VM |VmA CARDS FOLLOW THIS FORMATCC Area Input Data:C - Type (2A) -> "A "C - Name (A10) -> Area NameC - Slack Name (A8) -> Area slack bus nameC - Slack kV (F4.0) -> kV base for slack busC - MW Exp. (F8.0) -> MW scheduled export for the areaC - ZONES (10A2) -> Zone names that belong to the area (up to 10)C - VM (F4.3) -> p.u. max. voltage of the area for printed reportsC - Vm (F4.3) -> p.u. min. voltage of the area for printed reportsCC*******************************************************************************CC DC BUS DATACC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C |AC bus CC |Name_1 |Name_2 |Name |kV ||Gr|Z|N|Xc |Rat |Tstp|Tmin|Tmax|Amn|Amx|Gmn|ImxBD CARDS FOLLOW THIS FORMATCC DC Bus Input Data:C - Type (A2) -> "BD"C - Name_1 (A8) -> Converter dc bus 1 nameC - Name_2 (A8) -> Converter dc bus 2 nameC - AC bus Name (A8) -> Converter ac bus nameC - AC bus kV (F4.0) -> Converter ac bus kV baseC - C (I1) -> Circuit numberC - Gr (A3) -> GroupC - Z (A2) -> ZoneC - N (I2) -> Number of converter bridgesC - Xc (F5.3) -> Commutation reactance in OhmsC - Rat (F5.4) -> Nominal voltage ratio of transformerC - Tstp (F5.3) -> Tap steps in %C - Tmin (F5.3) -> Min. tap in p.u.C - Tmax (F5.3) -> Max. tap in p.u.C - Amn (F4.1) -> Min. alphaC - Amx (F4.1) -> Max. alphaC - Gmn (F4.1) -> Min. gammaC - Imx (F4.1) -> Max. current in amps.CC*******************************************************************************C

Page 28: pfwhelp

C DC BUS CONTROL DATACC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C C|Mod|Set Points TC |Name_1 |Name_2 |AC bus |kV ||1|2| 1 | 2 |BZ CARDS FOLLOW THIS FORMATCC DC Bus Control Input Data:C - Type (A2) -> "BZ"C - Name_1 (A8) -> Converter dc bus 1 nameC - Name_2 (A8) -> Converter dc bus 2 nameC - AC bus Name (A8) -> Converter ac bus nameC - AC bus kV (F4.0) -> Converter ac bus kV baseC - C (I1) -> Circuit numberC - Mod 1 & 2 (2A2) -> Converter control modes: ID=current; AL=alpha; GA=gamma;C VD=Voltage; PA=P_power; QA=Q_powerC - Set Points (2F5.2)-> Control mode values: A, kV, MW, Mvar, or deg.C - T (A1) -> Type: R=rectifier; I=inverterCC*******************************************************************************CC DC LINE DATACC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C CC |Name_1 |Name_2 ||Gr|Z|Ow|R ohm|L mH|C uF|Imax |LD CARDS FOLLOW THIS FORMATCC DC Line Input Data:C - Type (A2) -> "BD"C - Name_1 (A8) -> Converter dc bus 1 nameC - Name_2 (A8) -> Converter dc bus 2 nameC - C (I1) -> Circuit numberC - Gr (A3) -> GroupC - Z (A2) -> ZoneC - Ow (A3) -> OwnerC - R (F6.2) -> Resistance in OhmsC - L (F6.2) -> Inductance in mH (optional)C - C (F6.2) -> Capacitance in uF (optional)C - Imax (F6.1) -> Max. current in amps. (optional)CC*******************************************************************************CC SOLUTION CONTROL CARDCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C |Max| |SLACK BUS |C |Itr| |Name |kV| |Angle |SOL CARD FOLLOWS THIS FORMATCC Solution control card:

Page 29: pfwhelp

C - Max Itr (I5) -> Maximum number of Newton-Raphson iterationC - Name (A8) -> Name of the slack busC - kV (F4.0) -> kV base for slack busC - Angle (F10.4) -> Reference angle for slack bus in degreesCC*******************************************************************************CC Finish system data with ZZ cardZZCC*******************************************************************************CC Finish data file with END cardEND

Page 30: pfwhelp

#$K+ FACTS FormatsThe input data formats for FACTS controllers were chosen based on the modelsdescribed in C. A. Cañizares, "Modeling of TCR and VSI Based FACTSControllers," Internal Report, ENEL and Politecnico di Milano, Milan, Italy,September, 1999.

The FACTS "input data" cards described below follow the ac input data cards inthe IEEE format and should be placed before the END OF DATA card. For theWSCC format, they can be placed anywhere between the BAS and END datacards (see the 173-bus ac/dc/FACTS example).

CC Comment cards start with "C".CC Format of input data:C A -> Alphanumeric (no special characters)C I -> Integer (left justified)C F -> Floating point (right justified)CC*******************************************************************************CC SVC DATACC 1 2 3 4 5 6 7 8C2345678901234567890123456789012345678901234567890123456789012345678901234567890CC |Ow|Bus1 |kV1 |Bus2 |kV2|Xc |Xl |am|aM|s|MVA|Vrf|kV |Xth |alFS CARDS FOLLOW THIS FORMATCC SVC Input Data:C - Type (A2) -> "FS" (F for FACTS, S for SVC).C - Ow (A3) -> OwnerC - Bus1 (A8) -> System bus where SVC is connected.C - kV1 (F4.0) -> Bus 1 kV base.C - Bus2 (A8) -> System bus that SVC controls.C - kV2 (F4.0) -> Bus 2 kV base.C - Xc (F8.7) -> Per unit SVC capacitive X w.r.t. MVA and kV1 base.C - Xl (F8.7) -> Per unit SVC inductive X w.r.t. MVA and kV1 base.C - am (F3.0) -> Minimum firing angle alpha in degrees.C - aM (F3.0) -> Maximum firing angle alpha in degrees.C - s (F2.0) -> SVC control slope in % w.r.t. to MVA and kV1 base.

# FACTS$ FACTS FormatK Input Format; FACTS Format; FACTS Data+ PFLOWWIN:014

Page 31: pfwhelp

C - MVA (F4.0) -> SVC maximum rating in MVAr (capacitive).C - Vrf (F4.3) -> p.u. reference control voltage.C - kV (F4.0) -> Low kV side of step-down transformer (optional).C - Xth (F8.7) -> Step-down transformer reactance in p.u. w.r.t. to SVC MVAC rating and kV1 (optional).C - al (F5.1) -> Initial value of firing angle in degrees (optional).CC*******************************************************************************CC TCSC DATACC 1 2 3 4 5 6 7 8C2345678901234567890123456789012345678901234567890123456789012345678901234567890C MC |Bus1 |kV1 |Bus2 |kV2|Xc |Xl |am|aM|cont ||MVA|al |M1 |FC CARDS FOLLOW THIS FORMATCC TCSC Input Data:C - Type (A2) -> "FC" (F for FACTS, C for TCSC).C - Bus1 (A8) -> Sending bus where TCSC is connected.C - kV1 (F4.0) -> Bus 1 kV base.C - Bus2 (A8) -> Receiving bus where TCSC is connected.C - kV2 (F4.0) -> Bus 2 kV base.C - Xc (F8.7) -> Per unit TCSC capacitive X w.r.t MVA and kV1 base.C - Xl (F8.7) -> Per unit TCSC inductive X w.r.t MVA and kV1 base.C - am (F3.0) -> Minimum firing angle alpha in degrees.C - aM (F3.0) -> Maximum firing angle alpha in degrees.C - cont (F8.3)-> TCSC control value: % of X; MW for P; KA for I; degrees for D.C - Mode (A1) -> Control mode: X for reactance; P for power; I for current;C D for angle.C - MVA (F4.0) -> TCSC rating in MVA. Defaults to MVA system base.C - al (F5.1) -> Initial value of firing angle in degrees (optional).C - M1 (F4.0) -> Needed for determining series line reactance for % XC control: M1=Xc/Xline.CC*******************************************************************************CC STATCOM DATACC 1 2 3 4 5 6 7 8C2345678901234567890123456789012345678901234567890123456789012345678901234567890C MC |Ow|Bus1 |kV1 |Bus2 |kV2|R |X |Gc |Im |IM |s |MVA |Vrf||ConFT CARDS FOLLOW THIS FORMATCC STATCOM Input Data:C - Type (A2) -> "FT" (F for FACTS, T for STATCOM).C - Ow (A3) -> OwnerC - Bus1 (A8) -> System bus where STATCOM is connected.C - kV1 (F4.0) -> Bus 1 kV base.C - Bus2 (A8) -> System bus that STATCOM controls.C - kV2 (F4.0) -> Bus 2 kV base.C - R (F6.0) -> AC R in p.u. w.r.t. MVA and kV1 base.C - X (F6.5) -> AC X in p.u. w.r.t. MVA and kV1 base.

Page 32: pfwhelp

C - Gc (F6.5) -> DC G in p.u. w.r.t. MVA and a kVdc base defined by theC secondary side of the STATCOM transformer(s).C - Im (F6.4) -> Max. capacitive current (Imin>0) in p.u. w.r.t.C MVA and kV1 base.C - IM (F6.4) -> Max. inductive current (Imax>0) in p.u. w.r.t.C MVA and kV1 base.C - s (F3.0) -> AC voltage control slope in % w.r.t. to MVA and kV1 base.C - MVA (F5.0) -> Rating in MVA (defaults to the system base).C - Vrf (F4.3) -> AC reference voltage in p.u. w.r.t. kV1 base.C - M (A1) -> Control mode: W for PWM control (default); P for phaseC control.C - Con (F6.5) -> Control variable value:C - k constant for phase control (defaults to a valueC of 0.9 for a 12 pulse VSI if no value is given).C - DC reference voltage for PWM control in p.u. w.r.t.C a kVdc base (defaults to 1 p.u.).C

Page 33: pfwhelp

#$K+ Menu

File Clear F10 Clears the window screen

Open F2 Opens a log (ASCII) file andloads it into the window screen

Save F3 Saves the window screen into alog file

Save As Saves the window screen into anew log file

Edit Edit input data usingNotepad/WordPad

Exit Alt+F4 Exit UWPflow

Execute Command Line F4 Defines UWPflow'soptions

Run UWPflow F5 Executes UWPflow withthe options definedabove

Batch/Script File F6 Run a batch/script fileand/or define the inputdata directory

Help Help F1 Show help window

About UWPflow UWPflow program authorship

# MENU$ MenuK Menu description+ PFLOWWIN:015

Page 34: pfwhelp

#$K+ Toolbar

Clear Screen

Open a log file

Saves screen in log file

Clear Screen

Edit input data using Notepad/WordPad

Define command line options and run program

Run UWPflow using defined options

Run a batch/script file and/or define the input data directory

About UWPflow

Help

# TOOLBAR$ ToolbarK Toolbar description+ PFLOWWIN:020

Page 35: pfwhelp

#$K+ Mouse

Left button: Define UWPflow's command line options. Equivalent

to pressing the toolbar button .

Right button: Saves screen into log file. Equivalent to pressing the

toolbar button .

# MOUSE$ MouseK Mouse buttons+ PFLOWWIN:025

Page 36: pfwhelp

#$K+ 173 Bus AC-DC-FACTS Test System

To run this case open the batch/script file 173sys.bat using .

This tutorial briefly illustrates several possible applications of the program'uwpflow', including the options and files needed to run different cases for anac/dc/FACTS system in WSCC (EPRI) format.

1. Run a standard ac/dc/FACTS power flow and write in ASCII the output file'173sys.pf0'. Also create the IEEE Common Format file '173sys.cf' with thefinal solution (-W option), and write the Jacobian (-j option) in '173sys.jac'with the corresponding mismatch and solution vectors in '173sys.mis' and'173sys.var', respectively:

uwpflow 173sys.wsc 173sys.pf0 -j173sys -W173sys.cf

Observe that the IEEE Common Format file created, '173sys.cf', has theHVDC and FACTS data in the same format as the original input file'173sys.wsc'. However, the generator maximum power information is notavailable in the IEEE format.

The Jacobian can be transformed into MATLAB matrix format using theAWK filter 'tomatlab', i.e.,

tomatlab 173sys.jac sysjac.m

The MATLAB data is stored in this case in the output file 'sysjac.m'.

2. Run a power flow with a load increase of 0.03 (-L option). For this studyone needs the generation and load direction information in the file '173sys.k'(-K option). Notice that this example illustrates the use of a distributed slack

# 173$ 173 ac-dc-FACTS sample system (173sys.bat)K 173 Bus System; Demos; 173sys.bat+ PFLOWWIN:030

Page 37: pfwhelp

bus to solve the power flow problem. The IEEE Common Format filecreated in the previous run, '173sys.cf', is used as the input data in this case(-I option). Also, the right and left eigenvectors of the smallest eigenvalue ofthe system Jacobian are stored in the files '173sys.v' (-Y option) and'173sys.w' (-y option), respectively. The ASCII output is stored in the file'173sys.pf1'.

uwpflow -I 173sys.cf 173sys.pf1 -L0.03 -K173sys.k -Y173sys.v -y173sys.w

The maximum normalized entries in '173sys.v' and '173sys.w' can then beobtained by running 'maxim', e.g.,

maxim 173sys.w

For on-line help on 'maxim' type: maxim -h

3. Run a continuation power flow (-c option). To do this the generation andload direction information stored in file '173sys.k' is needed (-K option). Thelast solution point is written in ASCII in the output file '173sys.pf2', and thelog information is stored in the file '173sys.lg1' (-l option).The tracing of the bifurcation diagram is stopped after the bifurcation point at0.8 of the maximum value of the loading factor (-S option):

uwpflow 173sys.wsc -K173sys.k -c 173sys.pf2 -l173sys.lg1 -S0.8

4. Run another continuation power flow (-c option), similar to the previous case3, but ignoring maximum active power generation limits (-X option). The loginformation is stored in the file '173sys.lg2' (-l option), and the tracing of thebifurcation diagram is again stopped after the bifurcation point at 0.8 of themaximum value of the loading factor (-S option). Also, in this case theASCII output is suppressed (-s option).

uwpflow 173sys.wsc -K173sys.k -c -X -s -l173sys.lg2 -S0.8

5. Run a parameterized continuation power flow (-H option); once again thedirection file '173sys.k' is needed (-K option). In this example the final ASCIIoutput is suppressed (-s option), and the convergence information is storedin the log file '173sys.lg3' (-l option). The nose curve information is stored

Page 38: pfwhelp

in the file 'sysvp.m' in MATLAB format (-m option). All ac limits are turnedoff (-n option), and the -e option is used to print out some HVDC variableinformation. Finally, the option -k is used to reduce the step size in thecontinuation method, i.e., obtain more points in the bifurcation diagram, andthe -S option is used to stop the continuation process after the maximumloading point is reached. The computation takes a couple of minutes, pleasewait....

uwpflow 173sys.wsc -K173sys.k -Hsysvp.m -m -n -l173sys.lg3 -s -k0.5 -e -S0.9

6. Similar to examples 3, 4 and 5, but in this case the system load is modeledas a nonlinear function of the voltage, i.e.,

Pl = Pn*V^a + Pz*V^2Ql = Qn*V^b + Qz*V^2

The -D option is used in this case to define the values of Pn, Qn, Pz, Qz, a,and b stored in OH (SMMS) format in '173sys.oh'. In this case, severalvoltage stability indices (SF, VSF, TV) are printed out (-f option), togetherwith the voltages and angles of the busses defined in '173sys.vp' (-i option).

uwpflow 173sys.wsc -K173sys.k -c -l173sys.lg4 -s -D173sys.oh -i173sys.vp -f -S0.8

7. This example shows the use of the program to obtain a bifurcation manifoldusing a detailed generator steady state model, which considers Ra, Xd, Xq,and stator and rotor limits (in Ia and Eq). The generator data is read fromthe file '173sys.gen' using the -3 option. Once more, the generation andload direction defined in '173sys.k' are needed (-K option), and theconvergence information is stored in the file '173sys.lg5' using the -l option.The options -i and -e are used to obtain the desired output. This examplealso shows some convergence difficulties due to the lack of adequate initialguesses for the internal generator variables (this problem can besignificantly reduced by using an IEEE Common Format input file; however,be aware that PgMax information must be defined then in the 'K' file).

uwpflow 173sys.wsc -K173sys.k -3173sys.gen -c -i173sys.vp -e -s -l173sys.lg5

Page 39: pfwhelp

8. Finally, this example depicts how to use the program to find the exactbifurcation point using a direct method (-C option). Again, the generationand load direction defined in '173sys.k' are needed (-K option). The righteigenvector at the bifurcation point is written in the file '173sys.lft', and thebifurcation point is stored in IEEE Common Format in '173sys.poc' (-Woption). For the program to converge to the desired solution, an initialsolution close to the bifurcation point is needed, thus the -L option is usedhere to move the system closer to the singularity point detected in case 7.Hence, the -3 option is used again to read the steady state generator datastored in file '173sys.gen'. Once more, observe the convergence difficultiesdue to the lack of good initial guesses for the internal generator variables.

uwpflow 173sys.wsc -K173sys.k -C173sys.lft -s -W173sys.poc -L0.05 -3173sys.gen

The maximum normalized entries in '173sys.lft' can then be obtained byrunning 'maxim'.

Page 40: pfwhelp

#$K+ IEEE 300 Bus Test System

To run this case open the batch/script file ieee300.bat using .

This tutorial briefly illustrates several possible applications of the program'uwpflow', including the options and files needed to run the different test cases.An on-line description of the program and all its options is available by running:

uwpflow -h

In all cases the -I option (input data in IEEE Common Format) are used, sincethe input data is in IEEE Common Format.

1. Run a standard power flow and write ASCII output in the output file'ieee300.pf0' (output redirection is optional):

uwpflow -I ieee300.cf >ieee300.pf0

2. Run a standard power flow suppressing the ASCII output (-s option), andwrite convergence information in the log file 'ieee300.lg0' (-l option):

uwpflow -I ieee300.cf -s -lieee300.lg0

3. Run a standard power flow suppressing ASCII output (-s option), and writethe solution in TAPE IEEE Common Format in the file 'ieee300.tap' (-Woption):

uwpflow -I ieee300.cf -s -Wieee300.tap

4. Run a standard power flow suppressing ASCII output (-s option), and writeJacobian information (-j option) in the files 'ieee300.jac' (Jacobian),

# 300$ IEEE 300 bus sample system (ieee300.bat)K 300 Bus System; Demos; ieee300.bat+ PFLOWWIN:035

Page 41: pfwhelp

'ieee300.var' (variables, i.e., V's, P's, Q's, etc.), and 'ieee300.mis'(mismatches, i.e., deltaP's, deltaQ's, etc.):

uwpflow -I ieee300.cf -s -jieee300

The Jacobian can be transformed to MATLAB matrix format using the AWKfilter 'tomatlab', i.e.,

tomatlab ieee300.jac ieeejac.m

The file 'ieeejac.m' contains the Jacobian matrix in MATLAB format to beused directly by this program.

5. Run a power flow with a distributed slack bus by using the generationdirection information defined in the file 'ieee300.k' (-K option), and write theresults in the output file 'ieee300.pf1':

uwpflow -I ieee300.cf -Kieee300.k ieee300.pf1

6. Run a power flow with a load increase of 0.01 p.u. (-L option). For this studyone needs the generation and load direction information in the file'ieee300.k' (-K option). In this example the program is forced to use onlyone slack bus by using the -x option. The results are written in CARD IEEECommon Format in the file 'ieee300.crd', and the option -Y and -y are usedto write the right and left e-vectors associated to the smallest Jacobianeigenvalue in the files 'ieee300.v' and 'ieee300.w', respectively:

uwpflow -I ieee300.cf -L0.01 -x -Kieee300.k -wieee300.crd -s -Yieee300.v -yieee300.w

7. Run a continuation power flow (-c option). To do this the generation andload direction information in the file 'ieee300.k' is needed (-K option). Anapproximation of the right eigenvector at the bifurcation point is written inthe file 'ieee300.rgt' (-E option). The solution information is logged into thefile 'ieee300.lg1' (-l option), and the final output is suppressed using the -soption. The -N option is used to turn off all system controls:

uwpflow -I ieee300.cf -Kieee300.k -c -N -Eieee300.rgt -s -lieee300.lg1

Page 42: pfwhelp

The maximum entries in 'ieee300.rgt' can then be obtained by running'maxim', e.g.,

maxim ieee300.rgt

For on-line help on 'maxim' type: maxim -h

8. Run a continuation power flow (-c option) similar to case 7. Hence, thegeneration and load direction information in the file 'ieee300.k' is needed (-Koption). However, in this example the continuation process is stopped after5 steps (-z option), and the corresponding tangent vector at that point iswritten in the file 'ieee300.tg' (-Z option). The final output is suppressedusing the -s option.

uwpflow -I ieee300.cf -Kieee300.k -c -s -z5 -Zieee300.tg

The maximum entries in 'ieee300.tg' can then be obtained by running'maxim'.

9. Run a continuation power flow similar to case 7, but now the -0 option isused to generate a series of MATLAB files ('sys*.m') that are used tocompute several voltage stability indices, namely, eigenvalues, singularvalues, test functions, and reduced determinants. The solution informationis logged in the same file 'ieee300.lg2':

uwpflow -I ieee300.cf -Kieee300.k -c -N -s -lieee300.lg2 -0sys

One of the MATLAB files created is 'sys.m', which can be used to computeand plot the desired indices together with the generated file 'inviter.m'.

10. Run a parameterized continuation power flow (-H option); once again thedirection file 'ieee300.k' is needed (-K option). In this example the finalASCII output is stored in 'ieee300.pf3', and the convergence information isstored in 'ieee300.lg3' (-l option). The -S option stops the program after themaximum loading point is computed, at about 80 % of the maximum value.The file 'ieee300.vp' is used to define the desired output busses for thevoltage profiles (-i option).

Page 43: pfwhelp

uwpflow -I ieee300.cf -Kieee300.k -H -lieee300.lg3 -S0.8 ieee300.pf3 -iieee300.vp

11. Similar to examples 7 and 8, but in this case the nose curve and TransientEnergy Function (TEF) information are stored in the file 'ieeevp.m' inMATLAB format (-m and -O options). All limits are turned off (-n option), sothat the TEF can be correctly processed in MATLAB (read program BUGS inREADME.TXT). The option -k is used to reduce the step size in thecontinuation method, so that more points on the bifurcation diagram can becomputed. The computation takes a couple of minutes, please wait....

uwpflow -I ieee300.cf -Kieee300.k -cieeevp.m -m -O -n -lieee300.lg4 -s -k0.5

The program generates the required MATLAB '*.m' files needed in this caseto run 'ieeevp.m' in MATLAB.

12. Finally, this example depicts how to use the program to find the exactbifurcation point detected above (case 11) using a direct method (-C option).Again, the generation and load direction defined in 'ieee300.k' are needed (-K option); system limits are also turned off using the -n option. The righteigenvector at the bifurcation point is written in the file 'ieee300.lft', and thebifurcation point is stored in TAPE IEEE Common Format in 'ieee300.poc' (-W option). For the program to converge, an initial solution close to thebifurcation point is needed, thus the -L option is used here to move thesystem closer to the singularity point; however, observe the slowconvergence as the system is not close enough to the desired solution point.

uwpflow -I ieee300.cf -Kieee300.k -Cieee300.lft -s -Wieee300.poc -L0.3 -n

The maximum entries in 'ieee300.lft' can then be obtained by running'maxim'.

Page 44: pfwhelp

#$K+ 173 Bus AC-DC-FACTS Test System Data

C 173 BUS AC/DC/FACTS TEST SYSTEM:C WSCC data fileCC Case Title (3 A8 lines)HDG 173 BUS AC/DC/FACTS SYSTEM WSCC/ETMSP DATA FORMAT NOVEMBER 1999BASCCC System DataCC AC BUSSESCC Bus Input Data:C - Type (A2) -> "B " -> PQ load busC "BQ" -> PV generator bus with Q limitsC "BE" -> PV generator bus with no Q limitsC "BV" -> PQ generator bus with V limitsC "BG" -> PQ generator bus with Q limits controlling voltage onC a remote PV load busC "BC" -> PV load bus with remote voltage controlC "BT" -> PQ load bus with voltage controlled by LTC transformerC "BS" -> Swing busC - Ow (A3) -> OwnerC - Name (A8) -> Bus NameC - kV (F4.0) -> Bus kV baseC - Z (2A) -> ZoneC - PL (F5.0) -> P load in MWC - QL (F5.0) -> Q load in MVarsC - SHUNT (2F4.0) -> MW and MVars shunts (+ for Capacitors)C - PM (F4.0) -> Max. generator P power in MWC - P (F5.0) -> generator P power in MWC - QM (F5.0) -> Max. generator Q power in MVars (not needed for "BE"C PV bus types)C - Qm (F5.0) -> Min. generator Q power in MVars (not needed for "BE"C PV bus types)C - Vpu (F4.3)-> PV desired voltage magnitude in p.u. (max. voltage forC "BV" PV bus type)C - Vm (F4.3) -> Min. voltage for "BV" PV bus type.

# 173WSCC$ 173 ac-dc-FACTS sample system input dataK 173 Bus System Data; WSCC Format Example; DC Input Data Example; FACTS Input Data Example;173sys.wsc+ PFLOWWIN:040

Page 45: pfwhelp

C - Remote Name (A8) -> Remote controlled bus name for "BG" type bus.C - Remote kV (F4.0) -> Remote controlled bus kV for "BG" type bus.C - Remote %Q (I3) -> Percentage of Q of remote bus control for "BG" type bus.CC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C | SHUNT | |REMOTE BUSC |Ow|Name |kV |Z|PL |QL |MW |Mva|PM |P |QM |Qm |Vpu|Vm |Name |kV |%QB BUS_1 345 1750.-56.0BQ BUS_2 20.0 1000700.0300.0-300.1040B BUS_3 345 2350.-127.BQ BUS_4 22.0 1200998.0400.0-400..950B BUS_5 500 -113B BUS_6 345 239. -56.0 -155BQ BUS_7 22.0 2060.700.0-500.1.00B BUS_8 230 139.723.8BQ BUS_9 20.0 30002000.900.0-900..980B BUS_10 500 90.0070.00 -190BQ BUS_11 26.0 16001590.700.0-280.1000B BUS_12 500 -391BQ BUS_13 24.0 25402540.1300.-900..960B BUS_14 500 793.4 207. -146B BUS_15 345 840. 5.0BQ BUS_16 22.0 1000862.0300.0-300.1050B BUS_17 500 617. -69.0 -427B BUS_19 500B BUS_20 500B BUS_21 500B BUS_22 500B BUS_23 500B BUS_24 500B BUS_25 500B BUS_26 500B BUS_28 500B BUS_29 500BQ BUS_30 20.0 79004400.4000.-40001000B BUS_31 500 44001000. 0.B BUS_32 500B BUS_33 230B BUS_34 230 3600 700. 0.BQ BUS_35 20.0 50004600.5320.-35001020BQ BUS_36 22 20001590.600.0-525.1009B BUS_37 500 912.B BUS_38 500B BUS_39 230BQ BUS_40 18.0 424.-400.268.0-134.1020B BUS_41 230 135.027.00B BUS_42 230BQ BUS_43 18.0 460.160.0300.0-220.1000B BUS_44 345 52.5-32.9 430.BQ BUS_45 26.0 20001680.850.0-440.1050B BUS_46 230 -72.8-17.BQ BUS_47 11.5 113.110.0100.0-100.1020B BUS_48 230 121. 25.00

Page 46: pfwhelp

B BUS_49 500 -80.B BUS_50 230 320.065.00B BUS_51 138 237.2-63.2B BUS_52 287B BUS_53 287B BUS_54 230 138.028.00B BUS_55 230 907.8132.1B BUS_56 500B BUS_57 230 117.024.00B BUS_58 230 121.025.00B BUS_59 230 987.7 -6.2B BUS_60 230 200B BUS_61 230 401. 80.6B BUS_62 230 205.217.6B BUS_63 287 -129. 32.2 -108B BUS_64 500BQ BUS_65 20.0 3100 28601500.-10001000B BUS_66 500 1700. 300. 0. 1000B BUS_67 115 160.031.25 1035B BUS_68 230 -67.5160.0 83.6 1043B BUS_69 500 -44.222.00BQ BUS_70 13.8 15001201.692.0-711.1055B BUS_71 230 792.B BUS_72 500 462.B BUS_73 500 3200.1100. 1200 1085BQ BUS_74 13.8 60004045.2649.-18501000B BUS_75 500 3500.500.0 550.BQ BUS_76 20.0 99999900.5780.-20001000B BUS_77 500 5000.400.0 1200B BUS_78 500 -220B BUS_79 500 -66.6 -97. -674B BUS_80 500 -339.-119. -110B BUS_81 500 -220B BUS_82 345 610. -414. -870B BUS_83 500B BUS_84 500B BUS_85 500B BUS_86 500B BUS_87 500B BUS_88 500B BUS_89 500B BUS_90 500B BUS_91 500B BUS_92 500B BUS_93 500B BUS_94 500B BUS_95 500B BUS_96 500B BUS_97 200 -43.3 20.0B BUS_98 200 210.4 -77.B BUS_99 500 50.0025.00BQ BUS_100 25.0 1180600.0330.0-310.0.98B BUS_101 500 305. -7.6 -91.B BUS_102 200 27.50 -0.1

Page 47: pfwhelp

B BUS_103 200 8.010B BUS_104 500 55.6 -329. -327B BUS_105 200 777.6 32.6 -130B BUS_106 500 -189.61.5BQ BUS_107 20.0 1500957. 400. -400.1.02B BUS_108 200 148. -128B BUS_109 500 -91.B BUS_110 500 -0.7 118.5 -91.BQ BUS_111 20.0 454. 300. -300.1.05B BUS_112 200 884. 54.8 -32.BQ BUS_113 20.0 3367.2500.-10001000B BUS_114 500 5661.3491. 1500B BUS_115 500B BUS_116 500B BUS_117 500B BUS_118 500B BUS_119 500B BUS_120 500B BUS_121 500B BUS_122 500B BUS_123 500B BUS_124 500B BUS_126 500B BUS_127 500B BUS_128 500B BUS_129 500B BUS_130 500B BUS_131 500 856. 19.6B BUS_132 230 175. 18.0BQ BUS_133 20.0 882.7300. -300.1.02B BUS_27 500 902.3-11.4 -319BQ BUS_134 20.0 3055.2000.-900.1.02B BUS_135 230 3191. 630.B BUS_136 500 204.2-28.2B BUS_137 230 377.464.5BQ BUS_138 20.0 1570.900.0-400.1.05B BUS_139 500 3098.1189. 400.B BUS_140 230B BUS_141 500 -196BQ BUS_142 22.0 15801580.700.0-300.1050BQ BUS_143 20.0 2100.600. -600.1010B BUS_144 230 3118.78.0B BUS_145 500 1230. 72.8B BUS_146 500 406. 41.0B BUS_147 500B BUS_148 230 1066.-10.8 -190B BUS_149 345 457.7 81.7 -60.B BUS_150 345 33.9 11.9B BUS_151 230 148. -7.9B BUS_152 345 116.1 38.4 -220BQ BUS_153 20.0 1590.9999.-99991.05B BUS_18 345 -62. 12.8B BUS_154 230 255. 100.BQ BUS_155 20.0 370.09999.-99991.00

Page 48: pfwhelp

B BUS_156 345B BUS_157 345 31.6 11.5 -18.B BUS_158 345 141.271.4B BUS_159 345 379. -43. -50.B BUS_160 345 185. 78.5B BUS_161 500B BUS_162 500B BUS_163 500B BUS_164 500B BUS_165 500B BUS_166 500B BUS_167 500B BUS_168 500B BUS_169 500B BUS_170 500B BUS_171 500B BUS_172 500B BUS_173 500 -220CC*******************************************************************************CC AC LINESCC Line Input Data:C - Type (A2) -> "L "C - Ow (A3) -> OwnerC - Name_1 (A8) -> Name of sending busC - kV1 (F4.0) -> kV base for sending busC - M (I1) -> Metered bus for flow interchangeC - Name_2 (A8) -> Name of receiving busC - kV2 (F4.0) -> kV base for receiving busC - C (I1) -> Circuit IDC - S (I1) -> Section numberC - In (F4.0) -> Rated Amps.C - N (I1) -> Circuit numberC - R (F6.5) -> p.u. series R of PI equivalentC - X (F6.5) -> p.u. series X of PI equivalentC - G/2 (F6.5) -> p.u. shunt G/2 of PI equivalentC - B/2 (F6.5) -> p.u. shunt B/2 of PI equivalentC - Mil (F4.1) -> Length in milesCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C M CS NC |Ow|Name_1 |kV1||Name_2 |kV2|||In || R | X | G/2 | B/2 |Mil|L BUS_3 345 BUS_18 3451 .00811.13690 1.2174L BUS_6 345 BUS_1 3451 .00179.01988 1.2880L BUS_6 345 BUS_15 3451 .0005 .00530 .04410L BUS_15 345 BUS_3 3451 .00977.11000 1.0000L BUS_10 500 BUS_19 5001 -00634L BUS_19 500 BUS_20 5001 .00077.01804 .69921L BUS_20 500 BUS_12 5001 -00634L BUS_10 500 BUS_21 5001 -01188L BUS_21 500 BUS_22 5001 .00241.05865 243280

Page 49: pfwhelp

L BUS_22 500 BUS_17 5001 -01188L BUS_12 500 BUS_23 5001 -00826L BUS_23 500 BUS_24 5001 .00179.04244 169610L BUS_24 500 BUS_17 5001 -00826L BUS_12 500 BUS_25 5001 -01795L BUS_25 500 BUS_26 5001 .00207.04959 197580L BUS_26 500 BUS_27 5001 -01795L BUS_14 500 BUS_17 5001 .00040.00960 .45190L BUS_14 500 BUS_17 5002 .00040.00960 .45190L BUS_5 500 BUS_28 5001 -00408L BUS_28 500 BUS_29 5001 .00177.04189 167230L BUS_29 500 BUS_12 5001 -00612L BUS_31 500 BUS_32 5001 .0035 .07000 2.303L BUS_33 230 BUS_34 2301 .0020 .02000 .4000L BUS_52 287 BUS_63 2871 .01070.07905 .18335L BUS_53 287 BUS_63 2871 .01070.07905 .18335L BUS_55 230 BUS_41 2301 .00047.00723 .00812L BUS_55 230 BUS_58 2301 .00119.01244 .01399L BUS_55 230 BUS_58 2302 .00119.01244 .01399L BUS_57 230 BUS_42 2301 .00201.03074 .03443L BUS_57 230 BUS_54 2301 .00073.01025 .01279L BUS_57 230 BUS_54 2302 .00073.01025 .01279L BUS_57 230 BUS_58 2301 .00110.01189 .01257L BUS_62 230 BUS_55 2301 .00128.00979 .01060L BUS_64 500 BUS_49 5001 .00083.01884 .83334L BUS_41 230 BUS_58 2301 .00035.00536 .00602L BUS_37 500 BUS_38 5001 .00074.01861 .70132L BUS_37 500 BUS_56 5001 .00082.01668 .59401L BUS_37 500 BUS_64 5001 .00159 .06001L BUS_37 500 BUS_64 5002 .00159 .06001L BUS_42 230 BUS_58 2301 .00281.04296 .04824L BUS_48 230 BUS_62 2301 .00138.01116 .01235L BUS_48 230 BUS_62 2302 .00138.01116 .01235L BUS_50 230 BUS_42 2301 .00220.03422 .03858L BUS_50 230 BUS_42 2302 .00238.03669 .04142L BUS_50 230 BUS_57 2301 .00037.00366 .00415L BUS_50 230 BUS_58 2301 .00055.00586 .00623L BUS_48 230 BUS_55 2301 .00229.01583 .01530L BUS_48 230 BUS_55 2302 .00229.01583 .01530L BUS_39 230 BUS_46 2301 .00221.03346 .03669L BUS_39 230 BUS_48 2301 .00290.03800 .04120L BUS_39 230 BUS_59 2301 .00309.04677 .05040L BUS_39 230 BUS_60 2301 .00226.03422 .03753L BUS_48 230 BUS_46 2301 .00029.00434 .00475L BUS_48 230 BUS_59 2301 .00141.00967 .00970L BUS_48 230 BUS_59 2302 .00141.00967 .00970L BUS_48 230 BUS_59 2303 .00161.00971 .00964L BUS_48 230 BUS_59 2304 .00161.00971 .00964L BUS_48 230 BUS_60 2301 .00027.00393 .00459L BUS_48 230 BUS_60 2302 .00027.00393 .00459L BUS_48 230 BUS_60 2303 .00027.00393 .00459L BUS_75 500 BUS_73 5001 .00120.02316 .8576L BUS_75 500 BUS_73 5002 .00030.02000 1.800L BUS_77 500 BUS_75 5001 .00020.00820 .6500

Page 50: pfwhelp

L BUS_77 500 BUS_75 5002 .00020.00820 .6500L BUS_68 230 BUS_71 2301 3020 .00006.00131 .00189L BUS_68 230 BUS_71 2302 3020 .00006.00116 .00166L BUS_69 500 BUS_72 5001 3450 .00001.00030 .00717L BUS_69 500 BUS_72 5002 3450 .00001.00030 .00922L BUS_69 500 BUS_73 5001 2175 .00023.00451 .16660L BUS_69 500 BUS_73 5002 2175 .00020.00446 .15250L BUS_79 500 BUS_73 5001 3450 .00063.01412 .54878L BUS_79 500 BUS_73 5002 3020 .00109.02408 .77771L BUS_79 500 BUS_73 5003 3020 .00108.02409 .77674L BUS_79 500 BUS_84 5001 3450 .00041.00737 .36347L BUS_84 500 BUS_85 5001 2000 -01263L BUS_85 500 BUS_83 5001 3450 .00060.01036 .50728L BUS_80 500 BUS_86 5001 3600 .00072.01382 .63786L BUS_86 500 BUS_87 5001 2000 -00858L BUS_87 500 BUS_83 5001 3600 .00012.00238 .10963L BUS_79 500 BUS_88 5001 3020 .00066.01266 .47988L BUS_88 500 BUS_89 5001 2400 -01263L BUS_89 500 BUS_90 5001 3020 .00074.01428 .5411L BUS_90 500 BUS_91 5001 2400 -01263L BUS_91 500 BUS_80 5001 3020 .00078.01502 .56905L BUS_79 500 BUS_92 5001 3020 .00066.01266 .47988L BUS_92 500 BUS_93 5001 2000 -01263L BUS_93 500 BUS_94 5001 3020 .00074.01428 .5411L BUS_94 500 BUS_95 5001 2000 -01263L BUS_95 500 BUS_80 5001 3020 .00074.01413 .53317L BUS_78 500 BUS_96 5001 3600 .00264.05356 264533L BUS_96 500 BUS_81 5001 1732 -02667L BUS_106 500 BUS_115 5001 2667 -01000L BUS_115 500 BUS_116 5001 2894 .00076.01952 .91225L BUS_116 500 BUS_117 5001 2667 -01000L BUS_117 500 BUS_118 5001 2894 .00082.02119 .99210L BUS_118 500 BUS_114 5001 2667 -01000L BUS_109 500 BUS_119 5001 1800 .00002-00998L BUS_119 500 BUS_120 5001 2396 .00140.02338 .73750L BUS_120 500 BUS_110 5001 1800 .00001-00666L BUS_109 500 BUS_121 5001 1800 .00002-00998L BUS_121 500 BUS_122 5001 2396 .00140.02338 .73750L BUS_122 500 BUS_110 5001 1800 .00001-00666L BUS_110 500 BUS_123 5001 2667 .00001-01120L BUS_123 500 BUS_124 5001 2450 .00154.03409 115570L BUS_124 500 BUS_114 5001 2667 .00001-01120L BUS_110 500 BUS_126 5001 2450 .00095.02102 .71260L BUS_98 200 BUS_108 2001 752. .01113.06678 .03643L BUS_98 200 BUS_108 2002 602. .01050.06540 .03430L BUS_98 200 BUS_108 2003 752. .01105.06642 .03580L BUS_98 200 BUS_112 2001 747. .03903.27403 .15536L BUS_98 200 BUS_97 2001 838. .02482.16938 .10116L BUS_97 200 BUS_112 2001 838. .0148 .10101 .06033L BUS_98 200 BUS_102 2001 747. .01382.09268 .05530L BUS_102 200 BUS_112 2001 747. .03058.20460 .12236L BUS_98 200 BUS_103 2001 838. .01668.11381 .06804L BUS_103 200 BUS_112 2001 838. .02235.16106 .09171L BUS_114 500 BUS_127 5001 .00001-00755

Page 51: pfwhelp

L BUS_127 500 BUS_128 5001 2450 .00165.05719 123870L BUS_128 500 BUS_104 5001 1800 .00002-01331L BUS_114 500 BUS_129 5001 2450 .00001-01098L BUS_129 500 BUS_101 5001 2450 .00093.03644 .69475L BUS_101 500 BUS_130 5001 2450 .00072.01600 .54395L BUS_130 500 BUS_104 5001 2450 .00002-00998L BUS_101 500 BUS_99 5001 .00079.01937 .66425L BUS_99 500 BUS_104 5001 .00087.02087 .72855L BUS_99 500 BUS_104 5002 .00087.02087 .72855L BUS_136 500 BUS_147 5001 3600 .00044.01125 .41460L BUS_136 500 BUS_147 5002 3600 .00044.01125 .41460L BUS_136 500 BUS_141 5001 3600 .00190.03100 207010L BUS_27 500 BUS_136 5001 3600 .00193.02779 233560L BUS_141 500 BUS_27 5001 3600 .00056.01415 .52145L BUS_131 500 BUS_146 5001 3600 .00042.00905 .33397L BUS_136 500 BUS_145 5001 3600 .00060.01280 .47310L BUS_139 500 BUS_145 5001 3600 .00021.00457 .16168L BUS_145 500 BUS_146 5001 3600 .00040.00930 .34280L BUS_136 500 BUS_139 5001 3600 .00028.00753 .25868L BUS_136 500 BUS_139 5002 3600 .00035.00750 .27680L BUS_144 230 BUS_148 2301 2320 .00285.03649 .06328L BUS_144 230 BUS_148 2302 2320 .00138.03399 .05626L BUS_132 230 BUS_137 2301 2320 .00190.02580 .04920L BUS_132 230 BUS_144 2301 1160 .00845.07034 .07977L BUS_135 230 BUS_137 2301 2320 .00110.01270 .02400L BUS_148 230 BUS_137 2301 2320 .00320.03950 .07200L BUS_140 230 BUS_137 2301 2320 .00138.05399 .07626L BUS_150 345 BUS_160 3451 .00160.02260 .19050L BUS_149 345 BUS_160 3451 .00080.01060 .10195L BUS_150 345 BUS_149 3451 .00240.03320 .29245L BUS_149 345 BUS_18 3451 .00170.02250 .19960L BUS_149 345 BUS_18 3452 .00210.02380 .19225L BUS_152 345 BUS_157 3451 .00960.08780 .71325L BUS_149 345 BUS_152 3451 .00520.06020 .50500L BUS_149 345 BUS_152 3452 .00490.05370 .44215L BUS_149 345 BUS_158 3451 .00120.01720 .14935L BUS_152 345 BUS_159 3451 .00340.03740 .31040L BUS_152 345 BUS_159 3452 .00340.03720 .30910L BUS_18 345 BUS_159 3451 .00380.03400 .29120L BUS_18 345 BUS_159 3452 .00320.03490 .28610L BUS_151 230 BUS_154 2301 .01080.09650 .16480L BUS_152 345 BUS_158 3451 .00340.03920 .32620L BUS_31 500 BUS_77 5001 83.02390 1.650L BUS_75 500 BUS_66 5001 70.07400 2.435L BUS_80 500 BUS_161 5001 1800 -00720L BUS_161 500 BUS_162 5001 3020 .00103.02338 .79020L BUS_162 500 BUS_109 5001 1800 -00720L BUS_80 500 BUS_163 5001 1800 -00864L BUS_163 500 BUS_164 5001 3020 .00107.02470 .76350L BUS_164 500 BUS_109 5001 1800 -00720L BUS_80 500 BUS_165 5001 -01000L BUS_165 500 BUS_166 5001 .00103.03230 139800L BUS_166 500 BUS_106 5001 -01000L BUS_104 500 BUS_167 5001 2134 -00935

Page 52: pfwhelp

L BUS_167 500 BUS_168 5001 3600 .00123.02659 .99351L BUS_168 500 BUS_147 5001 2134 -00935L BUS_104 500 BUS_169 5001 2134 -00944L BUS_169 500 BUS_170 5001 3600 .00123.02662 .99440L BUS_170 500 BUS_147 5001 2134 -00935L BUS_104 500 BUS_171 5001 2134 -00935L BUS_171 500 BUS_172 5001 3600 .00112.02517 .91793L BUS_172 500 BUS_147 5001 2100 -00840L BUS_136 500 BUS_64 5001 .00020.00410 .14810L BUS_27 500 BUS_64 5001 .00179.02524 .26773L BUS_27 500 BUS_64 5002 .00179.02524 .26773L BUS_144 230 BUS_61 2301 3070 .00065.01187 .02336L BUS_144 230 BUS_61 2302 3070 .00065.01187 .02336L BUS_132 230 BUS_61 2301 3070 .00140.02640 .05100L BUS_10 500 BUS_27 5001 1630 .00280.02110 .50970L BUS_14 500 BUS_131 5001 1800 .00259.02967 107650L BUS_14 500 BUS_131 5002 1800 .00259.02967 107650L BUS_78 500 BUS_173 5001 1732 -02667L BUS_173 500 BUS_83 5001 3600 .00122.02373 110355L BUS_150 345 BUS_82 3451 .00620.06730 .55780L BUS_44 345 BUS_18 3451 .00180.02450 .21960L BUS_44 345 BUS_18 3452 .00180.02450 .21960L BUS_156 345 BUS_6 3451 .00480.04360 .35390CC*******************************************************************************CC TRANSFORMERSCC Transformer Input Data:C - Type (A2) -> "T "C - Ow (A3) -> OwnerC - Name_1 (A8) -> Name of sending busC - kV1 (F4.0) -> kV base for sending busC - M (I1) -> Metered bus for flow interchangeC - Name_2 (A8) -> Name of receiving busC - kV2 (F4.0) -> kV base for receiving busC - C (I1) -> Circuit IDC - S (I1) -> Section numberC - Sn (F4.0) -> Rated MVAC - N (I1) -> Circuit numberC - R (F6.5) -> p.u. series R of equivalent circuitC - X (F6.5) -> p.u. series X of equivalent circuitC - G (F6.5) -> p.u. shunt G of equivalent circuitC - B (F6.5) -> p.u. shunt B of equivalent circuitC - Tap1 (F5.2) -> kV tap for sending busC - Tap2 (F5.2) -> kV tap for receiving busCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C M CSC |Ow|Name_1 |kV1||Name_2 |kV2|||Sn | R | X | G | B |Tap1|Tap2|T BUS_3 345 BUS_9 20.01 .01500 3450020.00T BUS_14 500 BUS_13 24.01 3066 .00006.00539 5300023.00T BUS_1 345 BUS_2 20.01 .01200 3550020.00

Page 53: pfwhelp

T BUS_15 345 BUS_16 22.01 .00600 3600022.00T BUS_5 500 BUS_6 3451 .01100 5315034500T BUS_5 500 BUS_6 3452 .01100 5315034500T BUS_6 345 BUS_7 22.01 3000 .00000.00590 3450022.00T BUS_6 345 BUS_8 2301 430. .00028.01380 3450023000T BUS_6 345 BUS_8 2302 430. .00029.01390 3450023000T BUS_10 500 BUS_11 26.01 2000 .00666 5400026.00T BUS_32 500 BUS_33 2301 .01000 5500023000T BUS_31 500 BUS_30 20.01 .00150 52500 2000T BUS_34 230 BUS_35 20.01 .00200 23000 2000T BUS_64 500 BUS_63 2871 .00020.02330 4902828750T BUS_44 345 BUS_45 26.01 .00000.00520 3536226.00T BUS_66 500 BUS_65 20.01 500 54500 2000T BUS_81 500 BUS_82 3451 1500 .00720 5250034500T BUS_77 500 BUS_76 20.01 .00250 53300 2000T BUS_72 500 BUS_71 2301 2500 .00200 5373024150T BUS_68 230 BUS_67 1151 250. .00085.02845 2328011790T BUS_69 500 BUS_68 2301 1008 .00018.01071 5375024150T BUS_69 500 BUS_68 2302 1300 .00008.00667 5375024150T BUS_73 500 BUS_74 13.81 5000 .00410 5250013.20T BUS_68 230 BUS_70 13.81 2000 .01130 2300013.20T BUS_107 20.0 BUS_108 2001 .0192 20.0 218.T BUS_108 200 BUS_109 5001 840. .00009.01578 2350052500T BUS_113 20.0 BUS_114 5001 .004 20.0 529.T BUS_111 20.0 BUS_112 2001 .015 20.0 220.T BUS_112 200 BUS_114 5001 1120 .00018.01134 2350052500T BUS_105 200 BUS_104 5001 840. .00027.01578 2350052500T BUS_105 200 BUS_104 5002 1120 .00018.01079 2350052500T BUS_99 500 BUS_100 25.01 .00000.00980 5250025.00T BUS_147 500 BUS_148 2301 1120 .01149 5315623000T BUS_147 500 BUS_148 2302 1120 .01149 5315623000T BUS_147 500 BUS_148 2303 1120 .01149 5315623000T BUS_133 20.0 BUS_27 5001 .015 20.0 502.T BUS_141 500 BUS_142 22.01 .00980 5250022.00T BUS_134 20.0 BUS_135 2301 .0035 20.0 235.T BUS_138 20.0 BUS_139 5001 .005 20.0 508.T BUS_139 500 BUS_140 2301 .005 5000023000T BUS_52 287 BUS_51 1381 .00059.01491 2875013800T BUS_53 287 BUS_51 1381 .00059.01491 2875013800T BUS_54 230 BUS_51 1381 .00030.01330 2300013800T BUS_54 230 BUS_51 1382 .00030.01340 2300013800T BUS_56 500 BUS_55 2301 .00013.01386 5053023000T BUS_56 500 BUS_55 2302 .00013.01386 5053023000T BUS_38 500 BUS_48 2301 .00013.00693 5250023000T BUS_42 230 BUS_43 18.01 .00058.02535 2413018.00T BUS_49 500 BUS_48 2301 .00026.01386 5250023000T BUS_48 230 BUS_47 11.51 .00499.11473 2410011.50T BUS_39 230 BUS_40 18.01 .00050.02380 2300018.00T BUS_60 230 BUS_61 2301 .00120 2280022500T BUS_143 20.0 BUS_144 2301 .010 20.0 233.T BUS_3 345 BUS_4 22.01 .01238 3450022.00T BUS_152 345 BUS_153 20.01 .00020.00580 3400020.00T BUS_157 345 BUS_156 3451 .01950 3450034500T BUS_150 345 BUS_151 2301 .00030.01810 3450023000

Page 54: pfwhelp

T BUS_154 230 BUS_155 20.01 .00050.01410 2435220.00T BUS_82 345 BUS_36 221 2000 .00000.00460 3450022.00CC*******************************************************************************CC DC BUS DATACC DC Bus Input Data:C - Type (A2) -> "BD"C - Name_1 (A8) -> Converter dc bus 1 nameC - Name_2 (A8) -> Converter dc bus 2 nameC - AC bus Name (A8) -> Converter ac bus nameC - AC bus kV (F4.0) -> Converter ac bus kV baseC - C (I1) -> Circuit numberC - Gr (A3) -> GroupC - Z (A2) -> ZoneC - N (I2) -> Number of converter bridgesC - Xc (F5.3) -> Commutation reactance in OhmsC - Rat (F5.4) -> Nominal voltage ratio of transformerC - Tstp (F5.3) -> Tap steps in %C - Tmin (F5.3) -> Min. tap in p.u.C - Tmax (F5.3) -> Max. tap in p.u.C - Amn (F4.1) -> Min. alphaC - Amx (F4.1) -> Max. alphaC - Gmn (F4.1) -> Min. gammaC - Imx (F4.1) -> Max. current in amps.CC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C |AC bus CC |Name_1 |Name_2 |Name |kV ||Gr|Z|N|Xc |Rat |Tstp|Tmin|Tmax|Amn|Amx|Gmn|ImxBD DC1-R-P+GROUND BUS_71 2301 117.6 1.843 .001 .80 1.40 5. 100. 0. 5.E3BD GROUND DC1-R-P-BUS_71 2301 117.6 1.843 .001 .80 1.40 5. 100. 0. 5.E3BD DC1-I-P+GROUND BUS_60 2301 117.3 1.843 .001 .80 1.40 90. 170.18. 5.E3BD GROUND DC1-I-P-BUS_60 2301 117.3 1.843 .001 .80 1.40 90. 170.18. 5.E3BD DC2-R-P+GROUND BUS_44 3451 124.7 1.194 .001 .92 1.15 5. 100. 0. 4.E3BD GROUND DC2-R-P-BUS_44 3451 124.7 1.194 .001 .92 1.15 5. 100. 0. 4.E3BD DC2-I-P+GROUND BUS_37 5001 123.7 0.808 .001 .92 1.20 90. 170.16. 4.E3BD GROUND DC2-I-P-BUS_37 5001 123.7 0.808 .001 .92 1.20 90. 170.16. 4.E3CC*******************************************************************************CC DC BUS CONTROL DATACC DC Bus Control Input Data:C - Type (A2) -> "BZ"C - Name_1 (A8) -> Converter dc bus 1 nameC - Name_2 (A8) -> Converter dc bus 2 nameC - AC bus Name (A8) -> Converter ac bus nameC - AC bus kV (F4.0) -> Converter ac bus kV baseC - C (I1) -> Circuit numberC - Mod 1 & 2 (2A2) -> Converter control modes: ID=current; AL=alpha; GA=gamma;C VD=Voltage; PA=P_power; QA=Q_powerC - Set Points (2F5.2)-> Control mode values: A, kV, MW, Mvar, or deg.

Page 55: pfwhelp

C - T (A1) -> Type: R=rectifier; I=inverterCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C C|Mod|Set Points TC |Name_1 |Name_2 |AC bus |kV ||1|2| 1 | 2 |BZ DC1-R-P+GROUND BUS_71 2301IDAL 3100. 15. RBZ GROUND DC1-R-P-BUS_71 2301IDAL 3100. 15. RBZ DC1-I-P+GROUND BUS_60 2301VDGA 447. 18. IBZ GROUND DC1-I-P-BUS_60 2301VDGA 447. 18. IBZ DC2-R-P+GROUND BUS_44 3451IDAL 1920. 15. RBZ GROUND DC2-R-P-BUS_44 3451IDAL 1920. 15. RBZ DC2-I-P+GROUND BUS_37 5001VDGA 485. 16. IBZ GROUND DC2-I-P-BUS_37 5001VDGA 485. 16. ICC*******************************************************************************CC DC LINE DATACC DC Line Input Data:C - Type (A2) -> "BD"C - Name_1 (A8) -> Converter dc bus 1 nameC - Name_2 (A8) -> Converter dc bus 2 nameC - C (I1) -> Circuit numberC - Gr (A3) -> GroupC - Z (A2) -> ZoneC - Ow (A3) -> OwnerC - R (F6.2) -> Resistance in OhmsC - L (F6.2) -> Inductance in mH (optional)C - C (F6.2) -> Capacitance in uF (optional)C - Imax (F6.1) -> Max. current in amps. (optional)CC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C CC |Name_1 |Name_2 ||Gr|Z|Ow|R ohm|L mH|C uF|Imax |LD DC1-R-P+DC1-I-P+1 19. 1300.LD DC1-R-P-DC1-I-P-1 19. 1300.LD DC2-R-P+DC2-I-P+1 7.82 693.LD DC2-R-P-DC2-I-P-1 7.82 693.CC*******************************************************************************CC SVC DATACC SVC Input Data:C - Type (A2) -> "FS" (F for FACTS, S for SVC).C - Ow (A3) -> OwnerC - Bus1 (A8) -> System bus where SVC is connected.C - kV1 (F4.0) -> Bus 1 kV base.C - Bus2 (A8) -> System bus that SVC controls.C - kV2 (F4.0) -> Bus 2 kV base.C - Xc (F8.7) -> Per unit SVC capacitive X w.r.t. MVA and kV1 base.C - Xl (F8.7) -> Per unit SVC inductive X w.r.t. MVA and kV1 base.

Page 56: pfwhelp

C - am (F3.0) -> Minimum firing angle alpha in degrees.C - aM (F3.0) -> Maximum firing angle alpha in degrees.C - s (F2.0) -> SVC control slope in % w.r.t. to MVA and kV1 base.C - MVA (F4.0) -> SVC maximum rating in MVAr (capacitive).C - Vrf (F4.3) -> p.u. reference control voltage.C - kV (F4.0) -> Low kV side of step-down transformer (optional).C - Xth (F8.7) -> Step-down transformer reactance in p.u. w.r.t. to SVC MVAC rating and kV1 (optional).C - al (F5.1) -> Initial value of firing angle in degrees (optional).CC 1 2 3 4 5 6 7 8C2345678901234567890123456789012345678901234567890123456789012345678901234567890CC |Ow|Bus1 |kV1 |Bus2 |kV2|Xc |Xl |am|aM|s|MVA|Vrf|kV |Xth |alFS BUS_114 500 BUS_114 500 1.1708 0.4925 90175 2 200 1. 26. 0.1CC*******************************************************************************CC TCSC DATACC TCSC Input Data:C - Type (A2) -> "FC" (F for FACTS, C for TCSC).C - Bus1 (A8) -> Sending bus where TCSC is connected.C - kV1 (F4.0) -> Bus 1 kV base.C - Bus2 (A8) -> Receiving bus where TCSC is connected.C - kV2 (F4.0) -> Bus 2 kV base.C - Xc (F8.7) -> Per unit TCSC capacitive X w.r.t MVA and kV1 base.C - Xl (F8.7) -> Per unit TCSC inductive X w.r.t MVA and kV1 base.C - am (F3.0) -> Minimum firing angle alpha in degrees.C - aM (F3.0) -> Maximum firing angle alpha in degrees.C - cont (F8.3)-> TCSC control value: % of X; MW for P; KA for I; degrees for D.C - Mode (A1) -> Control mode: X for reactance; P for power; I for current;C D for angle.C - MVA (F4.0) -> TCSC rating in MVA. Defaults to MVA system base.C - al (F5.1) -> Initial value of firing angle in degrees (optional).C - M1 (F4.0) -> Needed for determining series line reactance for % XC control: M1=Xc/Xline.CC 1 2 3 4 5 6 7 8C2345678901234567890123456789012345678901234567890123456789012345678901234567890C MC |Bus1 |kV1 |Bus2 |kV2|Xc |Xl |am|aM|cont ||MVA|al |M1 |FC BUS_126 500 BUS_114 500 .00526 .000526 144175 90.0 X 4.CC*******************************************************************************CC STATCOM DATACC STATCOM Input Data:C - Type (A2) -> "FT" (F for FACTS, T for STATCOM).C - Ow (A3) -> OwnerC - Bus1 (A8) -> System bus where STATCOM is connected.C - kV1 (F4.0) -> Bus 1 kV base.C - Bus2 (A8) -> System bus that STATCOM controls.

Page 57: pfwhelp

C - kV2 (F4.0) -> Bus 2 kV base.C - R (F6.0) -> AC R in p.u. w.r.t. MVA and kV1 base.C - X (F6.5) -> AC X in p.u. w.r.t. MVA and kV1 base.C - Gc (F6.5) -> DC G in p.u. w.r.t. MVA and a kVdc base defined by theC secondary side of the STATCOM transformer(s).C - Im (F6.4) -> Max. capacitive current (Imin>0) in p.u. w.r.t.C MVA and kV1 base.C - IM (F6.4) -> Max. inductive current (Imax>0) in p.u. w.r.t.C MVA and kV1 base.C - s (F3.0) -> AC voltage control slope in % w.r.t. to MVA and kV1 base.C - MVA (F5.0) -> Rating in MVA (defaults to the system base).C - Vrf (F4.3) -> AC reference voltage in p.u. w.r.t. kV1 base.C - M (A1) -> Control mode: W for PWM control (default); P for phaseC control.C - Con (F6.5) -> Control variable value:C - k constant for phase control (defaults to a valueC of 0.9 for a 12 pulse VSI if no value is given).C - DC reference voltage for PWM control in p.u. w.r.t.C a kVdc base (defaults to 1 p.u.).CC 1 2 3 4 5 6 7 8C2345678901234567890123456789012345678901234567890123456789012345678901234567890C MC |Ow|Bus1 |kV1 |Bus2 |kV2|R |X |Gc |Im |IM |s |MVA |Vrf||ConFT BUS_60 230 BUS_60 230 0.0 0.145 .0017 1. 1. 2.2000. 1. P 0.9CC*******************************************************************************CC SOLUTION CONTROL CARDCC Solution control card:C - Max Iter (I5) -> Maximum number of Newton-Raphson iterationC - Name (A8) -> Name of the slack busC - kV (F4.0) -> kV base for slack busC - Angle (F10.4) -> Reference angle for slack bus in degreesCC 1 2 3 4 5 6 7 8C 345678901234567890123456789012345678901234567890123456789012345678901234567890C |Max| |SLACK BUS |C |Itr| |Name |kV| |Angle |SOL 50 BUS_74 13.8 0.CCZZEND