permasol - klimafonds.gv.at€¦ · pb perovskites - properties a b x bx 6 a: organic cation (e.g....

28
PERMASOL Perovskite Materials for Efficient Solar Cells Energieforschungsprogramm – 1. Ausschreibung Emerging Technologies Theodoros Dimopoulos Senior Scientist, AIT Austrian Institute of Technology, Center for Energy, Photovoltaic Systems

Upload: others

Post on 22-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • PERMASOLPerovskite Materials for Efficient Solar CellsEnergieforschungsprogramm – 1. AusschreibungEmerging Technologies

    Theodoros DimopoulosSenior Scientist, AIT Austrian Institute of Technology, Center for Energy, Photovoltaic Systems

  • Motivation

    Why emerging materials are important for PV?

    2 °C global warming scenario*: IEA predicts worldwide electricity

    demand of 33 000 TWh in 2050

    This corresponds to 25 TWp of installed PV capacity (assumingannual average capacity factor of 15%)

    *Energy Technology Perspectives 2014, International Energy Agency, 2014

  • Motivation

    2010 2015 2020 2025 2030 2035 2040 2045 2050 2055

    0

    5000

    10000

    15000

    20000

    2500025 TWp

    700 GWp

    ca

    pa

    city (

    GW

    p)

    year

    300 GWp

  • Abundance and processing

    How fast can we produce raw material?

    a-Si (1 m), CdTe (800 y), CIGS (300 y)

    c-Si (3 y)

    Flexible TFPV

    OPV (minutes)

    J. Jean et al. Pathways for solar photovoltaics, Energy Env.

    Sci. 8 (2015) 1200–1219. doi:10.1039/C4EE04073B. (MIT)

  • Abundance and processing

    How fast can we produce raw material? How fast can we produce efficient PV

    modules?

    J. Jean et al. Pathways for solar photovoltaics, Energy Env.

    Sci. 8 (2015) 1200–1219. doi:10.1039/C4EE04073B. (MIT)

    Source: Heliatek

  • Efficiency

  • Efficiency

    Perovskite cells with soaring efficiencies(max. 22.1%)

    [1] Kojima et al., J. Am. Chem. Soc. 2009, 131, 6050−6051.[2] Saliba, M. et al., Science 2016, 354, 206−209.

  • ABX3

    Pb perovskites - properties

    A

    B

    X BX6

    A: organic cation (e.g. CH3NH3+)B: PbX: halogen I, Cl, Br

    Source: ossila

    Hybrid & abundant: one componentorganic and one inorganic

    They can be synthesized from inks They can be easily applied by spin coating /

    knife coating / printing …. methods They are very efficient solar absorbers

    research.utdallas.edu flexoglobal.com

  • Problems regarding Pb perovskite

    It contains Pb which is a toxic material [1] Limited environmental stability [2] Danger with Pb is related to the low stability

    High temperature solar cell processing steps (DSSC architecture) are incompatible with flexible substrates

    [1] Babayigit, A. et al., Toxicity of Organometal Halide Perovskite Solar Cells. Nat. Mater. 2016, 15, 247−251.[2] Leijtens, T. et al., Stability of Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2015, 5, 1500963.

  • PERMASOL

    The project seeks to replace Pb perovskite with a less toxic and more stablealternative Replace the processes, which are not compatible with flexible substrates Unveil the mechanicms of carrier transport in perovskite cells

    Duration: 01.09.2015 -31.08.2018

    Partnerso AIT (Coordinator)o TU Graz, ICTM o Joanneum Research o University of Patras (subcontractor)

  • Substitutes for Pb

    Appropriate ion sizes [1]

    Appropriate oxidation state 2+ (e.g. Sn2+)

    Appropriate semiconductor properties (bandgap, carrier mobility,….)

    𝑜𝑐𝑡𝑎ℎ𝑒𝑑𝑟𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟: 𝜇 =𝑅𝐵𝑅𝑋

    , 0.442 ≤ 𝜇 ≤ 0.895

    𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟: 𝑡 =(𝑅𝐴 + 𝑅𝑋)

    2(𝑅𝐵 + 𝑅𝑋), 0.8 ≤ 𝑡 ≤ 1.0

    A

    B

    X BX6

    ABX3, ionic radii: RA, RB, RX

    [1] Goldschmidt VM (1926) Naturwissenschaften 14:477

  • Substitutes for Pb

  • 0D perovskite-like hybridsA3B2X9

    2D perovskiteA2BX4

    3D perovskiteABX3

    From 3D to low dimensionality

    Low D: better solution processability / environmental stability Quantum confinement influences electronic properties

    Stoumpos et al., Chem. Mater. 2016, 28, 2852−2867

    A2Cn−1BX3n+1

  • Ab-initio band-structure simulations

    Simulation of electronic and structural properties Vienna ab-initio simulation package (VASP) Density functional theory DFT Different approximations (LDA and GGA) and functionals (PBE0, HSE06)

    >50 different materials simulated, combinations of:o Ge2+,Sn2+,Pb2+ (reference) ; Cu2+; Bi3+,….o A=MA+, FA+, Cs+, K+, Rb+

    o X=Cl-, I-, Br-, F-

  • Ab-initio band-structure simulations

    Calculating the equilibrium state and lattice constant of the perovskite Calculation of the density of states – extraction of bandgap

  • Ab-initio band-structure simulations

    Calculation of orbitals comprising the density of states Interaction of similar orbitals (e.g. p-type Pb-I, Bi-I) gives small bandgap Dissimilar orbitals (e.g. Ba-I) leads to large bandgap

  • 30 µm30 µm

    A3Bi2X9 perovskites forming hexagonally-shaped micro crystals (9-18 µm)

    Crystallization in the expected structure Tunable bandgap (1.67-3 eV): appropriate

    for solar absorber

    Bi (III) / X=I, Cl / A=MA, FA, K, Cs

  • Bi (III) / X=I,Cl / A=MA, FA, K, Cs

    MA3Bi2I9 MA3Bi2I9-xClx

    Solar cells of the DSSC and of the organic type were fabricated Max. efficiency 0.18%, max Voc 0.6 V, max jsc 0.8 mA/cm

    2

  • Cu (II) / X=I, Cl, Br / A=MA

    MA2CuCl4-xBrx is a 2D perovskite Easily processed on many substrates Br content tunes the bandgap (2.84 eV – 1.73 eV)

  • Cu (II) / X=I, Cl, Br / A=MA

    Crystallization as flat yellow-brown platelets that cleave easily in theplane of the platelets

    Uniform flat films over large areas Environmentally stable

  • MAGeI3

    MAGeBr3

    10 20 30 40 50 60 70 80

    32.5 35.0 37.5 40.0 42.5 45.0 47.5

    (CH3NH

    3)I

    Inte

    nsity (

    arb

    . u

    nit)

    Diffraction angle, 2 (deg)

    (CH3NH

    3)GeI

    3

    Inte

    nsity (

    arb

    . u

    nit)

    MAGeI3

    Easily processible on different substrates Particularly unstable in ambient conditions

    (oxidation from Ge2+ to Ge4+) Challenging characterization MAGeI3 bandgap 1.8 eV

    Ge (II) / X=I,Br / A=MA, FA, Cs

  • MAGeI3 MAGeI2Br

    -0.5 0.0 0.5

    -0.0002

    -0.0001

    0.0000

    0.0001

    0.0002

    0.0003

    MAGeI2Br asc., n=0.19%

    MAGeI2Br desc., n=0.16%

    MAGeI3 asc., n=0.21%

    MAGeI3 desc., n=0.20%

    cu

    rren

    t (A

    )

    bias (V)

    Ge (II) / X=I,Br / A=MA, FA, Cs

    Materials: MAGeI3 (1.8-2 eV), MAGeI2Br (2.3 eV), CsGeI3, (1.73 eV), FAGeI3 (2.1-2.62 eV)

    Ge perovskite processible in N2 atmosphere Particularly unstable in ambient conditions Max. efficiency ~0.5% (organic cell architecture)

    n=0.46%

  • 200 nm

    200 nm

    2 µm

    200 nm

    Glass/FTO Glass/FTO

    Glass/AZO/Au/AZO PET/AZO/Au/AZO

    Other tasks

    Low temperature deposition of 3D ETM based on ZnO nanorods Synthesis of nanoparticles for HTM (e.g. NiO, MoOx) Time resolved spectroscopy to probe carrier relaxation mechanisms /

    effect of interfaces with HTM and ETM

  • Next steps

    Focusing on the materials with the highest potential Investigate solar cells of the DSSC and OPV type Time resolved spectroscopic methods for cells of different architecture Environmental stability of the perovskites

  • Dissemination

    4 participations in international conferences (2 HOPV2016, 1 MRS 2017, 1 E-MRS 2017)

    2 peer-reviewed publications1) Hoefler, Trimmel, Rath, Monatsh Chem., „Progress on lead-free metal

    halide perovskites for photovoltaics applications: a review”, DOI 10.1007/s00706-017-1933-9 (2017)

    2) Ebner, Bauch, Dimopoulos, High performance and low cost transparent electrodes based on ultrathin Cu layer, Optics Express (2017)

    1 publications under review

    1 Master thesis – Ms. Paula Santos-Ortiz

  • The PERMASOL team

  • Thank you !