periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p...

29
Periods in action Pierre Lairez Inria Saclay MEGA 2017 Méthodes effectives en géométrie algébrique 16 June 2017, Nice

Upload: others

Post on 21-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Periods in action

Pierre LairezInria Saclay

MEGA 2017Méthodes effectives en géométrie algébrique16 June 2017, Nice

Page 2: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

What is a period?

A period is the integral on a closed path of a rational function in one or several variables withrational coefficients.

“Rational coefficients” maymean

• coefficients inQ

• coefficients inC(t ), the period is a function of t .This is what we will be interested in.

Etymology

• 2π is a period of the sine.

• arcsin(z) =∫ z

0

dxp1−x2

• 2π=∮∞

dxp1−x2

= 1

πi

∮dxdy

y2 − (1−x2) • •−1 1

Page 3: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Periods with a parameter Complete elliptic integral

An ellipseeccentricity t

major radius 1

perimeter E(t )

OF ′ F

t

1

E(t ) =∮∞

√1− t 2x2

1−x2 dx • • • •−1 1

Euler (1733) (t − t 3)E ′′+ (1− t 2)E ′+ tE = 0

Liouville (1834) Not expressible in terms of elementary functionssince then Many applications in algebraic geometry (Gauß-Manin connection)

geometry of the cycles↔ analytic properties of the periods

Page 4: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Content

1 Computing periods

2 Multiple binomial sums

3 Volume of semialgebraic sets

Page 5: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Computing periods

Page 6: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Differential equations as a data structure I

Representation of algebraic numbers

explicit√

5+2p

6 (alsop

2+p3)

implicit x4 −10x2 +1 = 0 (+ root location)

Representation of D-finite functionsAn example by Bostan, Chyzak, van Hoeij, and Pech (2011)

explicit 1+6 ·∫ t

0

2F1

(1/3 2/3

2

∣∣∣ 27w(2−3w)(1−4w)3

)(1−4w)(1−64w)

dw

implicit t (t −1)(64t −1)(3t −2)(6t +1)y ′′′+ (4608t 4 −6372t 3 +813t 2 +514t −4)y ′′

+4(576t 3 −801t 2 −108t +74)y ′ = 0 (+ init. cond.)

Page 7: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Differential equations as a data structure II

What can we compute?

• addition, multiplication, composition with algebraic functions

• power series expansion

• equality testing, given differential equations and initial condtions

• numerical analytic continuationwith certified precision(D. V. Chudnovsky and G. V. Chudnovsky 1990; van der Hoeven 1999; Mezzarobba 2010)sage: from ore_algebra import *sage: dop = (zˆ2+1)*Dzˆ2 + 2*z*Dzsage: dop.numerical_solution(ini=[0,1], path=[0,1])

[0.78539816339744831 +/- 1.08e-18]sage: dop.numerical_solution(ini=[0,1], path=[0,i+1,2*i,i-1,0,1])

[3.9269908169872415 +/- 4.81e-17] + [+/- 4.63e-21]*I

Page 8: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

The Picard-Fuchs equation Back to the periods

R(t , x1, . . . , xn) a rational function

γ⊂Cn a n-cycle (n-dim. compact submanifold) which avoids the polesof R , for t ∈U ⊂C

define y(t )≜∮γ

R(t , x1, . . . , xn)dx1 · · ·dxn , for t ∈U

wanted a differential equation ar (t )y (r ) +·· ·+a1(t )y ′+a0(t )y = 0,with polynomial coefficients

One equation fits all cycles, the Picard-Fuchs equation.

Page 9: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

A computational handle Perimeter of an ellipse

recall E(t ) =∮ √

1− t 2x2

1−x2 dx = 1

2πi

∮ R(t ,x,y)︷ ︸︸ ︷1

1− 1−t 2x2

(1−x2)y2

dxdy

Picard-Fuchs equation (t − t 3)E ′′+ (1− t 2)E ′+ tE = 0

Computational proof

(t − t 3)∂2R∂t 2 + (1− t 2)∂R

∂t + tR =∂∂x

(− t(−1−x+x2+x3)y2(−3+2x+y2+x2(−2+3t 2−y2))

(−1+y2+x2(t 2−y2))2

)+ ∂

∂y

(2t(−1+t 2)x(1+x3)y3

(−1+y2+x2(t 2−y2))2

)

Page 10: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Computing periods Theory and practice

given R(t , x1, . . . , xn), a rational function

find a0, . . . , ar ∈Q[t ], with ar ̸= 0 and r minimalC1, . . . ,Cn ∈Q(t , x1, . . . , xn) with poles(Ci ) ⊆ poles(R),

such that ar (t )∂r R

∂t r +·· ·+a1(t )∂R

∂t+a0(t )R =

n∑i=1

∂Ci

∂xi.

existence Grothendieck (1966), Monsky (1972), etc.see also Picard (1902) for n É 3

algorithms Almkvist, Apagodu, Bostan, Chen, Christol, Chyzak, van Hoeij,Kauers, Koutschan, Lairez, Lipshitz, Movasati, Nakayama, Nishiyama,Oaku, Salvy, Singer, Takayama, Wilf, Zeilberger, etc.(People who wrote a paper that solves the problem.)

Problem (mostly) solved!

Page 11: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Multiple binomial sumsjoint work with Alin Bostan and Bruno Salvy

Page 12: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

What are binomial sums? Examples

2n∑k=0

(−1)k

(2n

k

)3

= (−1)n (3n)!

(n!)3 (Dixon)

n∑k=0

(n

k

)2(n +k

k

)2

= ∑k=0

(n

k

)(n +k

k

)k∑

j=0

(k

j

)3

(Strehl)

n∑i=0

n∑j=0

(i + j

i

)2(4n −2i −2 j

2n −2i

)= (2n +1)

(2n

n

)2

∑rÊ0

∑sÊ0

(−1)n+r+s

(n

r

)(n

s

)(n + s

s

)(n + r

r

)(2n − r − s

n

)= ∑

kÊ0

(n

k

)4

Page 13: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

What are binomial sums? More examples

∑i

∑j

(2n

n + i

)(2n

n + j

)∣∣i 3 j 3(i 2 − j 2)∣∣= 2n4(n −1)(3n2 −6n +2)

(2n −3)(2n −1)

(2n

n

)2

Conjectured by Brent, Ohtsuka, Osborn, and Prodinger (2014)

1+F−1,−1n +2F 0,0

n −F 0,1n +F 1,0

n −3F 1,1n +F 1,2

n −F 3,1n +3F 3,2

n

−F 3,3n −2F 4,2

n +F 4,3n −F 5,2

n =n∑

m=0

(n+2m

)(n+2m+1

)(n+2m+2

)(n+21

)(n+22

) ,

where F a,bn =

n−1∑d=0

d−a∑c=0

(d−a−cc

)( nd−a−c

)((n+d+1−2a−2c+2bn−a−c+b

)− (n+d+1−2a−2c+2bn+1−a−c+b

))Conjectured by Le Borgne

Both proved using periods!

Page 14: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

What are binomial sums? Definition

The not so formal grammar of binomial sums

→ integer linear combination of the variables

→( )

→ Cst

→ + → · → ∑n=

Page 15: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Computing binomial sums with periods Example

2n∑k=0

(−1)k

(2n

k

)3

= ?(−1)n (3n)!

n!3

basic block

(n

k

)= 1

2πi

∮(1+x)n

xk

dx

x

product

(2n

k

)3

= 1(2πi )3

∮(1+x1)2n

xk1

(1+x2)2n

xk2

(1+x3)2n

xk3

dx1

x1

dx2

x2

dx3

x3

summation y(t ) = 1

(2iπ)3

∮ (x1x2x3 − t

∏3i=1(1+xi )2

)dx1dx2dx3(

x21 x2

2 x23 − t

∏3i=1(1+xi )2

)(1− t

∏3i=1(1+xi )2

)where y(t ) is the generating function of the l.h.s.

simplification y(t ) = 1

(2iπ)2

∮x1x2dx1dx2

x21 x2

2 − t (1+x1)2(1+x2)2(1−x1x2)2

integration t (27t +1)y ′′+ (54t +1)y ′+6y = 0, i.e. 3(3n+2)(3n+1)un + (n+1)2un+1 = 0

conclusion Generating functions of binomial sums are periods!

Page 16: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Computing binomial sums with periods

• Many related works onmultiple sums (Chyzak, Egorychev, Garoufalidis, Koutschan, Sun,Wegshaider, Wilf, Zeilberger, etc)

• Subtelties in the translation recurrence operators→ actual sequences, not handledalgorithmically

Theorem + Algorithm (Bostan, Lairez, and Salvy 2016)One can decide the equality between binomal sums.

• “This approach, while it is explicit in principle, in fact yields an infeasible algorithm.”—Wilf and Zeilberger, 1992

• Excellent running times, thanks to simplification and better algorithms for integration

Page 17: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Binomial sums are diagonals of rational functions

Theorem (Bostan, Lairez, and Salvy 2016)

(un)nÊ0 is a binomial sum if and only if un = an,...,n , for some rational power series∑

I aI xI .

NB. diagR(x1, . . . , xn) = 1(2πi )n−1

∮R

(t

x2···xn, x2, . . . , xn

) dx2

x2· · · dxn

xn.

Corollaries of Furstenberg’s theorems (Furstenberg 1967)

• If∑

n un t n is algebraic, then (un)nÊ0 is a binomial sum.

The converse does not hold, but...

• If (un)nÊ0 is a binomial sum, then∑

n un t n is algebraic modulo p for all prime p

(but finitely many).

Page 18: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Algebricity modulo a prime Apéry’s numbers

y(t )≜∑n

n∑k=0

(n +k

k

)2(n

k

)2

t n

= diag1

(1−x − y)(1− z −w)−w x y z(Straub 2014)

y(t ) is transcendental,

however y(t ) ≡ (t 2 −1)−12 mod 5

y(t ) ≡ ((t −1)(t 2 −1)

)− 13 mod 7

y(t ) ≡ ((t +1)(t +5)(t +7)(t +8)(t +9))−15 mod 11

y(t ) ≡ ((t 2 +8t +1)(t 2 +6t +1)(t −1)

)− 16 (t 2 +5t +1)−

112 mod 13

and of course t 2(t 2 −34t +1)y ′′′+3t (2t 2 −51t +1)y ′′+ (7t 2 −112t +1)y ′+ (t −5)y = 0.

Page 19: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Volume of semialgebraic setsjoint work with Mohab Safey El Din

Page 20: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

A numeric integral

{x2 + y2 + z2 É 1−210 (

x2 y2 + y2z2 + z2x2)}

What is the volume of this shape?

• Basic question

• Few algorihms• Monte-Carlo• Henrion, Lasserre, and Savorgnan (2009)

• Exponential complexity with respect to precision

• No certification on precision

Page 21: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

Volumes are periods

PropositionFor any generic f ∈R[x1, . . . , xn],

vol{

f É 0}≜

∫{ f É0}dx1 · · ·dxn = 1

2πi

∮Tube{ f =0}

x1

f

∂ f

∂x1dx1 · · ·dxn .

proof Stokes formula + Leray tubemap

not so useful There is no parameter.

better say For a generic t ,vol

{f É 0

}∩{xn = t

}= 1

2πi

∮x1

f |xn=t

∂ f |xn=t

∂x1dx1 · · ·dxn−1︸ ︷︷ ︸

satisfies a Picard-Fuchs equation!

NB. vol{

f É 0}= ∫ ∞

−∞vol

{f É 0

}∩{xn = t

}dt

Page 22: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

The “volume of a slice” function

{y1, y2

}, basis of the solution space of the Picard-Fuchs equation

−1 1

0 · y1 +0 · y2

1.0792353. . . · y1 −40.100605. . . · y2

0 · y1 +0 · y2

z coordinate

volume of the slice

Page 23: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

An algorithm for computing volumes

input f ∈R[x1, . . . , xn] generic

symbolic integration Compute a differential equation for y(t )≜ vol{

f É 0}∩{

xn = t}.

bifurcations Spot singular points where y(t ) may not be analytic.

numerical integration On eachmaximal interval I ⊂Rwhere y(t ) is analytic,

• identify y |I in the solution space of the PF equation,• compute

∫I y(t ).

return vol{

f É 0}=∑

I∫

I y(t ).

The complexity is quasi-linear with respect to the precision!(To get twice as many digits, you need only twice as much time.)

Page 24: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

A hundred digits (within a minute)

vol

= 0.1085754214603609377395033959942076198109178744466074754444758229932853606730329281949434744140640661366242346279598087781034932346781568...

Questions?

Page 25: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

References i

Apagodu, M. and D. Zeilberger (2006). “Multi-Variable Zeilberger and Almkvist-ZeilbergerAlgorithms and the Sharpening of Wilf- Zeilberger Theory”. In: Advances in AppliedMathematics 37.2, pp. 139–152.

Bostan, A., F. Chyzak, M. van Hoeij, and L. Pech (2011). “Explicit Formula for the GeneratingSeries of Diagonal 3D Rook Paths”. In: Séminaire Lotharingien de Combinatoire B66a.

Bostan, A., P. Lairez, and B. Salvy (2013). “Creative Telescoping for Rational Functions Using theGriffiths–Dwork Method”. In: Proceedings of the 38th International Symposium on Symbolicand Algebraic Computation. ISSAC 2013 (Boston). New York, NY, USA: ACM, pp. 93–100.

Bostan, A., P. Lairez, and B. Salvy (2016). “Multiple Binomial Sums”. In: Journal of SymbolicComputation.

Brent, R. P., H. Ohtsuka, J.-a. H. Osborn, and H. Prodinger (2014). Some Binomial SumsInvolving Absolute Values.

Page 26: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

References ii

Chudnovsky, D. V. and G. V. Chudnovsky (1990). “Computer Algebra in the Service ofMathematical Physics and Number Theory”. In: Computers in Mathematics (Stanford, CA,1986). Vol. 125. Lecture Notes in Pure and Appl. Math. Dekker, New York, pp. 109–232.

Chyzak, F. (2000). “An Extension of Zeilberger’s Fast Algorithm to General HolonomicFunctions”. In: Discrete Mathematics 217 (1-3). Formal power series and algebraiccombinatorics (Vienna, 1997), pp. 115–134.

Egorychev, G. P. (1984). Integral Representation and the Computation of Combinatorial Sums.Vol. 59. Translations of Mathematical Monographs. Providence, RI: American MathematicalSociety.

Euler, L. (1733). “Specimen de Constructione Aequationum Differentialium SineIndeterminatarum Separatione”. In: Commentarii academiae scientiarum Petropolitanae 6,pp. 168–174.

Furstenberg, H. (1967). “Algebraic Functions over Finite Fields”. In: Journal of Algebra 7,pp. 271–277.

Page 27: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

References iii

Garoufalidis, S. (2009). “G-functions andmultisum versus holonomic sequences”. In: Advancesin Mathematics 220.6, pp. 1945–1955.

Garoufalidis, S. and X. Sun (2010). “A New Algorithm for the Recursion of HypergeometricMultisums with Improved Universal Denominator”. In: Gems in Experimental Mathematics.Vol. 517. Contemp. Math. Amer. Math. Soc., Providence, RI, pp. 143–156.

Grothendieck, A. (1966). “On the de Rham Cohomology of Algebraic Varieties”. In: Institut desHautes Études Scientifiques. Publications Mathématiques 29, pp. 95–103.

Henrion, D., J.-B. Lasserre, and C. Savorgnan (2009). “Approximate Volume and Integration forBasic Semialgebraic Sets”. In: SIAM Review 51.4, pp. 722–743.

Koutschan, C. (2010). “A Fast Approach to Creative Telescoping”. In:Mathematics in ComputerScience 4 (2-3), pp. 259–266.

Lairez, P. (2016). “Computing Periods of Rational Integrals”. In:Mathematics of Computation85.300, pp. 1719–1752.

Page 28: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

References iv

Liouville, J. (1834). “Sur Les Transcendantes Elliptiques de Première et de Seconde Espèce,Considérées Comme Fonctions de Leur Amplitude”. In: Journal de l’École polytechnique14.23, pp. 73–84.

Lipshitz, L. (1988). “The Diagonal of a D-Finite Power Series Is D-Finite”. In: Journal of Algebra113.2, pp. 373–378.

Mezzarobba, M. (2010). “NumGfun: A Package for Numerical and Analytic Computation withD-Finite Functions”. In: Proceedings of the 35th International Symposium on Symbolic andAlgebraic Computation. Ed. by S. M. Watt. ISSAC 2010 (Munich). ACM, pp. 139–146.

Monsky, P. (1972). “Finiteness of de Rham Cohomology”. In: American Journal of Mathematics94, pp. 237–245.

Picard, É. (1902). “Sur Les Périodes Des Intégrales Doubles et Sur Une Classe d’équationsDifférentielles Linéaires”. In: Comptes Rendus Hebdomadaires Des Séances de l’Académie DesSciences. Ed. by Gauthier-Villars. Vol. 134. MM. les secrétaires perpétuels, pp. 69–71.

Page 29: Periods in actionpierre.lairez.fr/files/slides/diapos-2017-06-16-mega.pdf · 5¯2 p 6 (also p 2¯ p 3) implicit x4 ¡10x2 ¯1˘0 (+rootlocation) RepresentationofD-finitefunctions

References v

Straub, A. (2014). “Multivariate Apéry Numbers and Supercongruences of Rational Functions”.In: Algebra & Number Theory 8.8, pp. 1985–2007.

Van der Hoeven, J. (1999). “Fast Evaluation of Holonomic Functions”. In: Theoretical ComputerScience 210.1, pp. 199–215.

Wegschaider, K. (1997). “Computer Generated Proofs of Binomial Multi-Sum Identities”.Johannes Kepler Universität, Linz, Österreich.

Wilf, H. S. and D. Zeilberger (1992). “An algorithmic proof theory for hypergeometric (ordinaryand “q”) multisum/integral identities”. In: Inventiones Mathematicae 108.3, pp. 575–633.