performance of plastics

14
Performance of Plastics Edited by Witold Brostow With contributions from W. Brostow, YM. Castafio, M. Deng, A.M. Donald, N.A. D'Souza, B. Erman, S.A. Fossey, Y.X Gan, F. Garbassi, A.Y. Goldman, B. Hartmann, M. Hess, B.Z. Jang, M.R. Jolly, J. Kim, B.R. Krasnowski, J.E. Mark, K.P. Menard, W. Michaeli, R. Miilhaupt, B.C. Munoz, I. Narisawa, E. Nezbedova, E. Occhiello, E. Pisanova, VP. Privalko, M. Raab, R.E. Robertson, R. Rodriguez, B.B. Sauer, S.W. Shalaby, R.P. Singh, S. Srinivasan, T. Sterzynski, R.P. Wool, J. Zachert, S. Zhandarov HANSER Hanser Publishers, Munich Hanser Gardner Publications, Inc., Cincinnati

Upload: others

Post on 10-Jun-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Performance of Plastics

Performance ofPlasticsEdited by

Witold Brostow

With contributions fromW. Brostow, YM. Castafio, M. Deng, A.M. Donald, N.A. D'Souza, B. Erman,S.A. Fossey, Y.X Gan, F. Garbassi, A.Y. Goldman, B. Hartmann, M. Hess,B.Z. Jang, M.R. Jolly, J. Kim, B.R. Krasnowski, J.E. Mark, K.P. Menard,W. Michaeli, R. Miilhaupt, B.C. Munoz, I. Narisawa, E. Nezbedova,E. Occhiello, E. Pisanova, VP. Privalko, M. Raab, R.E. Robertson,R. Rodriguez, B.B. Sauer, S.W. Shalaby, R.P. Singh, S. Srinivasan,T. Sterzynski, R.P. Wool, J. Zachert, S. Zhandarov

HANSER

Hanser Publishers, MunichHanser Gardner Publications, Inc., Cincinnati

Page 2: Performance of Plastics

Contents

Chapter 1 Polymer Structures, Thermodynamics, and Morphologyby Valery P. Privalko

1.1 Introduction 11.2 Morphology of Semi-Crystalline Polymers 1

1.2.1 Theoretical Background 11.2.2 Effect of Hydrostatic Pressure 41.2.3 Effect of the Uniaxial Drawing 61.2.4 Effect of Solid Substrates 6

1.3 Morphology of Block Copolymers 81.3.1 Theoretical Background 81.3.2 Diblock Copolymers 111.3.3 Triblock Copolymers 131.3.4 Star Copolymers 141.3.5 Segmented Polyblock Copolymers 15

1.4 Morphology of Polymer Blends 161.4.1 Theoretical Background 161.4.2 Blends of Homopolymers 181.4.3 Binary Blends Containing Block Copolymers 201.4.4 Ternary Blends 221.4.5 Interpenetrating Polymer Networks 23Abbreviations 24References 26

Chapter 2 Fracture, Impact, and Toughnessby Ikuo Narisawa

2.1 Introduction ' 332.2 Elasticity, Plasticity, and Viscous Flow 33

2.2.1 Elasticity 332.2.2 Plasticity 342.2.3 Viscous Flow 35

2.3 Brittle and Ductile Fracture 352.3.1 Factors Affecting Fracture Mode 352.3.2 Severity of Stress States: Notch Effects 37

2.4 Fracture Mechanics 392.4.1 Linear Fracture Mechanics 392.4.2 Nonlinear Fracture Mechanics 392.4.3 Specific Essential Work of Fracture 41

2.5 Impact 432.5.1 Evaluation of Impact Characteristics 432.5.2 Impact Fracture Toughness 43

Page 3: Performance of Plastics

xii Contents

2.5.3 Instrumented Impact Test 44References 44

Chapter 3 Toughness of Ductile Polymersby Miroslav Raab and Eva Nezbedovd

3.1 Ductile Polymers under Stress 463.2 Feedback in Mechanical Behavior 463.3 Competition between Plasticity and Fracture 48

3.3.1 Orientational Self-Defense of Polymeric Materials 483.3.2 Fracture Mechanics of Ductile Polymers 493.3.3 Failure of Polymeric Pipes 533.3.4 The Role and Fate of Heterogeneities during Neck Initiation and

Propagation 543.3.5 Toughness of Oriented Polymers 553.3.6 Toughness of Biological Materials 57

3.4 Equivalence between Crack and Degradation 593.5 Conclusions 60

References 61

Chapter 4 Computer Simulations of Mechanical Propertiesby Stephen A. Fossey

4.1 Introduction 634.1.1 Advantages of Modeling 634.1.2 Disadvantages 644.1.3 Classical Potential Energy Functions 654.1.4 Molecular Dynamics Simulations 664.1.5 Monte Carlo Simulations 67

4.2 Single Chain Simulations 674.3 3D Atomistic Simulations of Polymers 68

4.3.1 Small Deformation Properties of Polymer Glasses 704.3.2 Large Deformation Properties 714.3.3 Constructing Reasonable Amorphous Systems 72

4.4 Relaxations in Polymer Crystals 744.5 Non-Atomistic Simulations 74

4.5.1 Monte Carlo Methods and Relaxation Phenomena 754.5.2 Molecular Dynamics Simulations 764.5.3 Kinetic Model of Fracture 77

4.6 Conclusion 79References 80

Chapter 5 The Chain Relaxation Capabilityby Witold Brostow

5.1 Introduction: The Importance of Free Volume 825.2 The Chain Relaxation Capability 84

Page 4: Performance of Plastics

Contents Xlll

5.3 Prediction of Long-Term Behavior from Short-Term Tests 865.4 Rapid and Slow Crack Propagation 925.5 Thermal Imaging 955.6 Concluding Remarks 97

References and Notes 98

Chapter 6 Quasi-Static Testingby Ram Prakash Singh

6.1 Introduction 1006.1.1 Mechanical Behavior of Plastics 1006.1.2 Stress-Strain Behavior of Plastics 1016.1.3 Quasi-Static Short-Term Testing 1036.1.4 ASTM, DIN, and ISO Standards 104

6.2 Conditioning Tests 1046.3 Tensile Tests 1056.4 Compressive Tests 1086.5 Flexural Tests 1096.6 Shear Tests 1126.7 Quasi-Static Testing of Polymer Composites 113

6.7.1 Tensile Testing of Uniaxial Composites 1146.7.2 Compressive Testing of Uniaxial Composites 1156.7.3 In-Plane Shear Testing of Unidirectional Composites 1166.7.4 Uniaxial Bending Tests 117

6.8 Conclusions 118References 119

Chapter 7 Viscoelasticity, Creep, and Stress Relaxationby Anatoliy Y. Goldman

7.1 Introduction 1217.2 Prediction of Creep (Relaxation) Behavior 1277.3 Time-Temperature Superposition 130

7.3.1 Time-Temperature Superposition for Thermo-Rheologically SimpleBodies 130

7.3.2 Time-Temperature Superposition for Thermo-Rheologically ComplexBodies 134

7.4 Elastic and Viscoelastic Properties of Polymeric Composite Materials 1387.5 Final Remarks 143

References 144

Chapter 8 Thermal Transitions and Their Measurementby Kevin P. Menard

8.1 Introduction: A Review of Polymer Basics 1478.2 Thermal Transitions 1508.3 Thermal Methods: Approaches and Comparisons 154

Page 5: Performance of Plastics

xiv Contents

8.3.1 Differential Scanning Calorimetry 1548.3.2 Thermomechanical Tests 1638.3.3 Dielectric Analysis 1728.3.4 Thermogravimetric Analysis 173

8.4 Concluding Remarks 177References 178

Chapter 9 Acoustic Behaviorby Bruce Hartmann

9.1 Introduction 1859.1.1 Definitions of Acoustic Terms 1859.1.2 Relation to Moduli 1859.1.3 Test Methods 186

9.2 Experimental Results 1929.2.1 Room Temperature Results 1929.2.2 Temperature Dependence 1939.2.3 Frequency Dependence 1969.2.4 Pressure Dependence 2009.2.5 Extensional Sound Speed and Loss Factor 200

9.3 Interpretation of Experimental Data 2019.3.1 Qualitative Molecular Structure Dependence 2019.3.2 Quantitative Molecular Structure Dependence 2039.3.3 Frequency Dependence 204

9.4 Summary 205Abbreviations 205References 206

Chapter 10 Dielectric Relaxations in Polymers: MolecularMechanisms, Structure-Property Relationships, andEffects of Crystallinityby Bryan B. Sauer

10.1 Introduction 20810.2 Background 20910.3 Primary and Secondary Transitions 21010.4 Unified Picture of Secondary Transitions 21310.5 Experimental Evidence for Cooperative and

Non-Cooperative Transitions 21610.6 Generalization of Molecular Mechanisms for Low Temperature

Relaxations in Flexible Semi-Crystalline Polymers . •. 21910.7 Flexible Polymers: Effect of Structure and Crystallinity on Glass

Transitions 22310.8 Introduction to Intermolecular Cooperativity and Related Molecular

Understanding 22510.9 Structure-Property Comparisons of Intermolecular Interactions for

Semi-Crystalline Polymers : 227

Page 6: Performance of Plastics

Contents xv

10.10 Morphological Contributions and Analysis of Glass Transitions in"Stiff" Polymers 229

10.11 Future Work 234References 235

Chapter 11 Effects of Processing on Mechanical Behavior ofThermoplasticsby Walter Michaeli and Jiirgen Zachert

11.1 Injection Molding 23811.1.1 Molecular Orientation 23811.1.2 Short-Fiber Orientation 24111.1.3 Crystallization 241

11.2 Extrusion 24411.2.1 Molecular Orientation 24411.2.2 Degree of Crystallization and Its Influence on Final Properties . . . . 246

11.3 Blown Film Extrusion 24611.3.1 Deformation in Blown Film Extrusion and Its Influence on

Final Properties 24711.4 Thermoforming 24811.5 Compression Molding 24911.6 Recycling 249

11.6.1 Final Properties 250Symbols and Abbreviations 252References 252

Chapter 12 Nucleation by Additives in Semi-Crystalline Polymers:Effects on Mechanical Behaviorby Tomasz Sterzynski

12.1 Introduction 25412.2 Nucleation 254

12.2.1 Definition 25412.2.2 Nucleation: Theoretical Background 25512.2.3 Nucleation: Principal Nucleating Agents 25512.2.4 Efficiency 25712.2.5 Nucleation Efficiency and Self Seeding 259

12.3 Structure and Morphology Modification 26012.3.1 Phase Transitions '. 26012.3.2 Spherulites-Lamellae Morphology 263

12.4 Processability of Nucleated Polypropylene and Related Copolymers 26712.4.1 Crystallization Temperature 26712.4.2 Crystallization Time 268

12.5 Processing Related Changes Resulting from Nucleation 26912.5.1 Role of the Chemical Structure 26912.5.2 Role of Stresses in the Flow of Molten Polymers 271

12.6 Multinucleation 273

Page 7: Performance of Plastics

xvi Contents

12.6.1 Importance for Property Creation 27312.6.2 Effect on Crystallinity 273

12.7 Static Mechanical Properties 27512.7.1 Dependence on the Modified Morphology 27512.7.2 Dependence on Modified Crystalline Structure 275

12.8 Dynamical Properties 27712.8.1 Brittle—Ductile Impact Modification in iPP and Related

Copolymers 27712.8.2 Toughening by Phase Transition 279

12.9' Conclusions 279References 279

Chapter 13 Crazingby Athene M. Donald

13.1 Introduction 28313.2 Craze Initiation and Growth 28513.3 The Importance of the Entanglement Network 28813.4 Craze Widening 28913.5 Competition with Shear Processes 29113.6 Craze Breakdown 29313.7 How Crazing Affects Performance 29413.8 Conclusions 295

Symbols 295References 295

Chapter 14 Physical Aging: Effects on Physical and MechanicalPerformanceby Richard E. Robertson and Jae-Ho Kim

14.1 Introduction 29714.2 Changes in Dimensions and Thermodynamic State 298

14.2.1 Specific Volume or Density 29814.2.2 Density Fluctuations 30114.2.3 Enthalpy 30214.2.4 Analysis and Predictions: Multiorder Parameter Model 303

14.3 Changes in Mechanical Behavior 30514.3.1 Linear Viscoelastic Behavior 30514.3.2 Ductile/Brittle Behavior 308

14.4 Electric and Opto-Electronic Behavior 30914.4.1 Complex Dielectric Constant 30914.4.2 Second-Order Harmonic Generation 310

14.5 Permeation 31014.5.1 Thickness Dependence 310

14.6 Other Materials : 31014.6.1 Oriented Polymers 31014.6.2 Pressure-Densified Glasses 311

Page 8: Performance of Plastics

Contents XV11

14.6.3 Polymer Blends 31314.6.4 Crystalline Polymers 313

14.7 Temperature Range over which Aging Occurs 31314.8 Comparison of Time to Reach Equilibrium by Volume, Enthalpy, etc 31414.9 Accelerated Aging and Deaging 315

References 319

Chapter 15 Interfaces and Adhesionby Richard P. Wool

15.1 Introduction 32315.1.2 Defining the Problem 324

15.2 Welding and Crack Healing 32615.2.1 Surface Rearrangement 32715.2.2 Surface Approach 32715.2.3 Wetting 32815.2.4 Diffusion 32915.2.5 Randomization 329

15.3 Structure of Symmetric Amorphous Interfaces 33015.3.1 Minor Chain Reptation Model 33015.3.2 Scaling Laws for Polymer-Polymer Interdiffusion 33215.3.3 Do Polymer Molecules Really Move like Snakes? 333

15.4 Structure vs. Strength 33715.4.1 The Nail Solution: Weak Interfaces 33715.4.2 Molecular Nails at Interfaces 339

15.5 Strong Interfaces 34115.5.1 Entanglement Percolation — The Net Solution 34115.5.2 Disentanglement and Fracture 34515.5.3 Disentanglement and Fracture of Interfaces 346

15.6 Strength of Glass Interfaces 34815.6.1 Introduction 34815.6.2 Time and Molecular Weight Dependence of Welding 34915.6.3 Lap Shear of Symmetric Interfaces 351

15.7 Fracture Energy vs. Molecular Weight 35315.7.1 Virgin Fracture Energy 35315.7.2 Fracture at M < Mc 35315.7.3 Fracture at M > Mc 35415.7.4 Tensile Fracture Properties vs. Molecular Weight 35615.7.5 Dugdale Fracture Mechanics Parameters 356

15.8 Melt Processing Internal Weld Lines 35715.8.1 Introduction to Internal Weld Lines 35715.8.2 Compression Molding of Pellets 35715.8.3 Comment on De-Welding 360

15.9 Healing on Latex Particles 36115.9.1 Latex Paints . . . 36115.9.2 Fluorescence Studies of Latex Interdiffusion 36215.9.3 SANS Studies of Latex Interdiffusion 363

Page 9: Performance of Plastics

xviii Contents

15.10 Fatigue of Welded Interfaces 36415.10.1 Introduction 36415.10.2 Experimental Methods for Fatigue Welding 36515.10.3 Fatigue Healing of Symmetric Interfaces 36515.10.4 Molecular Weight Dependence of Fatigue 367References 369

Chapter 16 Surfaces and Their Modificationsby Fabio Garbassi and Ernesto Occhiello

16.1 Properties of Polymer Surfaces 37316.2 Characterization Methods 373

16.2.1 Spectroscopy 37416.2.2 Microscopy 37616.2.3 Contact Angle Measurements 376

16.3 Chemical Modification Methods 37816.3.1 Etching : 37916.3.2 Hydrolysis 37916.3.3 Oxidation 38016.3.4 Fluorination/Sulfonation 38016.3.5 Grafting 38116.3.6 Functionalization/Derivatization 38116.3.7 Coating 382

16.4 Physical Modification Methods 38216.4.1 Flame Treatments 38316.4.2 Corona Treatments 38316.4.3 Cold Plasma Treatments 38316.4.4 UV and Laser Irradiation 38816.4.5 X-rays and y-rays Irradiation 38916.4.6 Electron Bombardment 38916.4.7 Ion Bombardment 38916.4.8 Evaporation 390

16.5 Surface Properties and Performance 39016.5.1 Adhesion 39116.5.2 Biocompatibility 39116.5.3 Friction, Wear and Hardness 39216.5.4 Permeability 393

16.6 Aging Phenomena . . \ 394References 396

Chapter 17 Elastomers and Rubber-Like Elasticityby J. E. Mark and B. Erman

17.1 Introduction 40117.2 Some Rubber-Like Materials 40117.3 Preparation and Structure of Networks 402

17.3.1 Polymerizations with Multi-Functional Monomers 402

Page 10: Performance of Plastics

Contents xix

17.3.2 Physical Aggregation 40217.3.3 Random Chemical Cross-Linking 40317.3.4 Highly Specific Chemical Cross-Linking 40317.3.5 Network Structure 404

17.4 Elasticity Experiments 40417.4.1 Mechanical Properties 40417.4.2 Swelling 40517.4.3 Optical and Spectroscopic Properties 40517.4.4 Scattering 405

17.5 Elasticity Theories Involving Structureless Chains 40617.5.1 General Aspects 40617.5.2 Classical Theory 40817.5.3 Modern Theories 40917.5.4 Attempts at Greater Rigor 412

17.6 Rotational Isomeric State Chains 41217.6.1 Analytical Calculations 41217.6.2 Simulations 412

17.7 Phenomenological Theory 41317.8 Stress-Strain Relationships 41417.9 Theory vs. Experiment 415

17.9.1 Stress-Strain 41517.9.2 Swelling 41617.9.3 Birefringence 41617.9.4 Orientation 41617.9.5 Scattering 416

17.10 Networks at Very High Deformations 41617.10.1 Non-Gaussian Effects 41617.10.2 Ultimate Properties 417

17.11 Other Types of Deformation 41817.11.1 Biaxial Extension 41817.11.2 Shear 42017.11.3 Torsion 42017.11.4 Swelling 420

17.12 Bioelastomers 42017.13 Filled Networks 421

References 422

Chapter 18 Performance of Textile-Reinforced Structural Compositesby Y.X. Gan and B.Z. Jang

18.1 Introduction 42918.2 Preform Fabrication 430

18.2.1 Effect of Woven Fabric Structure on Fabric Properties 43518.3 Processing of Textile-Reinforced Structural Composites 43718.4 Elasticity Models for Textile-Reinforced Composites 43818.5 Damping 44018.6 Thermal Expansion 444

Page 11: Performance of Plastics

XX Contents

18.6.1 Series-Parallel (SP) Model 44518.6.2 Parallel-Series (PS) Model 44618.6.3 Thermal Expansion 447

18.7 Impact Performance 44818.8 Delamination and Buckling 44818.9 Fatigue Damage and Failure Mechanisms 454

18.10 Applications for Textile-Reinforced Structural Composites 456References 458

Chapter 19 Fiber-Reinforced Heterogeneous Composites (HCs)by Elena Pisanova and Serge Zhandarov

19.1 Experimental Techniques 46119.2 Theoretical Concepts 462

19.2.1 Methods Involving the Force Measurement 57319.2.2 The Fragmentation (SFC) Test 466

19.3 Mechanisms of Adhesional Contact Failure 46919.4 The Role of Interphases in Matrix-to-Fiber Load Transfer 47119.5 Areas of Application and Limitations of the

Micromechanical Tests 47319.6 The "True" (Local, Ultimate) Adhesional Bond Strength

and Its Determination by Micromechanical Techniques 47919.7 Conclusions 483

References 484

Chapter 20 Toughened Thermoplastics and Thermosetsby Rolf Miilhaupt

20.1 Basic Concepts and Approaches to Toughened Polymers 48720.2 The Role of Molar Mass and Molecular Architecture 49020.3 Rubber-Toughened Reactor Blends 49420.4 Rubber-Toughened Extrusion Blends 49920.5 Compatibilized Liquid Rubbers and Chemically-Induced Phase Separation

for Thermoset Toughening 50320.6 Block Copolymers and Thermoplastic Elastomers 50720.7 Blends of Preformed Core/Shell Particles 511

References 513

Chapter 21 High Performance Polymersby Michael Hess

21.1 Introduction 51921.2 Classification 520

21.2.1 Pure Polymers 52121.2.2 Multicomponent Polymer Systems 538

21.3 Conclusions 547References 548

Page 12: Performance of Plastics

Contents xxi

Chapter 22 Composites with Field Responsive Rheologyby Beth C. Muhoz and Mark R. Jolly

22.1 Introduction 55322.2 Field Responsive Fluids 554

22.2.1 Electrorheological Fluids 55522.2.2 Magnetorheological Fluids 559

22.3 Field Responsive Elastomers 56122.3.1 Electro-Rheological Elastomers 56222.3.2 Magneto-Rheological Elastomers 564

22.4 Static Models of Field Responsive Rheology 56722.5 Applications 568

22.5.1 Controllable Fluids 56922.5.2 Controllable Elastomers 570

22.6 Outlook 571References 572

Chapter 23 Polymers as Biomaterialsby Meng Deng and Shalaby W. Shalaby

23.1 Introduction 57523.2 Chemical and Mechanical Requirements 57523.3 Biocompatibility of Polymers 57723.4 Hard Tissue Implants 578

23.4.1 Orthopedic Implants 57923.4.2 Dental Implants 581

23.5 Soft Tissue Augmentation Devices 58223.5.1 Sutures. . . : 58323.5.2 Surgical Staples 58423.5.3 Ligating Clips 58423.5.4 Surgical Meshes 58423.5.5 Tissue Adhesives 584

23.6 Sterilization and Its Effects on Device Performance 58525.7 Perspectives 586

References 587Further Readings 588

Chapter 24 Polymer-Based Hybrid Organic-Inorganic Materialsby Victor M. Castano and Rogelio Rodriguez

24.1 Introduction 58924.1.1 Molecular Routes to the Synthesis of New Hybrid Materials 589

24.2 Electrolytes and Polyelectrolytes 59024.3 Uses of Polyelectrolytes in Materials Processing 59225.4 Polyelectrolyte-Based Hybrid Materials and Precursors 59424.5 Polyelectrolyte Cements 59424.6 Polyelectrolyte Concretes 596

Page 13: Performance of Plastics

xxii Contents

24.6.1 Sample Preparation 59624.6.2 Mechanical Properties 59724.6.3 Curing Process 598

24.7 Polyacrylic Acid-Metal Oxide Bonding 60024.8 Conclusions 602

References 603

Chapter 25 Polymers for Electronics and Photonics Applicationsby Nandika Anne D 'Souza and Aruna R. Nagarur

25.1 Introduction 60625.2 Material Property-Driven Applications 606

25.2.1 Conductivity 60725.2.2 Dielectric Properties 60825.2.3 Optical Properties 609

25.3 Application-Driven Performance 61225.3.1 Electronic Packaging 61225.3.2 Printed Wiring Boards 61625.3.3 Adhesives 61625.3.4 Lithographic Applications 61725.3.5 Photonic Applications 618

25.4 Service Life Performance Factors 62225.5 Conclusions 625

References 625

Chapter 26 Polymers in Automobilesby Satchit Srinivasan

26.1 Introduction 62926.2 Applications 631

26.2.1 Exterior Applications 63126.2.2 Interior Applications 63826.2.3 Underhood/Underbody Applications 640

26.3 General Performance Requirements 64426.4 Polymers and Blends 64526.5 Processes for Component Manufacture 64526.6 Recycling 64726.7 Conclusions 651

References 651

Chapter 27 Reliability and Durability of Aircraft Structures Made ofFiber-Reinforced Plasticsby Bogdan R. Krasnowski

27.1 Introduction 65327.2 Definition of Reliability and Durability 65327.3 Damage Sequence 654

Page 14: Performance of Plastics

Contents xxiii

27.4 Reliability of Non-Inspectable Structures 65527.5 Reliability of Inspectable Structures 65527.6 Reliability of Metallic Structures 65627.7 Reliability of Composite Structures 65927.8 Testing Requirements for Reliability Analysis of Composite Structures . . . 66227.9 Determination of Reliability 663

27.9.1 Load Spectrum Definition 66327.9.2 Spectrum Fatigue Test Data 66327.9.3 Constant Amplitude Fatigue Test Data 664

27.10 Determination of the Reliability of the Main Rotor Yoke 66527.10.1 Main Rotor Yoke 66527.10.2 Constant Amplitude Test Data for Detectable Damage, D\ 66527.10.3 Determination of Fatigue Data for the Final Failure, D2 66627.10.4 Yoke Reliability without Inspections 66627.10.5 Yoke Reliability with Inspections 668

27.11 Conclusions 668List of Important Symbols 670References 670

Index 673