performance enhancement of p-channel ingaas quantum-well ... slides.pdf · hh2. effective mass...

17
Performance Enhancement of P-channel InGaAs Quantum-well FETs by Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain Ling Xia 1 , Vadim Tokranov 2 , Serge R. Oktyabrsky 2 , and Jesús A. del Alamo 1 1 Microsystems Technology Laboratories, MIT, USA; 2 College of Nanoscale Science and Engineering, SUNY-Albany, USA. Dec. 06, 2011 Sponsors: Intel Corp. and FCRP-MSD Center. Fabrication: MTL at MIT.

Upload: others

Post on 13-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Performance Enhancement of P-channel InGaAs Quantum-well FETs by

    Superposition of Process-induced Uniaxial Strain and Epitaxially-grown Biaxial Strain

    Ling Xia1, Vadim Tokranov2, Serge R. Oktyabrsky2, and Jesús A. del Alamo1

    1 Microsystems Technology Laboratories, MIT, USA;2 College of Nanoscale Science and Engineering, SUNY-Albany, USA.

    Dec. 06, 2011

    Sponsors: Intel Corp. and FCRP-MSD Center. Fabrication: MTL at MIT.

  • Outline

    • Motivation

    • Mechanical simulations

    • Device technology

    • Experimental results

    • Conclusions

    2

  • • Interests in InGaAs CMOS – Fueled by excellent ve and µe• Key challenge for InGaAs CMOS

    • Bridging performance gap between n- and p-FET.• Our approach – Introduce strain to InGaAs p-FET

    • Uniaxial + biaxial compressive strain

    Kuhn, IWJT, 2010

    Logarithmic scale

    Electron mobility

    Hole mobility

    Motivation

    del Alamo, Nature, 20113

  • • Sources for strain include:– Epitaxial lattice mismatch Biaxial strain– Fabrication process Uniaxial strain

    Why biaxial strain + uniaxial strain?

    4

    • Enhancements of µh by biaxial and uniaxial strain add superlinearly• Similar effect found in Si simulations (Wang, TED, 2006)

    -2.5 -2.0 -1.5 -1.0 -0.5 0.00

    20

    40

    60

    80

    100

    120

    GaAs

    In0.24Ga0.76As

    Max

    <11

    0> p

    iezo

    resi

    stan

    ce c

    oeffi

    cien

    t (1

    012 c

    m2 /d

    yn)

    Epitaxial compressive biaxial strain (%)

    Ge

    Gomez, EDL, 2010Weber, IEDM, 2007Xia, TED, 2011Xia, ISCS, 2011 Experiments

    π = ‐Δµ/(µ0σ )

  • InGaAs QW-FET with uniaxial + biaxial strain

    • Induced stress scalable with LG (next slide)

    5

    • Biaxial strain in the channel as grown

    • Carbon delta-doping

    • Self-aligned stressor (compressively stressed)

    • Self-aligned metal layer (Mo)

  • Mechanical stress simulations• Parameters used in simulations: tSiN = 200 nm; SiN σint = -2 GPa

    6

    S DCut line

    LG = 2 µm

    • Desirable stress type can be obtained with the proposed stressor structure• Compressive longitudinal stress µh ↑• Tensile transverse stress µh ↑

    Lside = 100 nm

    tSiN=200 nm

    x (µm)-1 0

    Longitudinal stress distribution

  • 0%

    30%

    60%

    90%

    120%

    150%

    180%

    10 100 1000 10000

    Δµh/

    µ h0

    LG (nm)

    FromFromTotal

    Projected assuming Δµh/ µh = -π·σπ// = - 1.2x10-10 cm2/dynπ = 0.7x10-10 cm2/dyn(Xia, ISCS, 2011)

    σσ//

    -1,500

    -1,200

    -900

    -600

    -300

    0

    300

    10 100 1,000 10,000

    Stre

    ss (M

    Pa)

    LG (nm)

    LongitudinalTransverse

    Slow increase when LG >> tSiN

    Fast increase when LG ~ tSiN

    Slow down due to a fixed Lside

    LG scalability of induced stress at middle of gate

    • LG ↓ Stress ↑ inside gate opening• Assume linear ∆µ with σ

    >160% µh enhancement for LG < 50 nm7

  • Device technology

    8

    Mesa isolation

    Ohmic metalization

    Molybdenum (Mo) deposition

    PECVD SiN stressor and SiO2Anisotropic ECR RIE SiO2/SiN

    Anisotropic ECR RIE Mo

    Isotropic RIE Mo

    GaAs cap recess by wet etching

    Gate metalization

    Key considerations:• Avoid Mo layer short to gate metal• Air gap as small as possible

    ChannelBarrier

    Buffer

    Al0.42Ga0.58As

    AlGaAsIn0.24Ga0.76As

    DS

    SiN

    Mo

    SiO2

    Cap : 2x1019 cm-3 Carbon doped GaAs

    Channel

    Cap GaAs

    Buffer AlGaAsIn0.24Ga0.76As

    DS

    SiNSiO2

    MoCap : 2x1019 cm-3 Carbon doped GaAs

    SiO2

    Barrier Al0.42Ga0.58As

    ChannelBarrier

    Buffer

    Al0.42Ga0.58As

    AlGaAsIn0.24Ga0.76As

    DS

    SiN

    Mo

    SiO2

    Cap : 2x1019 cm-3 Carbon doped GaAs

    Channel

    Cap

    Buffer AlGaAsIn0.24Ga0.76As

    DS

    SiNSiO2

    MoCap : 2x1019 cm-3 Carbon doped GaAs

    SiO2

    Barrier Al0.42Ga0.58As

    G

  • Device cross-section

    • LG = 2 µm; channel along [-110]• Lside 400 nm

    9

    Artifact of imaging

  • Experimental parameters for devices•Split experiments:

    • SiN with -2.1 GPa stress vs SiN with 0 Pa stress• SiN film stress obtained from wafer curvature measurements

    • LG = 2 µm to 8 µm• Four channel orientations:

    10

    [-110]

    [110]

    S D

    GS

    D

    G[110][-110] [010][100]

  • QW-FET electrical characteristics• Example: LG = 2 µm; channel along [-110]

    • Significant drive current increase• Transconductance increase at all gate overdrives

    11

    -2.0 -1.5 -1.0 -0.5 0.00

    2

    4

    6

    8

    10

    -I D (m

    A/m

    m)

    VDS (V)

    -2.1 GPa SiN 0 GPa SiN

    VGS - VT = -0.75 V

    -0.55 V

    -0.35 V

    -0.15 V

    -0.5 0 0.50

    10

    20

    30

    40

    VGS - VT (V)|g

    m| (

    mS

    /mm

    )

    0 GPa SiN-2 GPa SiN

    VDS = -2 V

    Intrinsic

    Extrinsic

  • Subthreshold characteristics and VT• Similar IG as chemically etched samples No RIE damage• VT shift between high- and low- stress samples

    – Likely due to different anisotropic RIE overetch

    12

    -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.01E-5

    1E-4

    1E-3

    0.01

    0.1

    1

    10

    With -2 GPa SiN

    |I| (m

    A/m

    m)

    LG = 2 m

    VDS = -2 V

    ID

    With 0 GPa SiN

    VGS (V)

    IG

    Both S = 103 mV/dec

  • LG dependence of gm

    • Increasing enhancement observed with decreasing LG • Consistent with stress simulations + π measurements

    >160% enhancement expected with LG < 50 nm13

    2 4 6 80

    5

    10

    15

    20

    25

    30

    |gm

    -sat

    | (m

    S/m

    m)

    LG (m)

    VDS = -2 VVGS – VT = -0.5 V

    +36%

    Channel along [-110]

    Dots : dataLines: least-square fittings

  • • Observed anisotropic ∆gmi and ∆RSD– gmi extracted using gmext, RS, RD and gD– RS, RD extracted using gate current injection method

    • anisotropy consistent with measurements of piezoresistance coefficients– π[-110] : π [110] = 2.6 (Xia, ISCS, 2011)

    Crystal direction dependence

    14

    gmi_sat

  • kx (2/a)

    k y (2

    /a)

    -0.1 -0.05 0 0.05 0.1-0.1

    -0.08

    -0.06

    -0.04

    -0.02

    0

    0.02

    0.04

    0.06

    0.08

    0.1No uniaxial-500 MPa uniaxial

    Theoretical discussions• Valence band change due to strain in InGaAs

    – Used k.p methods (nextnano3)– Calculated subbands in In0.24Ga0.76As quantum well

    15

    In-plane iso-energy contours of hh1 with and without uniaxial strain

    [100]

    [010] [110]

    • Compressive strain parallel to channel is desirable

    -0.1 -0.05 0 0.05 0.1-0.16

    -0.14

    -0.12

    -0.1

    -0.08

    -0.06

    Ev

    (eV

    )

    k//[-110]k[110]

    [-110] uniaxial

    No uniaxial

    m*// ↓m*↑

    hh1

    lh1

    hh2

  • Effective mass model• Treat nonparabolic valence band using energy dependent

    m* (De Michielis, TED, 2007)

    From simulations:• ∆m* anisotropy induced by quantization change due to piezoelectric effect• ∆m* anisotropy consistent with gm measurements.

    Gate

    Pz(z)BarrierChannel

    [-110] Strain

    -0.1 -0.05 0 0.05 0.1-0.16

    -0.14

    -0.12

    -0.1

    -0.08

    -0.06

    Ev

    (eV

    )

    k//k

    [-110] uniaxial

    [110] uniaxial

    No uniaxial

    m*// ↓m*↑

  • Conclusions• Developed device architecture for InGaAs p-FETs that incorporates

    uniaxial strain through self-aligned dielectric stressor

    • Key results:

    – Biaxial strain + uniaxial strain substantial enhancements in transport characteristics

    – Up to +36% ∆gm observed in LG = 2 µm device

    – Strong enhancement anisotropy due to piezoelectric effect

    • For further enhancement:

    – Scale down LG and bring S/D closer

    – Project ∆gm >160% @ LG < 50 nm

    • Study useful to other p-type III-V materials (e.g. InGaSb, InSb)

    17