penelitian operasional iaeunike.lecture.ub.ac.id/files/2012/11/pertemuan-12-or.pdf ·...

55
PENELITIAN OPERASIONAL I (TIN 4109)

Upload: votuyen

Post on 30-Apr-2019

212 views

Category:

Documents


0 download

TRANSCRIPT

PENELITIAN OPERASIONAL I

(TIN 4109)

Lecture 12

INTEGER PROGRAMMING

Lecture 12

• Outline: – Integer Programming: Binary

• References: – Frederick Hillier and Gerald J. Lieberman. Introduction to

Operations Research. 7th ed. The McGraw-Hill Companies, Inc, 2001.

– Hamdy A. Taha. Operations Research: An Introduction. 8th Edition. Prentice-Hall, Inc, 2007.

– Winston, Wayne L. Operations Research: Applications and Algorithms. 3rd edition. Wadsworth Inc.1994.

– Hartanto, Dody. Lecture PPT: Pemodelan dalam Pemrogaman Linier Integer (Modeling in Integer Linear Programming). ITS. 2012

BINARY INTEGER PROGRAMMING INTEGER PROGRAMMING

Algoritma Branch and Bound untuk BILP (Binary Integer Linear

Programming)

Dody Hartanto

Maksimasi

Z = 9x1 + 5x2 + 6x3 + 4x4

pembatas:

6x1 + 3x2 + 5x3 + 2x4 10

x3 + x4 1

-x1 + x3 0

-x2 + x4 0

x1, x2, x3, x4 = {0, 1}

Algoritma Branch and Bound untuk BILP

Dody Hartanto

Dody Hartanto

• Masalah asli (original problem) diselesaikan dengan mengabaikan batasan yang mengharuskan variabel keputusan bernilai integer (ILP relaksasi).

• Solusi ILP relaksasi masalah asli memiliki satu variabel keputusan yang tidak bernilai bulat yaitu X1 sehingga perlu dilakukan pencabangan.

Algoritma Branch and Bound untuk BILP(1)

Dody Hartanto

Variabel keputusan X1 merupakan variabel keputusan yang bernilai biner(binary variable) sehingga pencabangan dilakukan dengan menetapkan nilai X1 = 0 pada salah satu cabang (sub masalah 1(SM 1)) dan X1 = 1 pada cabang yang lain (sub masalah 2 (SM 2)).

Algoritma Branch and Bound untuk BILP(2)

Dody Hartanto

• Nilai semua variabel keputusan pada solusi sub masalah 1 bernilai integer dengan nilai Z = 9 sehingga nilai ini menjadi batas bawah (lower bound).

• Terdapat dua variabel keputusan yang tidak bernilai integer pada solusi sub masalah 2 yaitu X2 yang bernilai 4/5 dan X4 yang bernilai 4/5. Oleh karena itu, perlu dilakukan pencabangan pada sub masalah 2.

Batas Bawah (Lower Bound)

Algoritma Branch and Bound untuk BILP(3)

Dody Hartanto

Pencabangan pada sub masalah 2 dilakukan dengan menetapkan X2 = 0 pada salah satu cabang (sub masalah 3(SM 3)) dan X2 = 1 pada cabang yang lain (sub masalah 4 (SM 4)).

Algoritma Branch and Bound untuk BILP(4)

Dody Hartanto

• Tidak semua variabel keputusan pada solusi sub masalah 3 bernilai integer demikian pula dengan solusi pada sub masalah 4. Oleh karena itu perlu dilakukan pencabangan pada kedua sub masalah(sub masalah 3 dan sub masalah 4).

karena nilai Z pada sub masalah 4 yang bernilai 16 adalah lebih besar jika dibandingkan dengan nilai Z pada sub masalah 3 yang bernilai 13,8 maka pencabangan dilakukan terlebih dahulu pada sub masalah 4.

Algoritma Branch and Bound untuk BILP(5)

Dody Hartanto

Pencabangan pada sub masalah 4 dilakukan dengan menetapkan X4 = 0 pada salah satu cabang (sub masalah 5(SM 5)) dan X4 = 1 pada cabang yang lain (sub masalah 6 (SM 6)). Semua variabel keputusan pada solusi sub masalah 5 bernilai integer dengan nilai fungsi tujuan Z= 14.

Algoritma Branch and Bound untuk BILP(6)

Dody Hartanto

Nilai Z pada sub masalah 5 lebih besar jika dibandingkan dengan batas bawah (lower bound) yang sekarang(solusi dari sub masalah 1) sehingga batas bawah yang semula bernilai 9 diubah menjadi 14

Batas Bawah (Lower Bound) yang lama

Batas Bawah (Lower Bound) yang Baru

Algoritma Branch and Bound untuk BILP(7)

Dody Hartanto

tidak ada sub masalah yang belum dicabangkan yang memiliki nilai batas atas (upper bound) yang lebih besar dari 14 sehingga proses pencarian solusi dapat dihentikan dan solusi sub masalah 5 dengan X1 = 1, X2 = 1, X3 = 0, X4 = 0, dan Z = 14 menjadi solusi optimal permasalahan ini.

Solusi Sub Masalah 3 tidak mungkin bisa lebih baik dari solusi sub masalah 5 sehingga tidak perlu dicabangkan meskipun masih ada nilai variabel keputusan yang pecahan

Algoritma Branch and Bound untuk BILP(8)

LP dan ILP dengan Software

• TUGAS KELOMPOK: – Temukan satu permasalahan yang memerlukan solusi

optimal (permasalahan LP: 1 dan ILP: 1). Buat formulasinya. Selesaikan dengan menggunakan software: LINDO/LINGO dan Solver.

– Isi laporan: • Deskripsi Permasalahan • Formulasi • Langkah-langkah pengerjaan dengan software • Solusi dan Kesimpulan

– Format laporan: • PPT

Lecture 13

TRANSPORTATION

Lecture 13

• Outline:

– Transportation: starting basic feasible solution

• References:

– Frederick Hillier and Gerald J. Lieberman. Introduction to Operations Research. 7th ed. The McGraw-Hill Companies, Inc, 2001.

– Hamdy A. Taha. Operations Research: An Introduction. 8th Edition. Prentice-Hall, Inc, 2007.

Transportation

Description A transportation problem basically deals with the problem,

which aims to find the best way to fulfill the demand of n

demand points using the capacities of m supply points.

1

2

3

1

2

c11

c12

c13

c21 c22

c23

d1

d2

d3

s1

s2

SOURCES DESTINATIONS

Transportation Problem • LP Formulation

The linear programming formulation in terms of the amounts shipped from the origins to the destinations, xij, can be written as:

Min SScijxij i j s.t. Sxij < si for each source i j Sxij >= dj for each destination j i xij > 0 for all i and j

Transportation Problem

• LP Formulation Special Cases

The following special-case modifications to the linear programming formulation can be made: – Minimum shipping guarantees from i to j:

xij > Lij

– Maximum route capacity from i to j:

xij < Lij

– Unacceptable routes:

delete the variable

Example: BBC

Building Brick Company (BBC) has orders for 80 tons of

bricks at three suburban locations as follows: Northwood -- 25

tons, Westwood -- 45 tons, and Eastwood -- 10 tons. BBC has

two plants, each of which can produce 50 tons per week.

How should end of week shipments be made to fill the

above orders given the following delivery cost per ton:

Northwood Westwood Eastwood

Plant 1 24 30 40

Plant 2 30 40 42

Example: BBC

• LP Formulation

– Decision Variables Defined

xij = amount shipped from plant i to suburb j

where i = 1 (Plant 1) and 2 (Plant 2)

j = 1 (Northwood), 2 (Westwood),

and 3 (Eastwood)

Example: BBC • LP Formulation

– Objective Function Minimize total shipping cost per week:

Min 24x11 + 30x12 + 40x13 + 30x21 + 40x22 + 42x23

– Constraints s.t. x11 + x12 + x13 < 50 (Plant 1 capacity)

x21 + x22 + x23 < 50 (Plant 2 capacity)

x11 + x21 >= 25 (Northwood demand)

x12 + x22 >= 45 (Westwood demand)

x13 + x23 >= 10 (Eastwood demand)

all xij > 0 (Non-negativity)

Exercise…. Powerco has three electric power plants that supply the electric

needs of four cities.

• The associated supply of each plant and demand of each city is given in the table as follows:

• The cost of sending 1 million kwh of electricity from a plant to a city depends on the distance the electricity must travel.

From To

City 1 City 2 City 3 City 4 Supply

(Million kwh)

Plant 1 $8 $6 $10 $9 35

Plant 2 $9 $12 $13 $7 50

Plant 3 $14 $9 $16 $5 40

Demand

(Million kwh)

45 20 30 30

Solution 1. Decision Variable: Since we have to determine how much electricity is sent from each

plant to each city; Xij = Amount of electricity produced at plant i and sent to city j X14 = Amount of electricity produced at plant 1 and sent to city 4 2. Objective Function: Since we want to minimize the total cost of shipping from plants to

cities; Minimize Z = 8X11+6X12+10X13+9X14+9X21+12X22+13X23+7X24

+14X31+9X32+16X33+5X34

3. Supply Constraints

X11+X12+X13+X14 <= 35

X21+X22+X23+X24 <= 50

X31+X32+X33+X34 <= 40

4. Demand Constraints

Solution

X11+X21+X31 >= 45

X12+X22+X32 >= 20

X13+X23+X33 >= 30

X14+X24+X34 >= 30

Since each supply point has a

limited production capacity;

Since each supply point has a

limited production capacity;

5. Sign Constraints

Xij >= 0 (i= 1,2,3; j= 1,2,3,4)

LP Formulation of Powerco’s Problem

Min Z = 8X11+6X12+10X13+9X14+9X21+12X22+13X23+7X24

+14X31+9X32+16X33+5X34

S.T.: X11+X12+X13+X14 <= 35 (Supply Constraints)

X21+X22+X23+X24 <= 50

X31+X32+X33+X34 <= 40

X11+X21+X31 >= 45 (Demand Constraints)

X12+X22+X32 >= 20

X13+X23+X33 >= 30

X14+X24+X34 >= 30

Xij >= 0 (i= 1,2,3; j= 1,2,3,4)

Balanced Transportation Problem

If Total supply equals to total demand, the problem is said to be a balanced transportation problem:

nj

j

j

mi

i

i ds11

Finding Basic Feasible Solution for Transportation Problem

Unlike other Linear Programming problems,

a balanced TP with m supply points and n demand points is

easier to solve, although it has m + n equality constraints.

The reason for that is, if a set of decision variables (xij’s)

satisfy all but one constraint, the values for xij’s will satisfy

that remaining constraint automatically.

Methods to find the BFS for a balanced Transportation Problem

There are three basic methods:

1. North West Corner Method

2. Minimum Cost Method

3. Vogel’s Method

1. Northwest Corner Method

To find the bfs by the NWC method:

Begin in the upper left (northwest) corner of the transportation tableau and set x11 as large as possible (here the limitations for setting x11 to a larger number, will be the demand of demand point 1 and the supply of supply point 1. Your x11 value can not be greater than minimum of this 2 values).

According to the explanations in the previous slide we can set x11=3 (meaning demand of demand point 1 is satisfied

by supply point 1).

5

6

2

3 5 2 3

3 2

6

2

X 5 2 3

After we check the east and south cells, we saw that we can go east (meaning supply point 1 still has capacity to fulfill some demand).

3 2 X

6

2

X 3 2 3

3 2 X

3 3

2

X X 2 3

After applying the same procedure, we saw that we can go south this time (meaning demand point 2 needs more supply

by supply point 2).

3 2 X

3 2 1

2

X X X 3

3 2 X

3 2 1 X

2

X X X 2

Finally, we will have the following bfs, which is: x11=3, x12=2, x22=3, x23=2, x24=1, x34=2

3 2 X

3 2 1 X

2 X

X X X X

2. Minimum Cost Method

The Northwest Corner Method dos not utilize shipping costs.

It can yield an initial BFS easily but the total shipping cost may

be very high.

The minimum cost method uses shipping costs in order come

up with a BFS that has a lower cost.

1. First, We look for the cell with the minimum cost of shipping in

the overall transportation tableau.

2. We should cross out row i and column j and reduce the supply

or demand of the noncrossed-out row or column by the value

of Xij.

3. Then we will choose the cell with the minimum cost of shipping

from the cells that do not lie in a crossed-out row or column

and we will repeat the procedure.

2. Minimum Cost Method (Cont’d)

The Steps:

An example for Minimum Cost Method Step 1: Select the cell with minimum cost.

2 3 5 6

2 1 3 5

3 8 4 6

5

10

15

12 8 4 6

Step 2: Cross-out column 2

2 3 5 6

2 1 3 5

8

3 8 4 6

12 X 4 6

5

2

15

Step 3: Find the new cell with minimum shipping cost and cross-out row 2

2 3 5 6

2 1 3 5

2 8

3 8 4 6

5

X

15

10 X 4 6

Step 4: Find the new cell with minimum shipping cost and cross-out row 1

2 3 5 6

5

2 1 3 5

2 8

3 8 4 6

X

X

15

5 X 4 6

Step 5: Find the new cell with minimum shipping cost and cross-out column 1

2 3 5 6

5

2 1 3 5

2 8

3 8 4 6

5

X

X

10

X X 4 6

Step 6: Find the new cell with minimum shipping cost and cross-out column 3

2 3 5 6

5

2 1 3 5

2 8

3 8 4 6

5 4

X

X

6

X X X 6

Step 7: Finally assign 6 to last cell. The bfs is found as: X11=5, X21=2, X22=8, X31=5, X33=4 and X34=6

2 3 5 6

5

2 1 3 5

2 8

3 8 4 6

5 4 6

X

X

X

X X X X

3. Vogel’s Method

1. Begin with computing each row and column a penalty. The

penalty will be equal to the difference between the two smallest

shipping costs in the row or column.

2. Identify the row or column with the largest penalty.

3. Find the first basic variable which has the smallest shipping cost

in that row or column.

4. Then assign the highest possible value to that variable, and cross-

out the row or column as in the previous methods. Compute new

penalties and use the same procedure.

An example for Vogel’s Method Step 1: Compute the penalties.

Supply Row Penalty

6 7 8

15 80 78

Demand

Column Penalty 15-6=9 80-7=73 78-8=70

7-6=1

78-15=63

15 5 5

10

15

Step 2: Identify the largest penalty and assign the highest possible value to the variable.

Supply Row Penalty

6 7 8

5

15 80 78

Demand

Column Penalty 15-6=9 _ 78-8=70

8-6=2

78-15=63

15 X 5

5

15

Step 3: Identify the largest penalty and assign the highest possible value to the variable.

Supply Row Penalty

6 7 8

5 5

15 80 78

Demand

Column Penalty 15-6=9 _ _

_

_

15 X X

0

15

Step 4: Identify the largest penalty and assign the highest possible value to the variable.

Supply Row Penalty

6 7 8

0 5 5

15 80 78

Demand

Column Penalty _ _ _

_

_

15 X X

X

15

Step 5: Finally the bfs is found as X11=0, X12=5, X13=5, and X21=15

Supply Row Penalty

6 7 8

0 5 5

15 80 78

15

Demand

Column Penalty _ _ _

_

_

X X X

X

X

Exercise

Bazaraa Chapter 10:

Solve the following transportation problem:

1 2 3 si

1 5 4 1 3

2 1 7 5 7

dj 2 5 3

Origin

Destination

cij matrix

Exercise Bazaraa Chapter 10:

1 2 3 4 si

1 7 2 -1 0 10

2 4 3 2 3 30

3 2 1 3 4 25

dj 10 15 25 15

cij matrix

Solve the following transportation problem:

Lecture 14 – Preparation

• Materi:

– Transportasi: Optimum Solution