pedestrian abstract

1
REAL-TIME PEDESTRIAN DETECTION AND TRACKING AT NIGHTTIME FOR DRIVER-ASSISTANCE SYSTEMS ABSTRACT Pedestrian detection is one of the most important components in driver-assistance systems. In this paper, we propose a monocular vision system for real-time pedestrian detection and tracking during nighttime driving with a near- infrared (NIR) camera. Three modules (region-of-interest (ROI) generation, object classification, and tracking) are integrated in a cascade, and each utilizes complementary visual features to distinguish the objects from the cluttered background in the range of 20-80 m. Based on the common fact that the objects appear brighter than the nearby background in nighttime NIR images, efficient ROI generation is done based on the dual-threshold segmentation algorithm. As there is large intraclass variability in the pedestrian class, a tree-structured, two-stage detector is proposed to tackle the problem through training separate classifiers on disjoint subsets of different image sizes and arranging the classifiers based on Haar-like and histogram- of-oriented-gradients (HOG) features in a coarse-to-fine manner. To suppress the false alarms and fill the detection gaps, template-matching-based tracking is adopted, and multiframe validation is used to obtain the final results. Results from extensive tests on both urban and suburban videos indicate that the algorithm can produce a detection rate of more than 90% at the cost of about 10 false alarms/h and perform as fast as the frame rate (30 frames/s) on a Pentium IV 3.0-GHz personal computer, which also demonstrates that the proposed system is feasible for practical applications and enjoys the advantage of low implementation cost

Upload: achuu1987

Post on 19-Dec-2015

216 views

Category:

Documents


3 download

DESCRIPTION

sdd

TRANSCRIPT

Page 1: Pedestrian Abstract

REAL-TIME PEDESTRIAN DETECTION AND TRACKING AT NIGHTTIME FOR DRIVER-ASSISTANCE SYSTEMS

ABSTRACT

      Pedestrian detection is one of the most important components in driver-assistance systems. In this paper, we propose a monocular vision system for real-time pedestrian detection and tracking during nighttime driving with a near-infrared (NIR) camera. Three modules (region-of-interest (ROI) generation, object classification, and tracking) are integrated in a cascade, and each utilizes complementary visual features to distinguish the objects from the cluttered background in the range of 20-80 m. Based on the common fact that the objects appear brighter than the nearby background in nighttime NIR images, efficient ROI generation is done based on the dual-threshold segmentation algorithm.

       As there is large intraclass variability in the pedestrian class, a tree-structured, two-stage detector is proposed to tackle the problem through training separate classifiers on disjoint subsets of different image sizes and arranging the classifiers based on Haar-like and histogram-of-oriented-gradients (HOG) features in a coarse-to-fine manner. To suppress the false alarms and fill the detection gaps, template-matching-based tracking is adopted, and multiframe validation is used to obtain the final results. Results from extensive tests on both urban and suburban videos indicate that the algorithm can produce a detection rate of more than 90% at the cost of about 10 false alarms/h and perform as fast as the frame rate (30 frames/s) on a Pentium IV 3.0-GHz personal computer, which also demonstrates that the proposed system is feasible for practical applications and enjoys the advantage of low implementation cost