pedestal 1

Upload: jaganraj-sesuraj

Post on 07-Aug-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Pedestal 1

    1/14

    Isolated Footing Design(ACI 318-05)

    Design For Isolated Footing 1

    Isolated Footing 1

    Input Values

    Footing Geomtery

    Column Dimensions

    Footing No. Group ID Foundation Geometry

    - - Length Width Thickness

    1 1 4300.000 mm 4300.000 mm 1000.000 mm

    Footing No. Footing Reinforcement Pedestal Reinforcement

    - Bottom Reinforcement(Mz) Bottom Reinforcement(Mx) Top Reinforcement(Mz) Top Reinforcement(Mx) Main Steel Trans Steel

    1 #16 @ 125 mm c/c #25 @ 315 mm c/c #25 @ 315 mm c/c #16 @ 125 mm c/c 28 - #25 #8 @ 380 mm

    Design Type : Calculate Dimension

    Footing Thickness (Ft) : 1000.000 mm

    Footing Length - X (Fl) : 4300.000 mmFooting Width - Z (Fw) : 4300.000 mm

    Eccentricity along X (Oxd) : 0.000 mm

    Eccentricity along Z (Ozd) : 0.000 mm

    Column Shape : Rectangular

    Column Length - X (Pl) : 999.998 mm

    Column Width - Z (Pw) : 699.999 mm

    Page 1 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    2/14

    Pedestal

    Design Parameters

    Concrete and Rebar Properties

    Soil Properties

    Sliding and Overturning

    Design Calculations

    Footing Size

    Include Pedestal? Yes

    Pedestal Shape : Rectangular

    Pedestal Height (Ph) : 1100.000 mm

    Pedestal Length - X (Pl) : 1000.000 mm

    Pedestal Width - Z (Pw) : 600.000 mm

    Unit Weight of Concrete : 25.000 kN/m3

    Strength of Concrete : 30.000 MPa

     Yield Strength of Steel : 420.000 MPa

    Minimum Bar Size : #8

    Maximum Bar Size : #25

    Minimum Bar Spacing : 100.000 mm

    Maximum Bar Spacing : 500.000 mm

    Pedestal Clear Cover (P, CL) : 75.000 mm

    Footing Clear Cover (F, CL) : 75.000 mm

    Soil Type : Drained

    Unit Weight : 20.000 kN/m3

    Soil Bearing Capacity : 200.000 kN/m2

    Soil Surcharge : 0.000 kN/m2

    Depth of Soil above Footing : 1500.000 mm

    Cohesion : 0.000 kN/m2

    Coefficient of Friction : 0.500Factor of Safety Against Sliding : 1.500

    Factor of Safety Against Overturning : 1.500

    ------------------------------------------------------

    Initial Length (Lo) = 4300.000 mm

    Initial Width (Wo) = 4300.000 mm

    Load Combination/s- Service Stress Level

    Load CombinationNumber

    Load Combination Title

    25 1DL + 1LL(1)

    26 1DL + 1LL(R)

    27 1DL + 0.6WL(+X)

    28 1DL + 0.6WL(+Z)

    29 1DL + 0.6WL(-X)

    30 1DL + 0.6WL(-Z)

    31 1DL + 0.7WL(+X)

    32 1DL + 0.7WL(+Z)

    Page 2 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    3/14

    33 1DL + 0.7WL(-X)

    34 1DL + 0.7WL(-Z)

    35 1DL + 0.45WL(+X) + 0.75LL(1)

    36 1DL + 0.45WL(+X) + 0.75LL(R)

    37 1DL + 0.45WL(+Z) + 0.75LL(1)

    38 1DL + 0.45WL(+Z) + 0.75LL(R)

    39 1DL + 0.45WL(-X) + 0.75LL(1)

    40 1DL + 0.45WL(-X) + 0.75LL(R)

    41 1DL + 0.45WL(-Z) + 0.75LL(1)

    42 1DL + 0.45WL(-Z) + 0.75LL(R)

    43 1DL + 0.75LL(1)

    44 1DL + 0.75LL(R)

    Load Combination/s- Strength Level

    Load CombinationNumber

    Load Combination Title

    9 1.4DL

    10 1.2(DL + TL) + 1.6LL + 0.5LR

    11 1.2DL + 1.6LR + LL

    12 1.2DL + 1.6LR + 0.8W(+X)

    13 1.2DL + 1.6LR + 0.8W(-X)

    14 1.2DL + 1.6LR + 0.8W(+Z)

    15 1.2DL + 1.6LR + 0.8W(-Z)

    16 1.2DL + 1.6WL(+X) + LL + 0.5LR

    17 1.2DL + 1.6WL(-X) + LL + 0.5LR

    18 1.2DL + 1.6WL(+Z) + LL + 0.5LR

    19 1.2DL + 1.6WL(-Z) + LL + 0.5LR

    20 1.2DL + LL

    21 0.9DL + 1.6 WL(+X)

    22 0.9DL + 1.6 WL(-X)

    23 0.9DL + 1.6 WL(+Z)

    24 0.9DL + 1.6 WL(-Z)

     Applied Loads - Service Stress Level

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    25 1845.640 0.601 -10.870 -22.418 -2.324

    26 1376.480 0.472 -7.902 -16.370 -1.587

    27 1397.650 0.680 -8.076 -16.917 -4.343

    28 1364.140 0.701 68.899 266.485 -3.29929 1397.650 0.085 -8.078 -16.925 3.036

    30 1431.160 0.216 -85.017 -300.304 0.074

    31 1397.650 0.716 -8.076 -16.916 -4.798

    32 1358.550 0.742 81.731 313.720 -3.579

    33 1397.650 0.022 -8.079 -16.926 3.812

    34 1436.740 0.176 -97.837 -347.533 0.357

    35 1733.640 0.730 -10.172 -21.041 -4.285

    36 1381.780 0.634 -7.945 -16.504 -3.684

    37 1708.380 0.748 47.652 192.272 -3.420

    38 1356.640 0.651 49.802 196.095 -2.862

    39 1733.650 0.288 -10.174 -21.048 1.489

    40 1381.780 0.189 -7.946 -16.510 1.954

    41 1758.910 0.385 -67.978 -234.347 -0.877

    42 1406.930 0.287 -65.673 -229.098 -0.334

    43 1733.640 0.566 -10.173 -21.043 -2.150

    44 1381.780 0.469 -7.945 -16.506 -1.599

     Applied Loads - Strength Level

    LC Axial(kN)

    Shear X(kN)

    Shear Z(kN)

    Moment X(kNm)

    Moment Z(kNm)

    9 1956.730 0.643 -11.302 -23.691 -2.273

    10 2346.890 -16.299 -48.202 241.528 99.895

    11 2091.280 0.711 -12.202 -24.913 -2.472

    12 1643.270 0.844 -9.410 -19.422 -6.042

    Page 3 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    4/14

    Final Footing Size

    Pressures at Four Corners

    If A u is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero

    and the pressure will be redistributed to remaining corners.

    Summary of Adjusted Pressures at 4 corners Four Corners

    13 1643.280 0.086 -9.415 -19.438 5.400

    14 1598.400 0.891 93.347 359.379 -3.978

    15 1688.150 0.237 -112.111 -398.214 0.360

    16 2114.621 1.263 -12.391 -25.510 -11.227

    17 2114.630 -0.258 -12.402 -25.548 12.038

    18 2024.230 1.344 193.708 736.099 -7.138

    19 2205.010 0.057 -218.241 -787.007 1.900

    20 2125.190 0.693 -12.482 -25.801 -2.644

    21 1257.880 1.002 -7.268 -15.220 -8.673

    22 1257.890 -0.590 -7.273 -15.241 10.857

    23 1168.700 1.062 197.959 739.551 -5.927

    24 1347.070 -0.236 -212.247 -769.863 3.051

    Reduction of force due to buoyancy = 0.000 kN

    Effect due to adhesion = 0.000 kN

     Area from initial length and width, A o =Lo X Wo = 18490000.000 mm2

    Min. area required from bearing pressure, A min

    =P / qmax = 14305272.924 mm2

    Note: Amin is an initial estimation.

    P = Critical Factored Axial Load(without self weight/buoyancy/soil).q

    max= Respective Factored Bearing Capacity.

    Length (L2) = 4300.000 mm Governing Load Case : # 25

    Width (W2) = 4300.000 mm Governing Load Case : # 25

    Depth (D2) = 1000.000 mm Governing Load Case : # 25

     Area (A 2) = 18490000.000 mm2

    Load Case

    Pressure atcorner 1

    (q1)

    (kN/mm2)

    Pressure atcorner 2

    (q2)

    (kN/mm2)

    Pressure atcorner 3

    (q3)

    (kN/mm2)

    Pressure atcorner 4

    (q4)

    (kN/mm2)

     Area of footingin uplift (A

    u)

    (mm2)

    41 0.0002 0.0002 0.0001 0.0001 0.000

    41 0.0002 0.0002 0.0001 0.0001 0.000

    37 0.0001 0.0001 0.0002 0.0002 0.000

    37 0.0001 0.0001 0.0002 0.0002 0.000

    Pressure at Pressure at Pressure at Pressure at

    Page 4 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    5/14

    Check for stability against overturning and sliding

    Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - X Direction

    Load Case

    corner 1 (q1)

    (kN/mm2)

    corner 2 (q2)

    (kN/mm2)

    corner 3 (q3)

    (kN/mm2)

    corner 4 (q4)

    (kN/mm2)

    41 0.0002 0.0002 0.0001 0.0001

    41 0.0002 0.0002 0.0001 0.0001

    37 0.0001 0.0001 0.0002 0.0002

    37 0.0001 0.0001 0.0002 0.0002

    -Factor of safety against

    slidingFactor of safety against

    overturning

    Load CaseNo.

     Along X-Direction

     Along Z-Direction

     About X-Direction

     About Z-Direction

    25 2380.244 131.603 135.955 1715.308

    26 2533.786 151.347 156.005 1994.637

    27 1774.312 149.397 153.147 898.993

    28 1697.257 17.268 12.442 1072.298

    29 14194.494 149.360 153.092 1815.604

    30 5663.366 14.389 10.985 13857.044

    31 1685.101 149.397 153.151 823.297

    32 1599.706 14.523 10.516 993.542

    33 54842.362 149.342 153.077 1377.685

    34 6966.346 12.532 9.534 418422.766

    35 1882.914 135.128 139.391 1015.893

    36 1890.531 150.862 155.294 1027.628

    37 1820.718 28.580 20.032 1173.390

    38 1821.854 23.815 16.961 1205.910

    39 4772.681 135.102 139.354 6684.560

    40 6341.783 150.843 155.256 3309.978

    41 3603.018 20.406 15.817 3538.889

    42 4220.112 18.442 14.190 5559.987

    43 2428.493 135.115 139.377 1770.343

    44 2555.644 150.862 155.284 1994.646

    Critical Load Case for Sliding along X-Direction : 32

    Governing Disturbing Force : 0.742 kN

    Page 5 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    6/14

    Critical Load Case And The Governing Factor Of Safety For Overturning And Sliding - Z Direction

    Shear Calculation

    Punching Shear Check 

    Effective depth, deff 

    , increased until 0.75XVc

     Punching Shear Force

    Punching Shear Force, Vu = 1985.320 kN, Load Case # 10

     Along X Direction

    (Shear Plane Parallel to Global X Axis)

    Governing Restoring Force : 1186.982 kN

    Minimum Sliding Ratio for the Critical Load Case : 1599.706

    Critical Load Case for Overturning about X-Direction : 34

    Governing Overturning Moment : -552.987 kNm

    Governing Resisting Moment : 5272.036 kNm

    Minimum Overturning Ratio for the Critical Load Case : 9.534

    Critical Load Case for Sliding along Z-Direction : 34

    Governing Disturbing Force : -97.837 kN

    Governing Restoring Force : 1226.077 kN

    Minimum Sliding Ratio for the Critical Load Case : 12.532

    Critical Load Case for Overturning about Z-Direction : 31

    Governing Overturning Moment : -6.301 kNm

    Governing Resisting Moment : 5187.994 kNm

    Minimum Overturning Ratio for the Critical Load Case : 823.297

    Total Footing Depth, D = 1000.000mm

    Calculated Effective Depth, deff  = D - Ccover - 1.0 = 899.600mm

    1 inch is deducted from total depth to cater bar dia(US Convention).

    For rectangular column, = Bcol / Dcol = 1.667

    From ACI Cl.11.12.2.1, bo for column= 6798.400 mm

    Equation 11-33, Vc1

     = 12238.523 kN

    Equation 11-34, Vc2 = 20285.380 kN

    Equation 11-35, Vc3

     = 11125.930 kN

    Punching shear strength, Vc = 0.75 X minimum of (V

    c1, V

    c2, V

    c3) = 8344.448 kN

    0.75 X Vc > Vu hence, OK 

    Page 6 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    7/14

    Check that 0.75 X Vc > Vux where Vux is the shear force for the critical load cases at a distance deff  from the face of the column caused by bending

    about the X axis.

    One-Way Shear Check 

     Along Z Direction

    (Shear Plane Parallel to Global Z Axis)

    Check that 0.75 X V c > V uz where Vuz is the shear force for the critical load cases at a distance deff  from the face of the column caused by bending

    about the Z axis.

    Design for Flexure about Z Axis

    (For Reinforcement Parallel to X Axis)

    From ACI Cl.11.3.1.1, Vc = 3518.585 kN

    Distance along X to design for shear,Dx =

    950.400 mm

    From above calculations, 0.75 X Vc = 2638.939 kN

    Critical load case for Vux is # 19 786.536 kN

    0.75 X Vc > Vux hence, OK 

    From ACI Cl.11.3.1.1, Vc = 3518.585 kN

    Distance along X to design for shear, Dz = 750.400 mm

    From above calculations, 0.75 X Vc = 2638.939 kN

    Critical load case for Vuz

     is # 10 436.520 kN

    0.75 X Vc > V

    uz hence, OK

    Page 7 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    8/14

    Calculate the flexural reinforcement along the X direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced ConcreteDesign (5th ed.) by Salmon and Wang (Ref. 1)

    Critical Load Case # 10

    The strength values of steel and concrete used in the formulae are in ksi

    Calculate reinforcement ratio for critical load case

    Based on spacing reinforcement increment; provided reinforcement is

    Factor from ACI Cl.10.2.7.3 = 0.832

    From ACI Cl. 10.3.2, = 0.02973

    From ACI Cl. 10.3.3, = 0.02230

    From ACI Cl. 7.12.2, = 0.00177

    From Ref. 1, Eq. 3.8.4a, constant m = 16.471

    Design for flexure about Z axis isperformed at the face of the column

    at a distance, Dx =1650.000 mm

    Ultimate moment, 787.018 kNm

    Nominal moment capacity, Mn = 874.465 kNm

    Required = 0.00060

    Since OK  

     Area of Steel Required, A s = 6858.221 mm2

    Selected bar Size = #25

    Minimum spacing allowed (Smin) = = 100.000 mm

    Selected spacing (S) = 317.308 mm

    Smin

  • 8/20/2019 Pedestal 1

    9/14

    Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax

    Check to see if width is sufficient to accomodate bars

    Design for Flexure about X axis

    (For Reinforcement Parallel to Z Axis)

    Calculate the flexural reinforcement along the Z direction of the footing. Find the area of steel required, A, as per Section 3.8 of Reinforced ConcreteDesign (5th ed.) by Salmon and Wang (Ref. 1)

    Critical Load Case # 19

    The strength values of steel and concrete used in the formulae are in ksi

    Calculate reinforcement ratio for critical load case

    Required development length for bars = =304.800 mm

     Available development length for bars, DL

    =1575.000 mm

    Try bar size # 25 Area of one bar = 490.870 mm2

    Number of bars required, Nbar = 14

    Total reinforcement area, A s_total

     = Nbar

     X (Area of one bar) = 6872.180 mm2

    deff  = D - Ccover - 0.5 X (dia. of one bar)

    =

    912.500 mm

    Reinforcement ratio, = 0.00175

    From ACI Cl.7.6.1, minimum req'd cleardistance between bars, C

    d =

    max (Diameter of one bar, 1.0,Min. User Spacing) =

    317.308 mm

    Factor from ACI Cl.10.2.7.3 = 0.832

    From ACI Cl. 10.3.2, = 0.02973

    From ACI Cl. 10.3.3, =0.02230

    From ACI Cl.7.12.2, = 0.00177

    From Ref. 1, Eq. 3.8.4a, constant m = 16.471

    Design for flexure about X axis isperformed at the face of the column

    at a distance, Dz =1850.000 mm

    Ultimate moment, 1370.518 kNm

    Page 9 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    10/14

    Based on spacing reinforcement increment; provided reinforcement is

    Because the number of bars is rounded up, make sure new reinforcement ratio < ρmax

    Check to see if width is sufficient to accomodate bars

    Bending moment for uplift cases will be calculated based solely on selfweight, soil depth and surcharge loading.

     As the footing size has already been determined based on all servicebility load cases, and design moment calculation is based on selfweight, soil depthand surcharge only, top reinforcement value for all pure uplift load cases will be the same.

    Design For Top Reinforcement Parallel to Z Axis

    Nominal moment capacity, Mn = 1522.798 kNm

    Required = 0.00111

    Since OK  

     Area of Steel Required, A s = 6667.631 mm2

    Selected Bar Size = #16Minimum spacing allowed (Smin) = 100.000 mm

    Selected spacing (S) = 125.273 mm

    Smin

  • 8/20/2019 Pedestal 1

    11/14

    Calculate the flexural reinforcement for M x. Find the area of steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Calculate reinforcement ratio for critical load case

    Based on spacing reinforcement increment; provided reinforcement is

    Design For Top Reinforcement Parallel to X Axis

    Factor from ACI Cl.10.2.7.3 = 0.832

    From ACI Cl. 10.3.2, = 0.02973

    From ACI Cl. 10.3.3, = 0.02230

    From ACI Cl. 7.12.2, = 0.00177

    From Ref. 1, Eq. 3.8.4a, constant m = 16.471

    Design for flexure about A axis isperformed at the face of the column

    at a distance, Dx =

    1850.000 mm

    Ultimate moment, 404.689 kNm

    Nominal moment capacity, Mn = 449.654 kNm

    Required = 0.00033

    Since OK  

     Area of Steel Required, A s = 6667.631 mm2

    Selected bar Size = #16

    Minimum spacing allowed (Smin) = 100.000 mm

    Selected spacing (S) = 125.273 mm

    Smin

  • 8/20/2019 Pedestal 1

    12/14

    First load case to be in pure uplift #

    Calculate the flexural reinforcement for Mz. Find the area of steel required

    The strength values of steel and concrete used in the formulae are in ksi

    Calculate reinforcement ratio for critical load case

    Based on spacing reinforcement increment; provided reinforcement is

    Pedestal Design Calculations

    Factor from ACI Cl.10.2.7.3 = 0.832

    From ACI Cl. 10.3.2, = 0.02973

    From ACI Cl. 10.3.3, = 0.02230

    From ACI Cl.7.12.2, = 0.00177

    From Ref. 1, Eq. 3.8.4a, constant m = 16.471

    Design for flexure about A axis isperformed at the face of the column

    at a distance, Dx =

    1650.000 mm

    Ultimate moment, 321.918 kNm

    Nominal moment capacity, Mn = 357.687 kNm

    Required = 0.00025

    Since OK  

     Area of Steel Required, A s = 6858.221 mm2

    Selected bar Size = #25

    Minimum spacing allowed (Smin) = 100.000 mm

    Selected spacing (S) = 317.308 mm

    Smin

  • 8/20/2019 Pedestal 1

    13/14

    Strength and Moment Along Reinforcement in X direction

    Strength and Moment from Concrete

    Calculate strength and moment from one bar.

    Strength and Moment Along Reinforcement in Z direction

    Strength and Moment from Concrete

    Calculate strength and moment from one bar.

    Critical Load Case: 10

    Bar size : 25 mm

    Number of Bars : 28

    Steel Area : 12449.9994 sq.mm

    Neutral Axis Depth (Xb): 76.9150 mm

    Cc = 1632.698 kN

    Mc = 437.533 kNm

    Distance between extreme fiber andbar,

    db 87.500 mm

    Strain in bar, = -0.0004

    Maximum Strain, = 0.0021

    as

    -0.083 kN/mm2

    0.0020

    as

    0.000 kN/mm2

    -40.521 kN

    -8.611 kNm

    Total Bar Capacity, Cs = -3129.443

    kN

    Capacity of Column = Cc + Cs =-

    1496.745kN

    Total Bar Moment, Ms = 211.192 kNm

    Total Moment = Mc + Ms = 648.725 kNm

    Bar size : 25 mm

    Number of Bars : 28

    Steel Area : 12449.9994 sq.mm

    Neutral Axis Depth (Xb): 98.9491 mm

    Cc = 1260.254 kN

    Mc = 578.213 kNm

    Distance between extreme fiberand bar,

    db 87.500 mm

    Page 13 of 14Isolated Footing Design

    11/2/2015file:///C:/Staad.foundation%205.3/CalcXsl/footing.xml

  • 8/20/2019 Pedestal 1

    14/14

    Strain in bar, = 0.0003

    Maximum Strain, = 0.0021

    as

    0.069 kN/mm2

    0.0020

    as

    16.452 kN/mm2

    21.552 kN

    8.890 kNm

    Total Bar Capacity, Cs = -2757.002

    kN

    Capacity of Column = Cc + Cs =-

    1496.748kN

    Total Bar Moment, Ms = 563.591 kNm

    Total Moment = Mc + Ms = 1141.804 kNm

    Check for bi-axial bending, 0.972

    Design Moment Mnx= 3.678 kNm

    Design Moment Mnz

    = 1114832.127 kNm

    Total Moment Mox

    = 648736.982 kNm

    Total Moment Moz

    = 1141824.643 kNm

    if Mnx or Mnz = 0, then  = 1.0

    otherwise,  = 1.24

    Print Calculation Sheet

    Page 14 of 14Isolated Footing Design