ped 5 heat exchangers

74
Processing Equipment Design 5. Heat Exchangers Lecturer: Pavel Hoffman http://fsinet.fsid.cvut.cz/cz/U218/peoples/hoffman/index.htm e-mail: [email protected]

Upload: diogo-esteves

Post on 27-Oct-2014

66 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: PED 5 Heat Exchangers

Processing EquipmentDesign

5. Heat Exchangers

Lecturer: Pavel Hoffman

http://fsinet.fsid.cvut.cz/cz/U218/peoples/hoffman/index.htm

e-mail: [email protected]

Page 2: PED 5 Heat Exchangers

PDE-5 2

Tubular heat exchangers (HE)

Steps of HE design (more see exercises)

cold fluid2warm fluid 1

M1, t11

M1, t12

M2, t21

M2, t22

Q

A

Symbol of HE and definition of flows

t11

t12

t21

t22

counter flow

parallel flow

t11

t12

t21t22

M1*c1 < M2*c2

fluid = liquid, gas, steam...

Page 3: PED 5 Heat Exchangers

PDE-5 3

Example of given data:

- Mass flows of fluids: M1 (kg/h; kg/s) M2 (kg/h; kg/s)

- Temperatures: t11 (°C) t12 (°C) t21 (°C)

- Fluids physical properties:

specific heats c1 (kJ/kg°C) c2 (kJ/kg°C)

densities ρ1 (kg/m3) ρ2 (kg/m3)

Calculated data for this example:

- Outlet temperature of warmed cool liquid t22 (°C) = ?

- Amount of transferred heat Q (kW) = ?

- Needed heat transfer surface A (m2) = ?

- Pressure loss in HE ∆p1 (kPa) = ?

∆p2 (kPa) = ?

Usual given data:• 2 flows and 3 temperatures → 4. temperature• 1 flow and 4 temperatures → 2. flow rate

Page 4: PED 5 Heat Exchangers

PDE-5 4

1. Thermal calculations(without heat loss ΔQL = 0 – simplification)

Principle of conservation of energy in HE (enthalpic balance)

Q1 = Q2 = Q (exactly Q1 = Q2 + ∆QL)

Q1 = M1 * c1 * (t11 – t12) heat removed from hot fluid

Q2 = M2 * c2 * (t21 – t22) heat transferred to cool fluid

M1 * c1 * (t11 – t12) = M2 * c2 * (t21 – t22) → t22 = ?

but the heat has to go through the heat transfer surface A

Q = k * A * ∆tL → A = ?

where is k (W/m2°C) coefficient of heat passage (overall HT coeff.)

∆tL (°C) mean logarithmic temperature difference in HE

Page 5: PED 5 Heat Exchangers

PDE-5 5

2. Hydrodynamic calculations

For optimal fluid speeds wopt we can calculate (estimate) a total cross-sectional area (clear area) of flows (they depend on pressure loss ΔpLmax1,2)

f1 = V1 / w1opt and f2 = V2 / w2opt

where is V1 = M1 / ρ1 and V2 = M2 / ρ2

For selected tubes diameter dT and length LT we can specify numbers of tubes in 1 pass of the HE for both fluids (dTe = dTi + 2*s; dTf = dTi + s)

nT1P1 = 4*f1 / (π*dTi2) and nT1P2 = 4*f2 / (π*dTi

2)

(or from a corresponding cross section area of an inter-tubular space = it is outside tubes)

f dTef dTi

s

Page 6: PED 5 Heat Exchangers

PDE-5 6

Total number of tubes in the HE is

nTT A / (π*dTø*LT)

Number of passes in the HE (for fluid flows in tubes)

nP1 = nTT / nT1P1 nP2 = nTT / nT1P2

These numbers have to be integer numbers → new calculations for different speed, tubes length or diameter.

heat transfer area of 1 tube

Page 7: PED 5 Heat Exchangers

PDE-5 7

3. Estimation of basic size

Spacing of tubes t depends on a method of their

connection in a tube plate (beading, welding – see later).

For example is

t ≥ 1,2 * dTe

We choose a HE layout and from the spacing we can calculate a

tube bundle diameter and consequently a HE shell too.

f dTe

t

Page 8: PED 5 Heat Exchangers

PDE-5 8

4. Strength calculations

• According standards we can specify or check tube wall

thickness, shell wall thickness and tube plate thickness.

• Than we check thermal dilatations (low cycle fatigue) of the HE

– assembling and working temperatures are different, tubes

and shell temperatures are different too. It is very important

for fixed tube plates.

More you can see in next lectures and exercises.

Page 9: PED 5 Heat Exchangers

PDE-5 9

Výměník tepla s pevnými trubkovnicemi

HE with fixed plates

p2

p1

Výměník tepla s plovoucí hlavou HE with floating head

p2

p1

Výměník tepla s vlásenkovými trubkami HE with „hair tubes“

p2

p1

Výměník tepla s kompenzátorem v plášti HE with bellows expansive joint in shell

p2

p1

Výměník tepla s ucpávkou v plášti HE with packing in shell

p2

p1

Příklady výměníků tepla a jejich konstrukčního řešení podle ČSN 690010

Examples of Hes and their design

Page 10: PED 5 Heat Exchangers

PDE-5 10

Výměník tepla s pevnými trubkovnicemi, přepážkami v mezitrubkovémprostoru a dvěma tahy v trubkách

HE with fixed tube-plates and baffles in inter mediate tube space and 2 passes in tubes

1 9 3 5 6 4 7 8

3 2 9

1 – Přepážka Baffle plate 6 – Trubky Tubes

2 – Patka Support, footing 7 Pevná trubkovnice Fixed tube plate (Welded like flange)

3 Výstupní hrdlo Outlet neck 8 Příruba Cover with flange

4 Segmentová přepážka Segment baffle 9 – Vstupní hrdlo Inlet neck

5 – Plášť Shell

Page 11: PED 5 Heat Exchangers

PDE-5 11

Trubkový výměník s plovoucí hlavouHE with floating head and 2 passes

3 2 9

1 9 10 3 5 6 4 7 8

DilataceDilatation

1 – Přepážka Baffle plate 6 – Trubky Tubes2 – Patka Support, footing 7 Příruba pro kapalinu A Cover for fluid A3 Výstupní hrdlo Outlet neck 8 Příruba pro kapalinu B Cover for fluid B4 Segmentová přepážka Segment baffle 9 – Vstupní hrdlo Inlet neck5 – Plášť Shell 10 – Pevná trubkovnice mezi 2 přírubami

Tube plate fixed between 2 flanges

Page 12: PED 5 Heat Exchangers

PDE-5 12

Výměník trubka v trubce HE type „tube in tube“

Stavebnicový výměník trubka v trubce HE type „tube in tube“ connected in series

Vlnovcový kompenzátor Bellows expansion joint

Ucpávkový kompenzátor Expansion point with packing

Page 13: PED 5 Heat Exchangers

PDE-5 13

Trubkový výměník s U trubkami HE with „hair pin“ tubes

DilataceDillatation

DeflegmátorDeflection plate (baffle)

Page 14: PED 5 Heat Exchangers

PDE-5 14

TRC

i

nD 2

Různé typy výměníků tepla, vík a trubkovnic, hrdel a přepážekVarious type of HE, heads and tube-plates, necks and baffles

Typy spoje trubkovnice s pláštěmType of joints of tube plate and

shell

ξ=1,7 ξ=3,5 ξ=3,5 ξ=3 ξ=1,2

ξ=1,2ξ=1,7ξ=2,5ξ=2,2ξ=1,2

ξ=1,7

fTR1 – plocha odpovídající jedné trubce area corresponding to 1 tube

Odhad vnitřního průměru pláště VT (Di)Estimation of shell internal diameter

tt

Θ=1,15 Θ=1,00

Page 15: PED 5 Heat Exchangers

PDE-5 15

Svarové spoje trubek s trubkovnicí Examples of welding of tubes and tube plate

Redukovaná délka trubek závislá od vnitřní konstrukce výměníku tepla Reduced tubes length depending on HE design (baffles)

Trubkovnice vevařená do pláště nebo příruby Tube plate welded in shell or flange

Stupňovitý otvor Two diameters of hole

Drážka v trubkovnici Groove in tube plate

pro sp > lmax

lmax~ 45mm pro zaválcování for beading

lR=Min[0,5.l1;Max(0,7.l1; l2)]

Page 16: PED 5 Heat Exchangers

PDE-5 16

Rozměry oválu vepsaného do největší neotrubkované plochy

Dimensions of oval inscribed in the biggest area without tubes

Nebezpečný průřez trubkovnice

Dangerous section of tube plate

Pevná trubkovnice výměníků s plovoucí hlavou, vlásenkovými trubkami nebo s ucpávkou, sevřená mezi přírubami

Fix tube plate gripped between two flanges

Pevná trubkovnice s přivařeným dnem provedená jako protipřírubapláště výměníku s plovoucí hlavou, vlásenkovými trubkami a s ucpávkou

Fix tube plate with welded bottom(head)

Page 17: PED 5 Heat Exchangers

PDE-5 17

Plovoucí hlava se zámkem Floating head with on „lock“ flange

Plovoucí trubkovnice provedená jako protipříruba víka Floating tube plate made as an counterflange of a head

Trubkovnice s přivařeným dnem u výměníku s plovoucí hlavou Tube plate with welded bottom of HE with floating head

Geometrie vlny kompenzátoru Geometry of flexible bellows wave

Typy svarového spoje trubkovnice s přírubou Type of welded joints of tube plate and flange

Nedoporučuje se Not recommended

Page 18: PED 5 Heat Exchangers

PDE-5 18

52% NaOH DN40; 140°C; 1680kg/h

Vlnový kompenzátor Bellows expansion joint

Nosná konstrukce Supporting structure

Trubková odparka Tubular evaporator

Odlučovač Vapour-liquid separator

Odparka na zahušťování roztoku NaOHEvaporator for concentration of NaOH solution

Odparka: 36 TR 33,4x2,77-2500 – Nikl Evaporator : 36 tubes from nickel

Nekond. plyny InertsDN15

BrýdyVapour

400kg/h 0,1MPa DN120

Pára Steam188°C; 1,2MPa

DN50

42% NaOH2080kg/h; DN40

DN25 kondens.

Recirkulace čištění Recirc. for chem.cleaningDN40

Pozn.: Viz příklad o plátovaných ocelích. See example with cladded steel

Page 19: PED 5 Heat Exchangers

PDE-5 19

Tube arrangement in tube plate

30°

t tt

t t tt

t

60°

45°

90°

equilateral triangle square

• Triangl: better space utilization (more tubes in the same shell diameter)

• Square: easier cleaning of space between tubes (e.g. spraying)

Tube pitch is: for beaded (expanded) tubes: t = (1,25 – 1,50) * dTe

for welded tubes t = (1,2 – 1,4) * dTe

Estimation of a shell internal diameter see p. 14 and example on the next page.

Page 20: PED 5 Heat Exchangers

PDE-5 20

Estimation of tubular HE internal shell diameter

Tubes in equilateral triangle Tubes in square

tt

fT1t

fT1t = area corresponding to 1 tube

Page 21: PED 5 Heat Exchangers

PDE-5 21

Crosshatched area equates to an area of 1 tube in a tube plate

Page 22: PED 5 Heat Exchangers

PDE-522

Tube plate area that is equivalent to 1 tube (pitch of tubes is t).

fT1t = t2 * √3 / 2 fT1t = t2

Tubes minimal plate area = minimal shell internal area

4

**

2

1i

cutouttTTtotTtot

DAfnA

Shell internal diameter

cutouttTTtotTtot

i

AfnAD

1*

*2*2

For tube plate totally full of tubes (without any cutout against inlet etc.) is

tTTtot

i

fnD 1*

*2

Page 23: PED 5 Heat Exchangers

PDE-5 23

15,1***2

Ttot

i

ntD

00,1***2

Ttot

i

ntD

***2

Ttot

i

ntD

Θ = 1,15 Θ = 1,00

Di ....... shell internal diametert ......... pitch of tubesnTtot .... total number of tubes in HE

Page 24: PED 5 Heat Exchangers

PDE-5 24

Example:

Specify a minimal internal shell diameter of a circular evaporator

with these parameters:

• Number of tubes nTtot = 1250;

• External tubes diameter dTe = 32 mm;

• Tubes pitch t = 1,5 * dTe = 1,5 * 32 = 48 mm;

• Tubes are installed in equilateral triangle.

Area of central circulation tube (φ 600 mm) is ACCT = 282 600 mm2;

area of cutout for steam inlet is Acut = 120 000 mm2.

Page 25: PED 5 Heat Exchangers

PDE-5 25

tubes bundle

central circulation tube

evaporator shell

steam inlet

cutout for better steam distribution in tubes bundle

Page 26: PED 5 Heat Exchangers

PDE-5 26

Total minimal area of tube plate

cutoutCCTTtotTtot AAtnA 2

3** 2

22 28967531200002826002

3*48*1250 mmATtot

Minimal internal diameter of evaporator shell

mmAfnA

D cutouttTTtotTtoti 1920

2896753*2

**2*2 1

Page 27: PED 5 Heat Exchangers

PDE-5 27

Connection of tubes with tube plate

Beading (tubes expanding)

in smooth holes in holes with small grooves in holes with grooves

s

30°sT

Ød1

Ød2

Ød´1

Ød

l

a

s

30° sT

Ød1

Ød2

Ød´1

Ød

s1

a

ls

30°sT

Ød1

Ød2

Ød´1

Ød

l

a

for p ≤ 3 MPa

~0,3

~0,3

0,5÷0,7

3÷6

easy replacinglower strength

difficult tubes replacinghigher strength

Page 28: PED 5 Heat Exchangers

PDE-5 28

• Parameters of grooves:

- 5 – 7 small grooves deep c. 0,3 mm and width c. 0,3 mm- 1 – 2 grooves deep c. 0,5 – 0,7 mm and width c. 3 - 6 mm

• Maximal working temperature is c. 300 °C (danger of loss of elastic stress → loss of tightness).

• Minimal allowable length of beading is

lmin = 10 mm or l = min {(1,5 – 2,0)dT; (s-3);45}

• Maximal allowable (effective) length of beading is lmax = 45 mm.

If the tube plate thickness s has to be thicker

than 45 mm (for example owing to too high

pressure difference) we can use this design

• Beading principle is that expanded tube has plastic deformations but tube plate elastic. So the tube plate compresses tubes.

ls

Page 29: PED 5 Heat Exchangers

s

sT

sT ~sT

≥1,5·sT2

30°

2

sTØd1

Ød

1,5·sT1,2·sT

s

Ød2

30° sTØd1Ød2

Ød

2

1,5·sT

external fillet weld ½ V + koutový svar p front butt weld with groovesT = 2 – 4 mm for sT ≥ 4 mm sT ≤ 2 - 3 mm + for Al always

PDE-5 29

Tubes welding

• It has very good tightness, it can be used for temperatures > 300 °C.

• Disadvantage is that in case of need a change of corroded tube is its

removal difficult (weld must be grinded away).

Examples of welds types:

Page 30: PED 5 Heat Exchangers

PDE-5 30

Combined joints

• Tubes are beaded and than welded.

• The joint is used if there are requirements for very high

strength and tightness. It is reliable for dynamic loading

(stress) of HE.

Technological process of tubes Technological process of tubes weldingbeading in tube plate in tube plate (under shielding atmosphere)

Page 31: PED 5 Heat Exchangers

PDE-5 31

tube plate

tube

beading cones

expanding cone

Tool for tubes beading:

3 beading cones and inside is expanding cone (it moves along the tool

axis and so its beading diameter increases.

Page 32: PED 5 Heat Exchangers

PDE-5 32

Double wall tube plate

The design is used for danger fluids (e.g. radioactive liquids in

atomic power plants, poisonous fluids ....)

welded part of tube

auxiliary stainless steel tube(welded to the basic tube plate)

basic tube plate → strength

beaded part of tube

tightness check-up

Page 33: PED 5 Heat Exchangers

PDE-5 33

Baffles in tube bundle

Purpose:

• Fluid flow direction and higher speed → > α (heat transfer

coefficient)

• Supporting of tubes and keeping of tube pitch

• Better conditions for buckling stress (shorter buckling length)

• Lower tube vibrations owing to dynamical effect of liquid flow

More baffles:

→ > α (W/m2K) → < A (m2) (lower capital costs)

but → > ∆pL (kPa) → higher running costs

(power for pump)

Page 34: PED 5 Heat Exchangers

PDE-5 34

One segment baffles (P1, P2, P3)

ØDhp=(0,6÷0,8)D

tp=(0,2÷1,0)D

P1

P2

P3

P1=P3

tube plate draining

hole in baffle for draining

bottom

Segment baffles = flow outside tubes

Baffles shape and location, neck location etc. depend on a type of fluid and HE (e.g. moisture condensation from gas.These baffles are very often used in HE (all baffles are the same, simple design).

Page 35: PED 5 Heat Exchangers

PDE-5 35

P1

P2

P2

P1 P2

Double segments baffles(P1, P2)

P1

Page 36: PED 5 Heat Exchangers

PDE-5 36

P1

P2

Ring and disc shape segments (baffles) (P1, P2)

Baffles of shape of turned sectors of a circle

Section along axis is the same as for double segments

baffles.

Baffles can be inclined → spiral flow of fluid outside tubes

Page 37: PED 5 Heat Exchangers

PDE-5 37

Longitudinal baffles

Spiral baffles (continuous or from segments)

Page 38: PED 5 Heat Exchangers

PDE-5 38

Passes in HE = flow inside tubes

Multi pass arrangement makes possible to choose a proper fluid speed in tubes and thus optimization of a HE design (optimal relation between heat passage coefficient (coefficient of heat transfer) and pressure loss).

Single pass HE

inlet outletchamber (head, bottom)

Page 39: PED 5 Heat Exchangers

PDE-5 39

front chamber back

baffle

Four passes HE

přepážka

baffle in the front chamber (inlet/outlet)

inlet/outlet back

chamber (cover)

Two passes HE

Page 40: PED 5 Heat Exchangers

PDE-5 40

Twelve passes HE

Page 41: PED 5 Heat Exchangers

PDE-5 41

Tubular multipasses HE in sugary

Examples of tubular heat exchangers

Page 42: PED 5 Heat Exchangers

PDE-5 42

Zahřívače šťávy (12-ti chodé)

Juice heaters (12 passes)

baffles separating passes

flat cover with reinforcing

Page 43: PED 5 Heat Exchangers

PDE-5 43

Tříchodý trubkový výměník Tubular HE with 3 passes(každý chod po 11 trubkách) (every pass with 11 tubes)

baffle withsealing

flat cover ofback chamber

flange withsealing

Page 44: PED 5 Heat Exchangers

PDE-5 44Sketch of juice heater

Juice necks

Condensate outlet

Upper juice chamber

Lower chamber

Upper cover

Bottom cover

Bottom tubeplate

Steam neck

Steam inlet

Connecting bar

Condensate outlet

Condensate outlet

Page 45: PED 5 Heat Exchangers

PDE-545

Baffles in chambers have various shape (line, arc ..) → optimal tube plate design and space utilization (in the place where are baffles are not tubes), optimal flow, easy production and cleaning, good tightness ....In sugar industry HE with number of passes on juice side from 6 to 12 are used.

Examples of baffles sealing

baffle

sealing

HE cover

bafflebaffletube plate with tubessealing in groove

• For multi passes HE flat heads (covers) are often used with stiffening ribs (see exercises) owing to easier design, manufacturing and maintenance.

• Baffles can be welded to tube plate and sealed on a flat cover (usual) or welded to cover (dished) and sealed on tube plate.

Page 46: PED 5 Heat Exchangers

PDE-5 46

Inlet and outlet necks

• Necks cross sections are determined by speed of flow and

depends on its density, pressure loss, droplets or particle

contents (abrasion), HE design etc.

• Speeds are chosen individually.

baffle in front chamber

Page 47: PED 5 Heat Exchangers

PDE-5 47

Examples of recommended speeds for various fluids according my experiences:(values are valid for common cases in food or chemical industries)

• Steam (vapour) in inlet neck 10 – 25 m/s

• Vapour in outlet neck (tube) 10 – 15 m/s

• Condensate in outlet tube 0.2 – 0.5 m/s(condensate is on boundary line vapour/water

→ owing pressure loss it becomes superheated→ steam arises → double phases flow)

• Heated/cooled or evaporated liquid inlet 1 – 3 m/s

• Heated/cooled liquid outlet 1 – 3 m/s

• Evaporated liquid outlet 1 – 2 m/s

(boiling liquid is on boundary line vapour/liquid)

• Pump intake between evaporator bodies 0.5 – 1.0 m/s

• Non condensing gases (inerts) from calandrias 10 – 15 m/s

Page 48: PED 5 Heat Exchangers

PDE-5 48

vapour + inerts

• Condensate is on a boundary line.

• Every pressure loss causes that it starts

to be superheated → vapour forms

(with >>> specific volume) → two

phases flow

≤30%

condensate

Problems with condensate draining from heatingchambers (calandrias) of heaters and evaporators

Ex.:

• Mixture state on a boundary line: 105 °C, 120,8 kPa

• Condensate specific volume is 0,001047 m3/kg

• Specific volume of arisen vapour is 1,419 m3/kg → 1355 krát větší

Page 49: PED 5 Heat Exchangers

PDE-5 49

Tubes protection against of dynamic effect of entering fluid

If the incoming fluid has too high speed it causes vibration of

tubes that are in front of the inlet (wake wortexes – see later),

or their abrasion → danger of theor rupture.

For the protection we can use:

Enlargement of inlet neck (→ < speed), cutout in tube bundle

or deflection plate (baffle) in front of inlet neck and their

combination.

Page 50: PED 5 Heat Exchangers

PDE-5 50

Examples of inlet necks design

neck enlargement

cutout in bundle

tube bundle

baffle (deflector)

cutout in tube bundle + baffle

more inlet necks

(usually from 1 to 4)

Page 51: PED 5 Heat Exchangers

PDE-5 51

Annulus around inlet and slots in inner shell

distributing annulus

cover with juice inlet

heating steam inlet

HE or evaporator shell

slots in shell (in front of the inlet are not slots!)slots are for steam inlet into intertube space

tube bundle

Page 52: PED 5 Heat Exchangers

PDE-5 52

HE supporting

Horizontal HEs are usually on saddle supports or footings,

vertical HEs are on footings (foots) - more later.

fixed saddle sliding saddle - dilatation

Page 53: PED 5 Heat Exchangers

PDE-5 53

Tube plates

ØdT ØDK

spsP

ØDKsK

shell

tube plate

shell

flange

Welded in shell Welded in flange

sealing

Welded to shell and serving as flange

Page 54: PED 5 Heat Exchangers

PDE-5 54

Locked between two flanges (cover and shell)

cover flange

shell flange

tube plate

sealing

Floating tube plate (it is used for high thermal

dilatations)

floating tube plate

external HE shell

flange of tube plate

flange of floating cover

Page 55: PED 5 Heat Exchangers

PDE-5 55

For high thermal dilatations HEs with U shape tubes are used too (hairpin tubes).

• Advantage:It is possible to take out the tube bundle from a shell.

• Disadvantage:

Problematic cleaning of tubes inside (only by a chemical way

but not mechanically).

Page 56: PED 5 Heat Exchangers

PDE-5 56

Other way how to solve problems with dilatations is installation of a compensator in a HE shell

Způsoby připojení kompenzátoru k plášti tlakové nádoby Ways of compensator joint with pressure vessel shell

Kompenzátor v plášti výměníku tepla Compensator in the HE shell

Kompenzátor v duplikátorovém plášti Compensator in jacketed kettle shell

Page 57: PED 5 Heat Exchangers

PDE-5 57

Jacketed kettles – shell heating or cooling(examples according ČSN)

Nádoby s úplným duplikátorovým pláštěm Vessels with total jacketed kettle

Nádoby s válcovým duplikátorovým pláštěm Vessels with cylindrical jacketed kettle

„A“ – Začátek usměrňující šroubovice Begin of streamline spiral (channel)

„B“ – Konec usměrňující šroubovice End of streamline spiral (channel)

1) Spojení plášťů kuželovým přechodem Shell connection with conical transition

2) Spojení plášťů deskovým přechodem Shell connection with plate transition

1) 2) 1) 2)

Ohřívací (chladící) kapalina

Heating (cooling) liquid

Page 58: PED 5 Heat Exchangers

PDE-5 58

Nádoby s kanály ve tvaru šroubovice Vessels with helical channels

Nádoby s duplikátorovým pláštěm a rozpěrkami (vylemováním)

Vessels with jacketed kettle with spacing

Page 59: PED 5 Heat Exchangers

PDE-5 59

Nádoby s kanály a registremVessels with channels and input/output wall tubes

Spojení duplikátorového pláště s nádobou kuželovým přechodem

Joint of jacked kettle and vessel shell with conical transition

Spojení duplikátorového pláště s nádobou deskovým přechodem

Joint of jacked kettle and vessel shell with conical transition

Usměrňující spirálaStreamline spiral

Spojení duplikátorového pláště se dnemJoint of jacked kettle and bottom

Spojení duplikátorového pláště vylemovánímJoint of jacked kettle and vessel shell with flanging

kuželovým přechodemconical transition

kroužkem ring

Page 60: PED 5 Heat Exchangers

Spojení duplikátorového pláště s nádobou trubkovými rozpěrkamiJoint of jacketed kettle and vessel shell with spacers

Kanály Channels

PDE-5 60

Page 61: PED 5 Heat Exchangers

PDE-561

Supporting elements of pressure vessels, apparatuses and HEs

They are used for mounting of vessels etc., their settlement on a given place (basement, supporting structure etc.).

Lifting necks (hinge pins)

s1

lwithout supporting plate with supporting plate circular square

Ød1

e

s Ø DRF

Example of an apparatus erection (installation) with a crane, rope and hook.

Page 62: PED 5 Heat Exchangers

PDE-5 62

Other supporting elements are lifting eyes (see next page).

Examples of saddle supports, footings, and supporting foots

are on following pages.

These supporting elements induce additional stresses in a

vessel shell.

Therefore we must calculate with it (e.g. a bending moment

during a vessel erection from horizontal position to vertical

one)!!!

Page 63: PED 5 Heat Exchangers

PDE-5 63

Nosná oka Lifting eyes

Válcová skořepina bez výztužného prstence Cylindrical shell without reinforcing ring

Nosné oko přivařené v podélném směru Lifting eye welded in axial direction

Nosné oko přivařené v obvodovém směru Lifting eye welded in radial direction

Válcová skořepina s výztužným prstencem Cylindrical shell with reinforcing ring

(pokud pevnostně nevyhovuje tloušťka pláště)

Nosné oko přivařené v obvodovém směru Lifting eye welded in

radial direction

Nosné oko přivařené v podélném směru

Lifting eye welded in axial direction

Příklady použití závěsných ok Examples of lifting eyes utilization

Axiální

Radiální

Page 64: PED 5 Heat Exchangers

PDE-5 64

Opěrné patky Footings

A – na dvou symetricky umístěných podporách B – na třech a více podporách C – obecně podepřená nádoba (kromě typů uložení A, B)

A

B

C

Válcová skořepina bez výztužných elementů

Supporting plateFoundation(concrete)

Supporting plate

Saddle support

Sedlové podpory Saddle supports

Welded footingwith or withoutsupportingplate

Bended footingwith or withoutsup. plate

Welded footinglightened

Welded footingto I profile

Page 65: PED 5 Heat Exchangers

PDE-5 65

Opěrné nohy Supporting foots

Válcová skořepina vyztužená prstenci Cylindrical shell with reinforcing rings

Svislé Vertical

Šikmé Skew

Uvnitř Inside

Vně Outside

Page 66: PED 5 Heat Exchangers

PDE-5 66

Nosná oka Lifting eyes

Page 67: PED 5 Heat Exchangers

PDE-5 67

Page 68: PED 5 Heat Exchangers

PDE-5 68

Podpěrné nohy Supporting foots

Page 69: PED 5 Heat Exchangers

PDE-5 69

Cylindrical vessel support with manhole („skirt“)

Page 70: PED 5 Heat Exchangers

PDE-5 70

Alfa Laval has the widest range of compact heat

exchangers:

Plate

Evaporator

All welded -

CompablocGasketed

Brazed

Plate

Condenser

Page 71: PED 5 Heat Exchangers

PDE-5 71

Deskový

výměník

tepla

Plate HE

Compabloc

výměník tepla

Compabloc HE

Spirálový

výměník tepla

Spiral HE

Rekuperace tepla Heat recovery

AlfaRex

celosvařovaný

výměník tepla

Full welded HE

Page 72: PED 5 Heat Exchangers

PDE-5 72

Prostorové nároky deskového a trubkového výměníku o stejném výkonu

Dimensions of shell and tube HE and plate HE with the same capacity

prostor pro montáž trubkového svazku

Page 73: PED 5 Heat Exchangers

PDE-5 73

Spirálový výměník tepla

(výhodný pro kaly a jiné

kapaliny obsahující částice)

Jediný kanál Samo čištění

One channel Self cleaning

Spiral heat exchanger

(useful for sludge and other

liquids containing particles)

Page 74: PED 5 Heat Exchangers

PDE-5 74

Tlakové a teplotní limity

deskových a spirálových

výměníků tepla

Tlak (barpřetlak)

OverpressureAlfaRex

Spirálový

Spiral

40

32

30

25

Teplota (°C)

Temperature

Compablo

c

160 350 400

Těsněný

Gaskete

d

Polo-

svařovaný

Semi-welded

-50

Pressure and temperature

limits of plate and spiral heat

exchangers