year 13 physics 2014 course information … 13 phys student...year 13 physics 2014 (total 380...

12
NAME:__________________________Teacher Code______ YEAR 13 Physics 2014 COURSE INFORMATION BOOKLET

Upload: ledieu

Post on 08-Mar-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

NAME:__________________________Teacher Code______

YEAR 13 Physics 2014

COURSE INFORMATION BOOKLET

Page 2: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

YEAR 13 PHYSICS 2014 (total 380 half-days)

TERM ONE TERM TWO TERM THREE TERM FOUR

1 27 Jan

Course Confirmation

5 May 21 July 13 Oct

Course Confirmation AS3.3 WAVES

Day 1 Teacher Only Day

Year 9 Orientation

Year 9 Orientation

2 3 Feb Whole School 12 May 28 July 20 Oct

REVISION

Waitangi Day

17 May

3 10 Feb 19 May 4 Aug 27 Oct Labour Day

AS3.6 CONTINUED

AS3.5 MODERN

PHYSICS

4 17 Feb 26 May 11 Aug 3 Nov

5 24 Feb 2 Jun Queens Birthday 18 Aug 10 Nov NCEA BEGINS

6 3 Mar 9 Jun 25 Aug 17 Nov

Mid Term Break

7 10 Mar 16 Jun 4 24 Nov

AS3.4 MECHANICS /

AS3.1 NON-LINEAR

PRACTICAL

AS3.6 ELECTROMAGNETISM

Mid Term Break

8 17 Mar Mid Term Break 23 Jun 8 Sep 1 Dec

Feast Day

9 24 Mar 30 Jun 15 Sep School Exams 8 Dec

End of Year

Last day of Term

10 31 Mar 22 Sep Last Day School Exams

Last day of Term

11 7 Apr

12

14 Apr

Last day of Term

Holy Thursday

Good Friday

108 half-days 88 half-days 98 half-days 86 half-days

Page 3: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Assessment Calendar Summary

Achievement

Standard

Title INT/E

XT

Details Time

3.5 Modern Physics INT 1 /2 period

assessment.

Term 1

Week 7

3.1 Carry out a practical investigation to

test a physics theory relating two

variables in a non-linear relationship

INT 4 period

assessment

Term 2

Week 2

3.4 Mechanical systems EXT 1 period

practice test

School exams

Term 2

Week 1

3.3 Wave systems EXT 1 period

practice test

School exams.

Term 2

Week 5

3.6 Electrical systems. EXT 1 period

practice test

School exams

Term 3

Week 4

Level 3 Physics 2014

Internally Assessed Achievement Standards This year the course includes 2 internally assessed Achievement Standards.

AS91521 Version 1

AS 3.1 Carry out a practical investigation to test a physics theory relating two variables in a non-linear relationship

4 credits Term 2 Week 2

91525

Version 1 AS 3.5

Demonstrate understanding of Modern Physics 3 credits Term 1

Week 7

These assessments are part of the formal assessment for your NCEA. This means that if you are absent you need to apply for a formal special consideration from Mrs Pigou. You will require a Medical Certificate and will need to provide evidence of your achievement by attending the catch up opportunity. If this is not possible you will NOT be able to be given credit for the Achievement Standard. As for any national assessment you must attend the assessment events to gain credit. There is no second opportunity for Achievement Standards.

Page 4: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Externally Assessed Achievement Standards The following external Achievement standards will be offered in 2014. AS91523 Version 1

AS 3.3 Demonstrate understanding of wave systems 4 credits

AS91524 Version 1

AS 3.4 Demonstrate understanding of mechanical systems 6credits

AS91526 Version 1

AS 3.6 Demonstrate understanding of electrical systems 6 credits

At the end of each unit there will be a knowledge test with NCEA style questions. These will provide practice assessment and be a guide to your progress. In September there will be a formal school exam, which will cover the externally assessed achievement standards in a similar format to the External Exam. The results from these formal assessments will be used in if a derived grade is required for the external NCEA exams in November. However if they have not been sat, the student will not be able to gain a derived grade in Chemistry for NCEA. Return of Assessments As soon as it is practical, assessments will be returned to students and gone over in class. Students are encouraged to ask for clarification and follow the school guidelines if there any problems. A written application for reconsideration can be made within 1 week of the return of the assessment. Each student will have a file stored by the teacher in which all assessments will be filed. Under no circumstances will these be allowed to go home. They are available at school for students to use for revision. Assessment material may be required for moderation by NZQA. Homework To achieve in Physics it is necessary to work steadily all year. Homework will be set. When formal work is not set you are expected to complete the exercises from your text. With each unit some task will be assigned in class and some will be completed at home. There will be a due date set when the tasks are to be finished and the tasks will be checked to monitor your progress. Regular homework is expected and it is your responsibility to develop good habits.

Page 5: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Achievement Standard 3.1 Subject Reference Physics 3.1

Title Carry out a practical investigation to test a physics theory relating two variables in a non-linear relationship

Level 3 Credits 4 Assessment Internal

Subfield Science

Domain Physics

Status Registered Status date 4 December 2012

Planned review date 31 December 2016 Date version published 4 December 2012

This achievement standard involves carrying out a practical investigation to test a physics theory relating two variables in a non-linear relationship. Achievement Criteria

Achievement Achievement with Merit Achievement with Excellence

Carry out a practical investigation to test a physics theory relating two variables in a non-linear relationship.

Carry out an in-depth practical investigation to test a physics theory relating two variables in a non-linear relationship.

Carry out a comprehensive practical investigation to test a physics theory relating two variables in a non-linear relationship.

Explanatory Notes

1 Carry out a practical investigation involves:

collecting data relevant to the aim based on the manipulation of the independent variable over a reasonable range and number of values

determining appropriate uncertainties in raw data

using graphical analysis, including a consideration of uncertainties, from which the equation of the relationship/value of the physics quantity can be determined

providing a conclusion that states the equation of the relationship/value of the physics quantity as determined from the graph and includes a comparison with the physics theory.

Carry out an in-depth practical investigation involves:

describing the control of other variable(s) that could significantly affect the results

using techniques to improve the accuracy of measurements

determining uncertainties in one of the variables expressed in the graphical analysis

graphical analysis which expresses the uncertainty in the relationship consistent with the uncertainty in the data

providing a conclusion that makes a quantitative comparison between the physics theory and the relationship/quantity obtained from the experimental data which includes consideration of uncertainties.

Carry out a comprehensive practical investigation involves a discussion which addresses issues critical to the practical investigation, such as:

the other variable(s) that could have changed and significantly affected the results, and how they could have changed the results

the limitations to the theory’s applicability both in the practical situation and/or at extreme values of the independent variable

any unexpected outcomes of the processing of the results and a suggestion of how they could have been caused and the effect they had on the validity of the conclusion.

2 A practical investigation is an activity that includes gathering, processing and interpreting data.

Page 6: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

3 The variables under investigation should have a non-linear relationship according to a physics theory provided in the task.

Achievement Standard 3.5 Subject Reference Physics 3.5

Title Demonstrate understanding of Modern Physics

Level 3 Credits 3 Assessment Internal

Subfield Science

Domain Physics

Status Registered Status date 4 December 2012

Planned review date 31 December 2016 Date version published 4 December 2012

This achievement standard involves demonstrating understanding of Modern Physics. Achievement Criteria

Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of Modern Physics.

Demonstrate in-depth understanding of Modern Physics.

Demonstrate comprehensive understanding of Modern Physics.

Explanatory Notes

1 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation. Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation. Demonstrate comprehensive understanding involves demonstrating understanding of connections between concepts or principles that relate to a given situation.

2 Examples of phenomena, concepts, or principles of Modern Physics include:

the Bohr model of the hydrogen atom: the photon; the quantisation of energy; discrete atomic energy levels; electron transition between energy levels; ionisation; atomic line spectra, the electron volt

the photoelectric effect

wave-particle duality

qualitative description of the effects of the strong interaction and Coulombic repulsion, binding energy and mass deficit; conservation of mass-energy for nuclear reactions qualitative treatment of special and general relativity

qualitative treatment of quarks and leptons.

Achievement Standard 3.3 Subject Reference Physics 3.3

Title Demonstrate understanding of wave systems

Level 3 Credits 4 Assessment External

Subfield Science

Domain Physics

Status Registered Status date 4 December 2012

Planned review date 31 December 2016 Date version published 4 December 2012

This achievement standard involves demonstrating understanding of wave systems.

Page 7: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Achievement Criteria

Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of wave systems.

Demonstrate in-depth understanding of wave systems.

Demonstrate comprehensive understanding of wave systems.

Explanatory Notes

1 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation.

Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation. Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

2 Wave systems include mathematical solutions and/or written descriptions. Written descriptions may include graphs or diagrams.

3 Assessment is limited to a selection from the following:

Interference (quantitative) of electromagnetic and sound waves, including multi-slit interference and diffraction gratings; standing waves in strings and pipes; harmonics; resonance; beats; Doppler Effect (stationary observer for mechanical waves).

Relationships:

nλθd sin L

dxnλ

sw

w

vv

vff

Achievement Standard 3.4 Subject Reference Physics 3.4

Title Demonstrate understanding of mechanical systems

Level 3 Credits 6 Assessment External

Subfield Science

Domain Physics

Status Registered Status date 4 December 2012

Planned review date 31 December 2016 Date version published 4 December 2012

This achievement standard involves demonstrating understanding of mechanical systems. Achievement Criteria

Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of mechanical systems.

Demonstrate in-depth understanding of mechanical systems.

Demonstrate comprehensive understanding of mechanical systems.

Page 8: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Explanatory Notes 1 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or

principles relate to a given situation. Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation. Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

2 Mechanical systems include mathematical solutions and/or written descriptions. Written descriptions may

include graphs or diagrams.

3 Assessment is limited to a selection from the following:

Translational Motion Centre of mass (1 and 2 dimensions); conservation of momentum and impulse (2 dimensions only).

Circular Motion and Gravity Velocity and acceleration of, and resultant force on, objects moving in a circle under the influence of 2 or more forces, Newton’s Law of gravitation, satellite motion.

Rotating Systems Rotational motion with constant angular acceleration; torque; rotational inertia; conservation of angular momentum; conservation of energy.

Oscillating Systems The conditions for Simple Harmonic Motion, angular frequency, variation of displacement, velocity and acceleration with time, phasor diagrams, reference circles, damped and driven systems, resonance, conservation of energy.

Relationships

rd rv ra t

t

f2 2

21

ROTKE )(

tif t

2

fi 2

2

i

2

f 2

21

i tt

mvrL

L 2g

r

GMmF

g

l2T

k

m2T

tAy sin tAv cos tAa 2 sin ya 2

tAy cos tAv sin tAa 2 cos

4 Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at http://www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/subjects/.

Page 9: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Achievement Standard 3.6 Subject Reference Physics 3.6

Title Demonstrate understanding of electrical systems

Level 3 Credits 6 Assessment External

Subfield Science

Domain Physics

Status Registered Status date 4 December 2012

Planned review date 31 December 2016 Date version published 4 December 2012

This achievement standard involves demonstrating understanding of electrical systems. Achievement Criteria

Achievement Achievement with Merit Achievement with Excellence

Demonstrate understanding of electrical systems.

Demonstrate in-depth understanding of electrical systems.

Demonstrate comprehensive understanding of electrical systems.

Explanatory Notes

1 Demonstrate understanding involves showing an awareness of how simple facets of phenomena, concepts, or principles relate to a given situation. Demonstrate in-depth understanding involves giving explanations for phenomena, concepts, or principles that relate to a given situation. Demonstrate comprehensive understanding involves connecting concepts or principles that relate to a given situation.

2 Electrical systems include mathematical solutions and/or written descriptions. Written descriptions may include graphs or diagrams.

3 Assessment is limited to a selection from the following:

Resistors in DC Circuits Internal resistance; simple application of Kirchhoff’s Laws.

Capacitors in DC Circuits Parallel plate capacitor; capacitance; dielectrics; series and parallel capacitors; charge/time, voltage/time and current/time graphs for a capacitor; time constant; energy stored in a capacitor.

Inductors in DC Circuits Magnetic flux; magnetic flux density; Faraday’s Law; Lenz’s Law; the inductor; voltage/time and current/time graphs for an inductor; time constant; self inductance; energy stored in an inductor; the transformer.

AC Circuits The comparison of the energy dissipation in a resistor carrying direct current and alternating current; peak and rms voltage and current; voltage and current and their phase relationship in LR and CR series circuits; phasor diagrams; reactance and impedance and their frequency dependence in a series circuit; resonance in LCR circuits.

Page 10: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

Relationships:

QVE21 CVQ

d

AC ro 21 CCCT RC

21

111

CCCT

BA t

L

t

s

p

s

p

V

V

N

N 2

2

1 LE

R

L

tMAX sin tVV MAX sin rmsMAX 2

rmsMAX VV 2 C

XC

1

LXL ZV = 2f

Page 11: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

STUDY TECHNIQUES THAT WORK

1. Self –Testing -Quizzing Yourself Gets High marks Practice tests are done by students on their own outside of class. Methods might include using flash cards (physical or digital) to test recall or answering questions, for example assignments or end of chapter questions. Cornell system:- During in-class note taking make a column on one edge of your notes and write down key terms and questions which can be answer later.

2. Distributing Practice – For best results, spread your study over time. Distribute learning over time is more effective than cramming. Complete questions not in groups but interspersed. Plan ahead and overcome the common student tendency to procrastinate. Longer intervals are generally more effective. To remember something for one week, learning episodes should be 12 to 24 hours apart; to remember something for five years they should be spaced 6 to 12 months apart.

3. Elaborative Interrogation – Channel Your Inner Four Year Old. Learners produce explanations for facts by promoting students to answer “Why” questions.

4. Self-Explanation –How Do I know. Students generate explanations of what they learn, reviewing their mental processing with questions eg “What new information does the sentence provide you?” Similar to elaborative interrogation, self-explanation may help integrate new information with prior knowledge.

5. Interleaved Practice –Mixing Apples and Oranges Instead of finishing one topic or one type of questions before moving on, to the next, alternate the variety of types of information or problems.

Page 12: YEAR 13 Physics 2014 COURSE INFORMATION … 13 Phys Student...YEAR 13 PHYSICS 2014 (total 380 half-days) TERM ONE TERM TWO TERM THREE TERM FOUR 1 27 Jan ... Level 3 Physics 2014 Internally

RECORD OF ACHIEVEMENT To helps you to keep track of your credits and encourage you to aim for the HIGHEST grade.

Standard Result Obtained

Result I wish to aim for

What I need to work on to achieve the grade I want.

3.5

3.4

3.5

3.1

3.6