“bridge in a backpack” inflatable bridge‐in‐a‐backpack” inflatable...

30
“BridgeinaBackpack” Inflatable Composite Concrete Inflatable CompositeConcrete Bridges Dr. H. J. Dagher, P.E. Director, AEWC Advanced Structures and Composites Center University of Maine

Upload: hoangkhue

Post on 08-Mar-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

“Bridge‐in‐a‐Backpack”Inflatable Composite ConcreteInflatable Composite‐Concrete

Bridges

Dr. H. J. Dagher, P.E.Director, AEWC Advanced Structures and Composites Center

University of Maine

OutlineOutline

• UMaine Composites Center

• Governor’s Composites Initiative

• Bridge‐in‐a‐Backpack• Bridge‐in‐a‐Backpack– Why and how

8 Years of R&D– 8 Years of R&D

– 2 demonstration projects

f d• Benefits and next steps

• Video

UMaine Advanced Structures& Composites Center

Composites Industry

Construction Industry

• 70 000 ft2 ISO 17025 Accredited Lab70,000 ft ISO 17025 Accredited Lab

• 140 personnel

A l i & i i i• Analysis & Design + Prototyping+ Testing + Code Reports

UMaine Composites CenterUMaine Composites Center

• 200+ Clients Globally

• Prototyping/testing up to 230 ft spans

• Nanocomposites• Nanocomposites

• Global Impactd l– 3 ACMA ACE awards in last 2 years

– 2009 Champion for Economic Development Award

– Over 400 publications in last 10 years

Maine’s Composites InitiativeMaine s Composites Initiative

• Governor John Baldacci

• Up to 10% composites for bridgesUp to 10%  composites for bridges

Composite Bridge DrainsComposite Bridge Drains

Maine DOT Collaboration

• Hillman Composite Beam• Hillman Composite Beam– Static and fatigue testing

00 f b id d– 500 ft bridge under contract

• Composite Culvert LiningLining– Composite liner repairs degraded metal culvertsdegraded metal culverts

Penobscot Narrows Bridge

CFRP Strands

• Maine DOT, FHWA, Figg Engineering Group, UMaine• Steel strands replaced with carbon composite strands• Long term performance monitoring

“Bridge in a Backpack”Bridge in a Backpack• Developed by UMaine over an 8 year periodAd d I f T h l i LLC• Advanced Infrastructure Technologies, LLC

Arch Placement

Decking Installation

Completed Bridge

On‐Site Production: d h d h dl lReduce shipping and handling logistics

A h F kArch Formwork

• Geometries completely customizable for site requirements• Spans made up to 90’, tube thickness up to ½”

A Faster, More Efficientl dCast‐in‐Place Concrete Bridge

• Inflatable FRP tubes, made on site,• Tube weighs 200 lb for 70’ span versus 50,000 lbs for 

Prestressed concrete girderH d l b li h i• Hand labor or light equipment

6 Arches Installed by 3 Laborers in 10 Minutes

Arch Installation at UMaine

Three Functions of FRP Tube:f

1. Stay‐in‐place form for concrete 

Concrete Filling of Stay‐In‐Place FRP Arch FormsFilling Arches Using a Small Concrete Pump

Eliminates need for temporary formwork

Three Functions of FRP Tube:Three Functions of FRP Tube:2. Structural reinforcement for concrete 

Confined

UnconfinedUnconfined

Eliminates rebars

Three Components of FRP Reinforcement

Stress‐Strain Relationship for Concrete

Eliminates rebars

Three Functions of FRP Tube:Three Functions of FRP Tube:3. Protection for concrete

Steel rusts, expands

Spalling of concrete further exposes reinforcemente o ce e t

Protects against corrosion prolongs life reducesConcrete Corrosion Cycle

Protects against corrosion, prolongs life, reduces maintenance 

8 Years of Design & Testing at UMaine8 Years of Design & Testing at UMaine

Hydraulic Actuator

Arch Specimen

DIC Targets

Concrete End Support Block

Static & fatigue testing f 40 i

Simple Support

of over 40 specimens

Experimental and Predicted ResponseArch Deflected Shape, Experimental and Predicted

(Deflections Magnified 15X)30

P

10

10

P

DIC Targets

-30

-10

atio

n (in

)

-70

-50Loca

P di t d

-110

-90

PredictedExperimental

-140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120 140

Location (in)

Experimental and Predicted Responsep p

Load (kip) COV specimens Difference( p) p

InitialExperimental 72.0 2.55% 3

4.14%Predicted 69.0 ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐

SecondaryExperimental 57.6 7.75% 3

1.10%Predicted 57.0 ‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐

Load-Deflection Response of Concrete-Filled FRP Tubular Arch

60

70

80

)

Initial hinge at crown

20

30

40

50

App

lied

Load

(kip

Subsequent 0

10

0 1 2 3 4 5 6 7 8 9 10

Vertical Deflection at Crown (in)

Initial Static Test to Failure Post-Failure Behavior

qhinges at shouldersl

Neal Bridge Replacement – Fall 2008

• First Bridge‐in‐a‐Backpack, 34’ span, 44’ wide

• 23 arches installed in one day

• Arches filled with concrete (1 hour)

• FRP decking

Neal Bridge Replacement – Fall 2008Neal Bridge Replacement  Fall 2008

FRP Headwall Backfill Pave Rail

Sensors monitor performance during backfill and service 

FRP Headwall  Backfill, Pave, Rail

Low maintenance, joint‐free, buried structure

Neal Bridge Field Load TestingNeal Bridge Field Load Testing

• Performed April 2009• 2 fully loaded tandem axle dump trucks (66 kip total weight)total weight)

• Loading configurations in parallel and series, quasi static and dynamicquasi‐static and dynamic

• Instrumentation:– Arches – strain and 

Soil Pressure Gages

deflection– Soil – vertical and radial soil pressure Strain & Deflection Gages

Neal Bridge Field Load TestingNeal Bridge Field Load Testing

3.0000E-0512:57 13:12 13:26 13:40 13:55 14:09 14:24 14:38 14:52

Arch 10

Dynamic test

0.0000E+00

1.0000E-05

2.0000E-05

12:57 13:12 13:26 13:40 13:55 14:09 14:24 14:38 14:52

-3.0000E-05

-2.0000E-05

-1.0000E-05

Str

ain

Strain 10-A-1

Strain 10-A-3

Strain 10-B-1

Strain 10-B-2

Strain 10-B-3

Strain 10-C-1

Unloaded bridge Unloaded

-6.0000E-05

-5.0000E-05

-4.0000E-05

Time

bridge Unloaded bridge

Unloaded bridge

• Field measurements indicate structure significantly exceeds AASHTO requirements

• Analytical live load rating of 1.96 X AASHTO HL‐93

McGee Bridge Replacementg p• Composite low bid against Steel, Concrete, and Wood

• August 2009: installation in North Anson ME• August 2009: installation in North Anson, ME

Bid # Bridge Type % Over Low Bid

1 Bridge‐in‐a‐ ‐‐‐1 Bridge in aBackpack

2 Steel on concrete 6.8%

3 St l t 18 4%3 Steel on concrete 18.4%

4 Steel on concrete 23.4%

5 Concrete 23.5%

6 Timber on concrete 30.0%

McGee Bridge Replacement: 12 Daysg p y

CONSTRUCTION SEQUENCE1 D i ti t l b id1. Demo. existing steel bridge

2. Drill bedrock, form footings

3. Arch installation (3 hrs)( )

4. Pour concrete footings

5. Install composite decking

6. Fill arches with concrete (1 hr)

7. Install composite headwalls

8 Backfill bridge8. Backfill bridge

9. Grading, guardrails, cleanup

Where we’re goingWhere we re going…

2010‐2011 Governor’s Composite dBridge Construction

• 5 more Maine bridges in 2 years• 5 more Maine bridges in 2 years

• Spans from 24’ – 72’

• Currently in design phaseCurrently in design phase

1

12

2 32

3

4

45

56 6

Continuing R&D PlanContinuing R&D Plan

Expand Geometric Capabilities

• Spans up to 90 ft

• Diameters up to 26”

• Rigid frame and girder designs

d f i bili iExpand Manufacturing Capabilities

• Onsite manufacturing 

• Versatile resin packageVersatile resin package 

• Large scale production

Bridge‐in‐a‐Backpack Capabilities:Interstate OverpassInterstate Overpass

Bridge‐in‐a‐Backpack Capabilities:Stream Crossings/Railway CrossingsStream Crossings/Railway Crossings

Summary and next stepsSummary and next steps• Composites can compete on first‐cost basis!50% d i i b f i• 50% reduction in carbon footprint

• Public interest finding from FHWA for Maine• TIG Application• TIG Application• 20% of US bridges candidates• 15 projects in multiple states International• 15 projects in multiple states, International projects

• Expand geometries and spans (800 ft bridge)p g p ( g )• Recent value bidding by contractors• Beyond bridges

Th k !Thank you!

Contact:

Dr. Dagher, P.E., Directorg , ,

Advanced Structures and Composites Center

University of MaineUniversity of Maine

(207) 581‐2138

[email protected]@