pcl/peg electrospun fibers as drug carriers for the...

10
iMedPub Journals ht tp://journals.imedpub.com Journal of In Silico & In Vitro Pharmacology 2015 Vol. 1 No. 1:2 1 © Copyright iMedPub This article is available in http://pharmacology.imedpub.com/ Repanas A 1 , Wolkers WF 1 , Gryshkov O 1 , Müller M 1 Glasmacher B 1 Instute for Mulphase Processes, Leibniz Universität Hannover, 30167 Hannover, Germany Corresponding author: Repanas A [email protected] Dipl.-Pharm., MSc, Leibniz Universität Hannover, Institute for Multiphase Processes, Callinstrasse 36, 30167 Hannover, Germany Tel: +49(0) 511 762 3824 Fax: +49(0) 511 762 3031 Pcl/Peg Electrospun Fibers as Drug Carriers for the Controlled Delivery of Dipyridamole Abstract Electrospinning is a versale and diverse technology for the producon of nano- and microfibers that can be used as a drug delivery system (DDS). The aim of this study was to create fibrous scaffolds from a mixture of polycaprolactone (PCL) and polyethylene glycol (PEG) and to evaluate the suitability of the fibers as DDS. Dipyridamole (DPA), an an-thromboc and an-proliferave pharmaceucal agent, was used as a model drug. Two types of PEG with different chain length were used. The structural, mechanical and physicochemical characteriscs of the fibers with and without DPA, were determined, and the release kinecs of DPA were studied. The obtained fibers loaded with DPA and with the higher molecular weight PEG were smooth and had an average diameter of 586.75 ± 204.79 nm and an average Young’s modulus of 57.14 ± 4.35 MPa, whereas the tensile strain at break was 0.61 ±0.05 mm/mm and the ulmate tensile strength (UTS) was 16.79 ± 3.08 MPa. The cumulave release of DPA revealed two stages: an inial burst phenomenon followed by slower Fickian diffusion (release exponent n = 0.432). Keywords: An-platelet treatment; Biomaterials; Electrospinning; Polycaprolactone; Polyethylene glycol; Dipyridamole Abbreviaons: DPA: Dipyridamole; PCL: Polycaprolactone; PEG: Polyethylene Glycol; DDS: Drug Delivery System; TFE: 2,2,2-Trifluroethanol; PBS: Phosphate Buffer Soluon; SEM: Scanning Electron Microscopy; FTIR: Fourier Transform Infrared Spectroscopy; UTS: Ulmate Tensile Strength Introducon Electrospinning is a promising technology that can be used to create fibrous scaffolds in the nanoscale range for biomedical applicaons [1]. The basic principle of this simple, versale and cost-efficient technique is the applicaon of a strong electrical field to eject a polymer soluon from a reservoir to a collector producing non-woven fiber networks. Soluon properes such as the concentraon and molecular weight of solvents and polymers, as well as processing parameters, such as the spinning distance and the soluon flow rate affect the morphological, physical and biomechanical properes of the generated fibers [2]. A typical setup of an electrospinning apparatus consists of three basic elements: a high voltage power supply, a soluon reservoir and a grounded collector [3]. Due to the wide range of available materials, electrospinning technology has turned into a powerful tool for the fabricaon of micro- or nano-structures suitable for applicaons in the fields of ssue engineering and drug delivery [4-7]. Polycaprolactone (PCL) is a semi-crystalline, highly hydrophobic polymer that is easily soluble in most organic solvents, and has been approved by the Food and Drug Administraon (FDA) in the USA for biomedical uses [8]. PCL has good miscibility properes, possesses mechanical stability and displays prolonged degradaon. Moreover, it can be easily electrospun and can be used for long-term sustained delivery of pharmaceucal agents in the field of drug delivery and ssue engineering [9-13]. On the other hand, polyethylene glycol (PEG) is a water soluble polyether with a wide range of molecular weights that has been found to be biocompable and has been used in hydrogels, for surface modificaon of other polymers to obtain co-polymers, control of protein adsorpon and as an adhesion molecule [14]. Therefore, the use of both polymers as

Upload: others

Post on 06-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

iMedPub Journalshttp://journals.imedpub.com

Journal of In Silico & In Vitro Pharmacology2015

Vol. 1 No. 1:2

1© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

Repanas A1,Wolkers WF1, Gryshkov O1, Müller M1 Glasmacher B1

Institute for Multiphase Processes,Leibniz Universität Hannover, 30167Hannover,Germany

Corresponding author: Repanas A

[email protected]

Dipl.-Pharm., MSc, Leibniz Universität Hannover, Institute for Multiphase Processes, Callinstrasse 36, 30167 Hannover, Germany

Tel: +49(0)5117623824Fax: +49(0)5117623031

Pcl/Peg Electrospun Fibers as Drug Carriers for the Controlled

Delivery of Dipyridamole

AbstractElectrospinningisaversatileanddiversetechnologyfortheproductionofnano-andmicrofibersthatcanbeusedasadrugdeliverysystem(DDS).The aim of this studywas to create fibrous scaffolds from amixture ofpolycaprolactone(PCL)andpolyethyleneglycol(PEG)andtoevaluatethesuitability of the fibers as DDS. Dipyridamole (DPA), an anti-thromboticand anti-proliferative pharmaceutical agent, was used as amodel drug.Two typesof PEGwithdifferent chain lengthwereused. The structural,mechanical and physicochemical characteristics of the fibers with andwithoutDPA,weredetermined,andthereleasekineticsofDPAwerestudied.TheobtainedfibersloadedwithDPAandwiththehighermolecularweightPEGwere smooth andhad an averagediameterof 586.75± 204.79nmandanaverageYoung’smodulusof57.14±4.35MPa,whereasthetensilestrainatbreakwas0.61±0.05mm/mmandtheultimatetensilestrength(UTS)was16.79±3.08MPa.ThecumulativereleaseofDPArevealedtwostages:an initialburstphenomenon followedbyslowerFickiandiffusion(releaseexponentn=0.432).

Keywords: Anti-platelet treatment; Biomaterials; Electrospinning;Polycaprolactone;Polyethyleneglycol;Dipyridamole

Abbreviations:DPA:Dipyridamole;PCL:Polycaprolactone;PEG:PolyethyleneGlycol;DDS:DrugDeliverySystem;TFE:2,2,2-Trifluroethanol;PBS:PhosphateBufferSolution;SEM:ScanningElectronMicroscopy;FTIR:FourierTransformInfraredSpectroscopy;UTS:UltimateTensileStrength

IntroductionElectrospinning is a promising technology that can be used tocreate fibrous scaffolds in the nanoscale range for biomedicalapplications[1].Thebasicprincipleofthissimple,versatileandcost-efficient technique is the application of a strong electricalfieldtoejectapolymersolutionfromareservoir toacollectorproducing non-woven fiber networks. Solution properties suchas the concentration and molecular weight of solvents andpolymers,aswellasprocessingparameters,suchasthespinningdistance and the solution flow rate affect the morphological,physical and biomechanical properties of the generated fibers[2].A typical setupof anelectrospinning apparatus consists ofthree basic elements: a high voltage power supply, a solutionreservoirandagroundedcollector[3].Duetothewiderangeofavailablematerials, electrospinning technologyhas turned into

apowerfultoolforthefabricationofmicro-ornano-structuressuitable for applications in thefieldsoftissueengineering anddrugdelivery[4-7].Polycaprolactone(PCL) isasemi-crystalline,highly hydrophobic polymer that is easily soluble in mostorganicsolvents,andhasbeenapprovedbytheFoodandDrugAdministration (FDA) in the USA for biomedical uses [8]. PCLhas good miscibility properties, possesses mechanical stabilityanddisplaysprolongeddegradation.Moreover, it canbeeasilyelectrospun and can be used for long-term sustained deliveryofpharmaceuticalagentsinthefieldofdrugdeliveryandtissueengineering[9-13].Ontheotherhand,polyethyleneglycol(PEG)is a water soluble polyether with a wide range of molecularweightsthathasbeenfoundtobebiocompatibleandhasbeenused in hydrogels, for surface modification of other polymerstoobtainco-polymers, controlofproteinadsorptionandasanadhesionmolecule[14].Therefore,theuseofbothpolymersas

Page 2: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

2

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

asingleblendcouldleadtoproductsthatexhibitacombinationofproperties,suitableforapplicationsindrugdelivery.Theabilitytodiffuseintothesurroundingmediumaswellastherelease kineticsof a drug that hasbeen loaded in a polymericcarrier depend on various factors, including the solubilityand the possibility of swelling of the polymeric matrix in themedium according to Tungprapa et al.[15]. Moreover, whena pharmaceutical agent is loaded inside a biodegradablepolymeric carrier, two distinct major mechanisms are knownto facilitate the drug release,mainly polymer degradation andsmallmoleculediffusion [16]. PCLdisplays littledegradation inaqueousenvironmentduringthefirstmonths[8],whereasPEGis a water soluble polymer that can be immediately dissolvedin the surroundingmedium.PEGalsoenhances the stabilityofbiomoleculesandaffectsreleasecharacteristics [17].Inaddition,ifPCListhepredominantpolymerinthefabricatedelectrospunfibers,diffusionthroughthepolymericmatrixisexpectedtobethemajormechanism[18]. TheaimofthisworkwastofabricatefibrousscaffoldsfromapolymericblendofPCLandPEGwithanincorporatedmodeldrug,inordertocreateadrugdeliverysystem(DDS),whichwouldenableencapsulationandsustaineddeliveryofthepharmaceuticalagent.Dipyridamole(DPA)wasusedasamodeldrug.Thereleasekineticsfromelectrospunscaffoldsandtheeffectofitspresenceonthepropertiesofthefabricatedfiberswerestudied.DPAisusedasanantiplateletagent,eitheraloneorincombinationwithotherpharmaceuticalagentsinordertoreducetheriskofstrokeincidentsafteraseverecardiovascularevent,suchasmyocardial infarction[19,20].Additionally, itcanincreasegapjunctioncouplinginaorticendothelialandvascularsmooth muscle cells [21,22]. One of the conclusions of thesestudieswasthatDPA isbestutilized insustainedrelease formsof administration likemicrospheres.ADDS enabling controlledreleaseofDPAcanbeusedindrugdeliveryapplications[23,24].PEGwithdifferentmolecularweightwasusedtoinvestigatetheinfluenceofthepolymericchainlengthonthepropertiesofthescaffolds.ElectrospunPCLfiberswithoutPEGservedascontrol.The structural,morphological,mechanical andphysicochemicalproperties of the electrospun scaffolds were evaluated. Thecumulative in vitroreleaseofDPAwasmonitoredandanalyzedthroughoutaperiodofninetysixdaystoinvestigatethereleasekinetics of DPA by fitting the obtained data according to themodel describedbyRitger andPeppas (1987) [25]. The choiceofPCLasthemainpolymerwasbasedonthefactthatinordertocreateaproperDDSsystemforthesustainedreleaseofDPA,aslowdegradingpolymer(recognizedasasuitablematerialforthefabricationofscaffolds,asitwaspreviouslydiscussed),whichwouldbealsoinexpensiveandeasytoprocess,wasneeded.Inaddition,asitwaspreviouslymentioned,PEGwasusedtoenhancethestabilityoftheencapsulatedpharmaceuticalmoleculesandtoaugmentthemiscibilityofthepolymericsolution.Furthermore,sincePEGtypeswithvariousmolecularweightsareavailable,itenablestoadjustthefibers’characteristicswithregardtoreleasekineticsoftheencapsulateddrug,viaitspolymericchainlength.It is also inexpensiveandpresents goodmiscibilitywithPCL, afeaturethathasbeenpreviouslydescribed[26].Therefore, thecombination of the two polymers was considered suitable tocreateaDDSforDPAencapsulation.Inanutshell,aDDSsystembased on PCL/PEG fibers can be considered as a suitable drug

carriercandidateofDPAinordertobefurthertestedasanovelsolution for an alternative anti-coagulant therapeutic strategyforpatientsthatareathighriskofstroke,myocardialinfraction,thrombotic incidents and other life threatening situations. Theuseofelectrospinningandfiber technology for the creationofa proper DDS system for DPA has only been used once in thepastforthecreationofpoly-urethanetubularscaffolds[23]andbyourgroupforthecreationofPCLbasedDDS[24].Therefore,furtherresearchneedstobeconductedinordertohaveabetterunderstandingoftheuseoffibersforthisapplication.However,theideaofcontrollingthecharacteristicsofthefibersandDIP’srelease kinetics via the polymeric chain length of PEG is novelandverypromisingforthementionedDDS,anditwasoneofthebasic goalsof thiswork. Finally, theoutcomeof this study canbeused as an initial step topromote future researchonDDSsbased on PCL/PEG fibers made by electrospinning for similarpharmaceuticalagents.

Materials and MethodsMaterialsPolycaprolactone (PCL) (Mn 70000-90000) and dipyridamole(DPA)(≥98.0%)werepurchasedfromSigma-Aldrich.Polyethyleneglycol (PEG) (Mr3500-4500&Mr~35000)waspurchased fromFluka. 2,2,2-trifluroethanol (TFE) was purchased from abcrGmbH&Co.KG.Allmaterialsandreagentswereusedasreceivedwithoutanyfurtherpurification.

Preparation of the polymeric solutionsBoth the polymers and DPA were dissolved in TFE. The totalpolymer concentration was 150 mg/mL and the mass ratiobetweenPCLandPEGwas3:1.TheconcentrationofDPAinthesolution was 10 wt% of the mass of PEG. The concentrationsof PCL and PEG were selected based on previous preliminaryexperiments taking into account the ease of electrospinningofthesolutionsandthesolubilityofthematerialsused inTFE.Forexample,a50:50polymerratioofPCLandPEGledtofiberswith beads, wider diameter distributions and to an unstableelectrospinning process (Figure 1). In addition, a solutionwiththe same polymer concentration and mass ratio but withoutDPA was also prepared to serve as a control. Furthermore,blendsolutionsofPCLwithandwithoutDPAwerepreparedasadditionalcontrolgroups.Inthatcase,theconcentrationofPCLwas 150mg/mLwhile the concentration of DPA remained thesameasthatof thesolutionswithPEG.Allpolymericsolutionswereconstantlystirredfor18hatroomtemperatureinordertoachievehomogenousmixtures.

Electrospinning processDisposable blunt-tipped needles (21G, Nordson EFD) with aninnerdiameterof0.6mmand5mLsyringes(Omnifix,B.Braun)were used as the polymeric solution reservoirs. The solutionflowratewaskeptat4mL/hwithanappliedvoltageof25kVin order to achieve continuous flow with no jet breaks. Thedistancebetweenthetipoftheneedleandthegrounded,squarealuminumcollector (15ˣ15cm2)waskeptconstantat25cm. Inaddition,analuminumfoilcoveringthesurfaceofthecollector

Page 3: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

3

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

was used to retrieve the electrospun fiber mats. Moreover,electrospinning was performed under stable conditions oftemperature and relative humidity (T=21 ± 1.5, Rel. Humidity=30±5%)for30minpersample.Afterthepress,thesampleswereremovedfromthecollectorandlefttodryundervacuumfor24h.ThesamplegroupwithDPAandPEG(Mr35000,PEG35k)aredesignatedasF1andtheonewithoutDPAasF0forbettercomprehension.Furthermore,theelectrospunfiberscomposedofPEG(Mr4000,PEG4k)butwithoutDPAandaredesignatedasF2andtheoneswithincorporatedDPAasF3.Finally,thesamplegroupswithoutDPAandonlyPCLaredesignatedasF4andtheones with incorporated DPA as F5. The concentrations of allmaterialsandtheshortcodenamesaresummarizedinTable 1.

Characterization of the electrospun fiber matsElectrical conductivity: A conductometer (SevenMulti, MettlerToledoAG)wasusedtomeasuretheelectricalconductivityofthepolymericsolutions.2mLofeachsolutionweremeasuredat25.Allmeasurementswerecarriedoutinquintuplicate.

Scanning electron microscopy (SEM): Square strips of 5ˣ5mm2 were carefully punched out from all sample groups andweresputtercoatedwithAu/Pd for60sbeforebeingmountedona steel stage inside theSEM (S3400N,Hitachi), (15kV,highvacuum). In order to determine the average fiber diameter,pictures obtained at a magnification of 4000x were pressedusing the image analysis software ImageJ (National Institutesof Health), takingmeasurements of 75 different fibers from 5differentsamplesfromallgroups.

Fourier transform infrared spectroscopy (FTIR): InfraredabsorptionmeasurementswerecarriedoutwithaPerkinElmer100 Fourier transform infrared (FTIR) spectrometer (PerkinElmer,Norwalk,CT,USA),equippedwithatriglycinesulfate(TGS)detectorandanattenuatedtotalreflection(ATR)accessorywitha diamond/ZnSe crystal. The acquisition parameters were: 4cm-1resolution,8co-addedinterferograms,and4000-650cm-1 wavenumberrange.SpectraanalysisanddisplaywerecarriedoutusingPerkinElmersoftware(PerkinElmer,Norwalk,CT,USA).

Mechanical tensile testing: Rectangular stripsof15mmgaugelength and 10mmwidth were carefully punched out from allgroups.Thethicknessofeachindividualspecimenwasmeasuredwith a thickness gauge (Quickmini,Mituotoyo). Double-edgedduct tape was carefully placed at both edges of the strips tofacilitate their mounting on the metallic grips of the testingdevice.Uniaxial tensile testswereconductedwithan INSTRON5967DualColumntensiletestinginstrumentwitha100Nloadcell (Instron, USA). The ultimate tensile strength (UTS), thetensilestrainatmaximumforceandtheYoung’smodulusvalueswere analyzed. All the experiments were conducted at roomtemperature.Anelongationrateof1mm/swasapplied to thesamples.Sixsamplesweretestedpergroup.

In vitro drug release study: For the drug release experiments,squarestripsof10ˣ10mm2werepunchedoutfromtheelectrospunspecimens,subsequentlyimmersedin1mLofphosphatebuffersolution (PBS) and kept in 2 mL tubes (Eppendorf) inside awaterbathat37.Atpredefinedtimepoints,thetotalvolumeofthe PBS medium was removed for measuring the absorbance

andfreshmediumwasaddedbacktothetube.Theabsorbanceof DPAwasmeasured at 284 nm using a UV-Vis spectrometer(LIBRAS22,Bihrom)andplastic,disposableUV-cuvettes(1.5mL,12.5ˣ12.5ˣ45mm,Brand).AcalibrationplotofabsorbanceversusconcentrationwascreatedusingstandardsolutionsofDPAinPBSwithconcentrationsrangingfrom1μg/mLupto50μg/mL.ThecumulativereleaseofDPAwasmeasuredforatotalperiodof96days.Allexperimentswerecarriedoutintriplicates.

Release kinetics mechanism: The release kineticsofDPAwereanalyzedusingtheequationdescribedbyRitgerPLandPeppasNA(1987)[25].

Mt/M∞=ktn Equation1

where Mt is the drug released at the time point t, M∞ is thetotalamountofdrugreleased,kisaconstantdependingonthestructuralandgeometricalcharacteristicsofthedrugcarrierandnisthereleaseexponentwhichindicatesthereleasemechanism.

Statistical analysis: All data are expressed asmean± standarddeviation unless otherwise mentioned. One-way analysis ofvariance (ANOVA) with post h Tukey means comparison testswereconductedandpvalue<0.05wasconsideredsignificant.The distribution of values in terms of normality was assessedbeforeone-wayANOVAanalysisinordertoensurethequalityoftheobtainedresults.

ResultsStructural and morphological analysisTheobtainedSEMpicturesofthefibersareshowninFigure 2. SEM images of the investigated specimens revealed no drugaggregates and beads, indicating adequate miscibility of allthe materials and confirming a stable and repeatable press.In all cases, electrospinning resulted in cylindrical fibers withsmooth surface and diameters in the sub-micron/nano- scaleforming dense networks. Thatwasmade possible by selectingtheappropriatePCL/PEGratioduringpreliminaryresults(Figure 1). The averagefiber diameter of specimens F0, F1, F2, F3, F4and F5fiberswere found tobe661.33± 196.94nm,586.75±204.79nm,617±208.96nm,558±190.08nm,1005.33±319.44nmand771.33±247.9nm,respectively.Figure3captures the

Samplename

PCLconcentration

mg/mL

PEGconcentration

mg/mL

DPAconcentration

mg/mL

F0 112.5 37.5(PEG35k)a -

F1 112.5 37.5(PEG35k)a 3.75

F2 112.5 37.5(PEG4k)b -

F3 112.5 37.5(PEG4k)b 3.75

F4 150.0 - -

F5 150.0 - 3.75a PEGMr~35000,b PEGMr3500-4500

Table 1 Short codenamesandmaterials’ concentrations (mg/mL) forelectrospunfiberspreparedusingPolycaprolactone(PCL),Polyethyleneglycol (PEG, two different average molecular weight types) andDipyridamole(DPA).

Page 4: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

4

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

Figure 1 SEM pictures of electrospun fibers with a 50:50mass ratio between PCL and PEG (A) and fiberswitha75:25massratiobetweenthetwopolymers(B); 15 kV accelerating voltage, high vacuum, 500xmagnification,scalebars=20μm.

differencesbetweenallthedifferentelectrospunfiberspecimens.No significant differences were observed between fibers F0andF1,aswellasbetweenfibersF2andF3.Theaveragefiberdiameter of specimen F5 differed significantly from fibers F1,F2,F3(p<0.001).Finally,fibersF5alsodifferedsignificantlywithfibers F4 (p<0.05). The histograms of the calculated diametersof the electrospun fibers are also depicted in Figure 2. Thefiber diameter distributionof the specimens F0, F1, F2 and F3werefoundtobesimilar,whereasF4displayedabroaderfiberdiameterdistribution.IncaseofspecimenF5,theadditionofDPAresultedinanarrowerfiberdiameterdistribution(Figure2I).Inaddition,noparticularalignmentwasobserved(Figure2).

Physichemical characterizationThe addition of DPA to the polymeric solutions significantlyaffected the electrical conductivity (Figure 4), which increasedfrom1.556±0.09μS/cm for F0fibers to6.272±0.152μS/cmforF1fibers; from1.912±0.03μS/cm forF2fibers to6.716±0.12 μS/cm for F3 fibers and from 0.521 ± 0.023 μS/cm forF4 fibers to 18.81 ± 0.058 μS/cm for F5 fibers, presentinga statistically significant difference (p <0.001). In order toinvestigatephysichemical interactionsbetweentheelectrospunfibers loadedwith DPA and the bulkmaterials, FTIRwas used

as a means of chemical characterization. Figure 5 depicts theFTIR spectraof F1andF0fibers comparedwith theones frombulkPCLandPEGpelletsaswellasDPAcrystallinepowder.ThespectrumofthePCLpelletsexhibitedcharacteristicpeaksat2943cm-1(-CH3,asymmetricstretching),2869cm-1(-CH3,symmetricstretching) and1725 cm-1 (-C=O, stretching) in agreementwithprevious studies [26]. Furthermore, the FTIR spectrum of bulkPEGexhibitedcharacteristicpeaksat2882cm-1(-CH3,symmetricstretching), 1342 cm-1 (-CH3, scissoringandbending) and1095cm-1(-C-O-C-(ether),stretching).Moreover,thespectrumofDPAinpowderformexhibitedthefollowingcharacteristicpeaksamongother: at 2921 cm-1 (-CH3, asymmetric stretching) and at 1531cm-1 (-C=N, stretching). Additionally, F0 specimens exhibitedcharacteristicpeaksat2946cm-1(-CH3,asymmetricstretching),1723 cm-1 (-C=O, stretching), 1342 cm-1 (-CH3, scissoring andbending),1103cm-1(-C-O-C-(ether),stretching).Ontheotherhand,thespectrumoftheF1fibersexhibitedamixtureofcharacteristicpeaksfromthespectraofthebulkmaterials.Morespecifically,F1 fibers exhibited characteristic peaks at 2946 cm-1 (-CH3,asymmetric stretching),1726cm-1 (-C=O, stretching),1342cm-1 (-CH3,scissoringandbending),1100cm-1(-C-O-C-(ether),stretching)andalowabsorbancepeakat1536cm-1,correspondingto–C=Nstretching fromDPA.Thedifferences inpeaksof theF0andF1specimensaswellasfromthebulkmaterialsaresummarizedinTable 2.

Mechanical characterizationTheobtaineddatafromthemechanicaltensiletestsarepresentedinFigure 6.TheaverageUTSincreasedfrom14.32±1.51MPafortheF0fibersto16.79±3.08MPafortheF1electrospunfibers(Figure 6A).Moreover,F3specimensexhibitedhigherUTS(13.94±1.87MPa)comparedtoF2specimens (11.32±1.93MPa). Inaddition,theaverageUTSvaluesofspecimensF4andF5,whichwere58.15±4.75MPaand60.27±6.48MParespectively,weresignificantly higher than the rest of the specimens (p <0.001).However,theadditionofDPAinspecimensF1,F3andF5didnotresult in significant increaseof theUTSvalues (p>0.05) (Figure 6A).Additionally,thetensilestrainatbreakwas0.62±0.06mm/mmand0.61±0.05mm/mmforfibersF0andF1,respectively(Figure 6B), indicating that DPA has little effect onmechanicalproperties. A minor decrease in the tensile strain values wasobservedbetween specimensF2andF3.More specifically, thetensilestrainatbreakdroppedfrom0.38±0.05mm/mmto0.30±0.02mm/mm,butnotsignificantly(p>0.05).TheuseofPEGwithdifferentmolecularweightwith andwithout incorporatedDPAledtoastatisticaldifferenceintermsoftensilestrain(p<0.001).Moreover, the specimens fabricatedonlybyPCL (F4) exhibitedthehighest tensilestrainatbreak,namely0.8±0.09mm/mm,and were statistically different from all the other specimens(p<0.001).Finally,theaveragetensilestrainatbreakoffibersF5was0.45±0.05mm/mm.Thedifferencesbetween the Young’smodulusvaluesaredepictedinFigure 6C.ThepresenceofDPAinspecimensF1,F3andF5ledtoanincreaseintheaverageYoung’smodulusvaluesfrom48.69±6.46MPato57.14±4.35MPaforfibersF0andF1;from65.87±6.66MPato107.05±9.29MPaforfibersF2andF3andfrom98.9±16.35MPato199.98±33.78MPaforfibersF4andF5,respectively.FibersF5exhibitedthehighestaverageYoung’smodulus,whichwasstatisticallydifferent from

Page 5: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

5

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

Figure 2 SEMpicturesofelectrospunF0fibers(PCL&PEG35k)withnoDipyridamole(DPA)encapsulated(A);F1

fibers(PCL&PEG35k)withDPAencapsulated(B);HistogramofthefiberdiameterdistributionsoffibersF0andF1(C);F2fibers(PCL&PEG4k)withnoDipyridamole(DPA)encapsulated(D);F3fibers(PCL&PEG4k)withDPAencapsulated(E);HistogramofthefiberdiameterdistributionsoffibersF2andF3(F);F4fibers(PCL)withnoDipyridamole(DPA)encapsulated(G);F5fibers(PCL)withDPAencapsulated(H);HistogramofthefiberdiameterdistributionsoffibersF4andF5(I);15kVacceleratingvoltage,highvacuum,4000xmagnification,scalebars=1μm.

Figure 3 Average fiber diameter values from electrospun fibers

F0-F5obtainedafterimageanalysisusingImageJ;(mean±SD,n=75);One-wayANOVAwithposthocTukey (*p<0.05,**p<0.001,***p<0.001,NS=notsignificant.

Figure 4 Electrical conductivity values from the polymeric

solutionsusedtofabricateelectrospunspecimensF0-F5,(mean±SD,n=5);One-wayANOVAwithposthocTukey(*p<0.05,**p<0.001,***p<0.001,NS=notsignificant).

Page 6: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

6

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

Figure 5 FTIR spectra of PCL pellets, bulk PEG, powderDPA, F0and F1 electrospun fibers from 4000 to 650 cm-1; thedotted rectangular sites indicate thedifferences in thespectrabetweenF0,F1fibersandbulkmaterials.

all the other samples (p<0.001). In addition, Young’s modulusvaluesfromfibersF2andF3werestatisticallydifferent(p<0.01)whiletherewasnosignificantdifferencebetweenfibersF0andF1 (p>0.05). Finally, the use of PEG with different molecularweightledtoasignificantdifferenceinYoung’smodulusvaluesbetweenfibersF1andF3(p<0.001).

Cumulative drug release experimentsThe cumulative amount of DPA released from F1, F3 and F5specimenswascalculatedasthefractionofthetotalDPAcontentinside a PBS solution (pH 7.4,T=37 ). The drug release studieswereperformed in an incubatoroveraperiodof96days. ThecumulativereleaseprofileofDPAfromtheelectrospunfibersisshown inFigure 7,while the insetdepicts thefirstdayofDPArelease.Twodistinctreleasestagescouldbeidentifiedforallthedifferentelectrospunspecimens:arapidburstreleasefollowedbyarelativelyslowreleasephase.Duringtheinitial24h,F1fibersshowedaburstreleaseofDPA,where52.4±1.1%ofDPAreleasedinto the PBS medium. In comparison with this, F3 and F5showed60.32±1.82%and63.14±1.07%releaseofDPAintothemedium,respectively.ThefirststagewheremorethanhalfofDPAmasswasalreadyreleasedforalldifferentelectrospunspecimens was followed by a successive slow second stage.DuringthisstagethecumulativereleaseofDPAwaslowerandmore gradual, reaching 84.74 ± 1.06% until the 18th day forfibersF1.Inaddition,thecumulativereleaseofDPAfromfibersF3andF5was93.79±2.02%and95.89±1.43%,respectively.Moreover,thereleaserateofDPAwasgraduallydecelerating,ultimatelyreachingaplateau.ThecumulativereleaseofDPAreached 89.07 ± 1.29% for F1 fibers, 97.55 ± 1.71% for F3fibersand98.17±1.59%forF5fibersonthe96thday.In order to comprehend the mechanism that regulates thereleaseofDPA,thedataobtainedfromthecumulativereleasestudieswerefittedaccordingusingEquation1[27].InFigure 7 (inset)thereleaseexponentnforF1,F3andF5fibersisdepictedtogetherwithanattempttofittheobtainedexperimentaldata.

Figure 6 Mechanical properties of the F0-F5 electrospunfibers.Ultimatetensilestrength(UTS)(A);tensilestrainatbreak(B);andYoung’smodulus(C);elongationrate=1mm/sec;(mean±SD,n=6);One-wayANOVAwithposthocTukey(*p<0.05,**p<0.001,***p<0.001,NS=notsignificant).

Thereleaseexponentsn forspecimensF1,F2andF3were0.432,0.454and0.426respectively,correspondingtoFickiandiffusion(R2>0.93forallcases).

Page 7: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

7

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

DiscussionElectrospun fibers loaded with DPA and without DPA werefabricatedusingdifferentmolecularweightofPEG.Theobtainedfibershadanaveragediameterbetween600nmand1000nm(Figure 3).TheadditionofDPAinthepolymericsolutionsresultedinasignificant increaseof thesolution’selectricalconductivity,while at the sametimedecreasing the averagefiber diameter.Onetheotherhand,additionofPEGledtoasignificantincreasein the average values of electrical conductivity and a decreaseintheaveragefiberdiametercomparedtothefiberscontainingonlyPCL.Additionally,highermolecularweightofPEGresultedin polymeric solutions with lower average values of electricalconductivityandconsequentlytothickerfibers.Similarfindingsconcerning the influence of molecular weight of PEG on fiberdiameterandelectricalconductivityweredescribedbySarafetal [28].AccordingtoLeeetal.,decreaseintheaveragefiberdiametercouldbetheresultoftheincreaseinthesolutionsconductivityduetoaugmentedtransferofelectricalchargesintothepolymericjet [29], resulting in greater bending instability of the solutioninsidetheelectricalfield.Consequently,furtherelongationofthejetcurred,leadingtothinnerfibers.Furthermore,thepresenceof chemical groups (pH dependant) in DPA (hydroxyl groups),could have further increased the electrical conductivity [30].FTIR spectroscopy was used to study the possible differencesbetween theelectrospunfibersand thebulkmaterials,aswellasbetweenthepolymersandDPA(Figure 5).Shiftsinthepeakscouldbeindicativeofdifferentintermolecularinteractionsinthefibers.Morespecifically,therearevariouschangesinthepeaksoftheF1fiberscomparedwiththespectraoffibersF0,bulkPCLandPEG(Table 2).TheresultingpeaksoftheF1spectrumcouldbeanaftermathofapossibleinteractionbetweenPCLandPEG.On theother hand, thepeaksofDPAwere verydifficult to be

Figure 7 CumulativereleaseofDPAfromF1,F3andF5electrospunfibersduringatotal96daysperiod;cumulativereleaseof DPA from F1, F3 and F5 fibers during the initial 24hours(inset);(mean±SD,n=3);T=37oC;Experimentalandfitteddata(usingEquation1describedbyPeppasetal.,Mt/M∞=kt

n)fromF1,F3andF5fibersduringthefirst60%ofDPAreleased;(mean±SD,n=3).

identified in the fibers due to themass ratio of thematerialsused. Nevertheless, a low intensity peak at 1536 cm-1 (-C=N,stretching)wasdetectedintheF1spectrum,whichwasshiftedcomparedwiththepeakintheDPAspectrum,whereasnopeakwas observed in the spectrum of F0 fibers. Furthermore, thedifferencesbetweenthespectraofbulkPCLandF1fiberscouldbetheresultofdifferentdegreeofPCLcrystallinitybeforeandafter itwas dissolved in TFE and electrospun [31]. In addition,formationofhydrogenbondsbetweentheestergroupsofPCL(in a semi-crystalline state) and the hydroxyl groups of TFE (inan amorphous state)molecules could explain the shifts in theabsorption bands [32,33]. The addition of DPA in the blendsolutions increased the average values of UTS and Young’smoduluswheretheadditionofDPAresultedinstifferfibers.TheinfluenceofDPAandPEGonthesolution’selectricalconductivityas well as on the average fiber diameter can also affect themechanicalproperties.Thedecreaseintheaveragefiberdiameterandminorchangeinthegeneralalignmentandstructureofthefibersaffectmechanicalproperties[34].Moreover,differencesinintermolecularinteractionsbetweenthepolymersmightexplaindifferencesinmechanicalproperties.TheFTIRdataendorsethishypothesissincetherewereshiftsincharacteristicpeaksofthefiberspectracomparedwiththatofthebulkmaterials,butalsobetweenF0andF1.Theuseof lowmolecularweightPEGwithlower average polymeric chain length (F2& F3) led toweakerand less flexible but stiffer fibers indicating that the length ofthe polymeric chain determines mechanical properties of thefabricatedscaffolds.Moreover,thefibrousscaffold’sarchitectureinthenano-/submicronlevelisconsideredveryimportantforthereleaseoftheencapsulatedmolecule.Thestressesthatascaffoldwould possibly confront from the surrounding environment atthe site of implantation affect the structure of the carrier andthusthereleasekinetics[35].TwodistinctstagesofDPAreleasewereobservedinallcases:astrongburstreleasephenomenonfollowedbyaslowerreleasephase.Theinitialburstreleasestagethatwasparticularlyintenseduringthefirst12hours(Figure 7,inset), has been previously described by other groups [36-38].AccordingtoZamanietal., itispossiblethataconsiderableamountof the drug could havemigrated to the surface of the ejectedpolymer solutionduring electrospinning [11].Additionally,DPAmighthavebeenincorporatedintotheamorphousregionsofthesemi-crystalline PCL. Kim et al. proposed that drug aggregatescan be forced to migrate to the surface of the fibers duringelectrospinning because of the semi-crystalline nature of PCL[33].AnothermajorreasonforthereleaseofDPAduringthefirststageistherapiddissolutionofPEGinthemedium.TherehavebeenpreviousreportsonfasterosionofPEGorsimilarpolymersin polymeric blends that led to burst release phenomena andchangesinthestructureanddiameterofthefibers[33,35].Kimetal.alsodescribedthepossibilityofphaseseparationbetweenthesemi-crystallinePCLandthewatersolublepolyethyleneoxide(PEO)thatmighthaveledtoacoreskeletonmainlycomposingofPCLanda surrounding coatingofPEO [33]. The latter couldcur during electrospinning, when the blend solution is quicklyejected to the collector, while fast solvent evaporation couldenable phase separation between PCL and PEG. The use of alowmolecularweightPEGforfibersF3ledtoafasterreleaseofDPAand toamore intenseburstphenomenonduring thefirst

Page 8: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

8

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

hours.Theaveragemolecularweightandthusthelengthofthepolymeric chains affects the degradation rate of the polymer[8].ThereleaseratefromF5fiberswasfoundtobethefastest,whichispossiblyduetotheamorphousregionsofPCLandthetendencyofthemoleculestotravelnearthesurfaceofthefibers.Moreover, the absence of PEG might have resulted in lowerhomogeneity of the blend solution, leading to amore intensephase separation during electrospinning and consequently ahigherpercentageofDPApresenton the surfaceof thefibers.F1fiberswerethemostappropriateforsustainedreleaseofDPAexhibitingthelowestburstreleasesuggestingthatPEGcouldbebeneficial in a polymeric blend rendering it suitable as a DDS.Ontheotherhand,duringthesecondstage,thereleaseofDPAwas slower andmore gradual, mainly depending on diffusion.Thecumulativereleaseofthedrugwasmainlyattributedtothediffusion of DPA through the polymericmatrix combined withtheinitialerosionofPEG(onlyforspecimensF1andF3).DuringthesecondstageofthereleasethereisnoPCLdegradation[8],while the vast amountofPEGhadbeenalreadydissolved intothemedium.Therefore,thereleaseofDPAfromtheelectrospunfibersispredominantlycontrolledbyFickiandiffusion,whiletheadditionofPEGtotheblendsolutionanditsmolecularweightdidnotaffecttherelease.

Sample

Peaks(cm-1)

-CH3,asymmetricstretching

-C=O,stretching

–C=Nstretching

-CH3,

scissoringandbending

-C-O-C-(ether),stretching

DPAbulk 2921 1531

PCLbulk 2943 1725

PEG35kbulk 2882 1342 1095

F0 2946 1723 1342 1103

F1 2946 1726 1536 1342 1100

Table 2 Characteristicpeaks(cm-1)intheFTIRspectraofthebulkmaterials(PCL,PEGandDPA)andintheFTIRspectraofF0andF1electrospunfibers.

ConclusionBlend electrospinning can be used to fabricate PCL/PEG fibersloadedwithDPA,whichcanbeusedasaDDS.TheadditionofDPAtothepolymericblendusedforelectrospinningresultedinthinner,strongerandstifferfibers.Moreover,thepolymerchainlengthofthePEGcanbeusedasatooltoadjustfiberpropertiesifnecessary.TheelectrospunfibersshowsustainedreleaseofDPA,mainlythroughFickiandiffusion,indicatingthattheyaresuitableasdrugdeliverycarriers,aslongastheinitialburstphenomenoniscontrolled.

AcknowledgementsThisresearchwasgrantedbytheGermanResearchFoundation(Deutsche Forschungsgemeinschaft, DFG) by the Cluster ofExcellenceREBIRTH(FromRegenerativeBiologytoReconstructiveTherapy, DFG EXC 62/1). The authors express their sinceregratitude to fellow researcher Poulami Basu MSc from theBiomedicalEngineeringDivision(VelloreInstituteofTechnology,Vellore, India), for editing themanuscript, as well as Dipl.-Ing.Panagiotis Kalozoumis from the Department of Cardiothoracic,TransplantationandVascularSurgery(HannoverMedicalSchool,Hannover, Germany), for his contribution to the mechanicaltensileteststhatwereperformed.

Page 9: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

9

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

References1 SzentivanyiAL,ZernetschH,MenzelH,GlasmacherB(2011)Areview

ofdevelopmentsinelectrospinningtechnology:Newopportunitiesforthedesignofartificialtissuestructures.IntJArtifOrgans34:986-997.

2 Okutan N, Terzi P, Altay F (2014) Affecting parameters onelectrospinningprocessandcharacterizationofelectrospungelatinnanofibers.FoodHydrocoll39:19-26.

3 Sill TJ, vonRecumHA (2008) Electrospinning:Applications in drugdeliveryandtissueengineering.Biomaterials29:1989-2006.

4 Szentivanyi A, Chakradeo T, Zernetsch H, Glasmacher B (2011)Electrospun cellularmicroenvironments: Understanding controlledreleaseandscaffoldstructure.AdvDrugDelivRev30:209-220.

5 ZamaniM,PrabhakaranMP,RamakrishnaS(2013)Advancesindrugdelivery via electrospun and electrosprayed nanomaterials. Int JNanomedicine8:2997-3017.

6 ZernetschH,RepanasA,GryshkovA,AlHalabiF,RittinghausT,etal.(2013)SolvingBiocompatibilityLayerbyLayer:DesigningScaffoldsforTissues.BiomedTech2013-4065.

7 Pfeiffer D, Stefanitsch C,Wankhammer K, MüllerM, Dreyer L, etal. (2014)Endothelializationofelectrospunpolycaprolactone (PCL)small calibervasculargrafts spun fromdifferentpolymerblends. JBiomedMaterResA102:4500-4509.

8 Woodruff MA, Hutmacher DW (2010) The return of a forgottenpolymer-Polycaprolactone in the 21st century. Prog Polym Sci 35:1217-1256.

9 RepanasA,ZernetschH,GlasmacherB(2014)Core/Shellelectrospunfibers as biodegradable scaffolds for sustained drug delivery inWoundHealingapplications.Pneumologie.

10 Repanas A, Zernetsch H, Mavrilas D, Glasmacher B (2014)Chitosan/Polycaprolactoneelectrospunbiodegradablescaffolds forCardiovascularTissueEngineering.Pneumologie.

11 ZamaniM,MorshedM,VarshosazJ,JannesariM(2010)Controlledrelease of metronidazole benzoate from poly ε-caprolactoneelectrospun nanofibers for periodontal diseases. Eur J PharmBiopharm75:179-185.

12 Zhang YZ, Wang X, Feng Y, Li J, Lim CT, et al. (2006) Coaxialelectrospinning of (fluorescein isothiocyanate-conjugated bovineserumalbumin)-encapsulatedpoly(epsilon-caprolactone)nanofibersforsustainedrelease.Biomacromolecules7:1049-1057.

13 GaudioCD,ErcolaniE,GalloniP,SantilliF,BaigueraS,etal. (2013)Aspirin-loaded electrospun poly(ε-caprolactone) tubular scaffolds:potentialsmall-diametervasculargraftsforthrombosisprevention.JMaterSciMaterMed24:523-532.

14 RadhakrishnanJ,KrishnanUM,SethuramanS(2014)Hydrogelbasedinjectablescaffolds forcardiactissueregeneration.BiotechnolAdv32:449-461.

15 TungprapaS,JangchudI,SupapholP(2007)Releasecharacteristicsoffourmodeldrugsfromdrug-loadedelectrospuncelluloseacetatefibermats.Polymer48:5030-5041.

16 MiyajimaM, Koshika A, Okada J, Kusai A, IkedaM (1998) Factorsinfluencingthediffusion-controlledreleaseofpapaverinefrompoly(l-lacticacid)matrix.JControlRelease56:85-94.

17 FongH,ChunI,RenekerDH(1999)Beadednanofibersformedduringelectrospinning.Polymer40:4585-4592.

18 LamCXF,SavalaniMM,TeohSH,HutmacherDW (2008)Dynamicsofinvitropolymerdegradationofpolycaprolactone-basedscaffolds:accelerated versus simulated physiological conditions. BiomedMater.

19 SaccoRL,DienerHC,YusufS,CottonD,OunpuuS,etal.(2008)Aspirinandextended-releasedipyridamoleversusclopidogrelforrecurrentstroke.NEnglJMed359:1238-1251.

20 ZhuplatovSB,MasakiT,BlumenthalDK,CheungAK(2006)Mechanismofdipyridamole’sactionininhibitionofvenousandarterialsmoothmusclecellproliferation.BasicClinPharmacolToxicol99:431-439.

21 Begandt D, Bader A, Gerhard L, Lindner J, Dreyer L, et al. (2013)Dipyridamole-relatedenhancementofgapjunctioncouplingintheGM-7373aorticendothelialcellscorrelateswithanincreaseintheamountofconnexin43mRNAandproteinaswellasgap junctionplaques.JBioenergBiomembr45:409-419.

22 BegandtD,BaderA,DreyerL,EisertN,ReeckT,etal.(2013)BiphasicincreaseofgapjunctioncouplinginducedbydipyridamoleintherataorticA-10vascularsmoothmusclecell line.JCellCommunSignal7:151-160.

23 23. Punnakitikashem P, Truong D, Menon JU, Nguyen KT, Hong Y(2014) Electrospun biodegradable elastic polyurethane scaffoldswith dipyridamole release for small diameter vascular grafts.ActaBiomater10:4618-4628.

24 Repanas A, Glasmacher B (2015) Dipyridamole embedded inPolycaprolactone fibers prepared by coaxial electrospinning as anoveldrugdeliverysystem.JDrugDelivSciTechnol29:132-142.

25 Ritger PL, Peppas NA (1987) A simple equation for description ofsolute release II. Fickian and anomalous release from swellabledevices.JControlledRelease5:37-42.

26 Yu H, Jia Y, Yao C, Lu Y (2014) PCL/PEG core/sheath fibers withcontrolled drug release rate fabricated on the basis of a novelcombinedtechnique.IntJPharm469:17-22.

27 MalekiM,Amani-TehranM,LatifiM,MathurS(2014)Drugreleaseprofile in core–shell nanofibrous structures: A study on Peppasequationandartificialneuralnetworkmodeling.ComputMethodsProgramsBiomed113:92-100.

28 SarafA,LozierG,HaessleinA,KasperFK,RaphaelRM,etal.(2009)FabricationofNonwovenCoaxialFiberMeshesbyElectrospinning.TissueEngPartCMethods15:333-344.

29 LeeCK,KimSI,KimSJ (2005)The influenceofadded ionic saltonnanofiber uniformity for electrospinning of electrolyte polymer.SynthMet154:209-212.

30 CramariucB,CramariucR,ScarletR,ManeaLR,LupuIG,etal.(2013)Fiberdiameterinelectrospinningprocess.JElectrost71:189-198.

31 NatuMV,DeSousaHC,GilMH(2013)Influenceofpolymerprocessingtechnique on long term degradation of poly(ε-caprolactone)constructs.PolymDegradStab98:44-51.

32 Gautam S, Dinda AK, Mishra NC (2013) Fabrication andcharacterization of PCL/gelatin composite nanofibrous scaffold fortissue engineering applications by electrospinningmethod.MaterSciEngC33:1228-1235.

33 Kim TG, Lee DS, Park TG (2007) Controlled protein release fromelectrospun biodegradable fiber mesh composed of poly(ɛ-caprolactone)andpoly(ethyleneoxide).IntJPharm338:276-283.

34 Stylianopoulos T, Bashur CA, Goldstein AS, Guelcher SA, BarocasVH (2008) Computational predictions of the tensile properties

Page 10: Pcl/Peg Electrospun Fibers as Drug Carriers for the ...pharmacology.imedpub.com/pclpeg-electrospun-fibers... · Drug Carriers for the Controlled Delivery of Dipyridamole Abstract

10

ARCHIVOS DE MEDICINAISSN 1698-9465

2015Vol. 1 No. 1:2

Journal of In Silico & In Vitro Pharmacology

© Copyright iMedPub This article is available in http://pharmacology.imedpub.com/

of electrospun fibre meshes: Effect of fibre diameter and fibreorientation.JMechBehavBiomedMater1:326-335.

35 Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG (2010)Regulated non-viral gene delivery from coaxial electrospun fibermeshscaffolds.JControlledRelease143:95-103.

36 Valarezo E, Tammaro L, González S,Malagón O, Vittoria V (2013)Fabricationandsustainedreleasepropertiesofpoly(ε-caprolactone)electrospun fibers loaded with layered double hydroxide

nanoparticles intercalatedwith amoxicillin. Appl Clay Sci 72: 104-109.

37 JannesariM,VarshosazJ,MorshedM,ZamaniM(2011)Compositepoly(vinylalcohol)/poly(vinylacetate)electrospunnanofibrousmatsasanovelwounddressingmatrixforcontrolledreleaseofdrugs.IntJNanomedicine6:993-1003.

38 SongB,WuC,Chang J (2012)Dualdrug release fromelectrospunpoly(lactic-co-glycolic acid)/mesoporous silica nanoparticlescompositematswithdistinctreleaseprofiles.ActaBiomater8:1901-1907.