pcb design guideline and thermal analysis for gan ... systems_gn005 app... ·...

14
APPLICATION NOTE GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 1 Thermal Analysis and PCB Design Guidelines for GaN Enhancement Mode Power Switching Transistors This application note sets out thermal design guidelines and PCB layout considerations for GaN Systems enhancement mode power switching transistors. It introduces the advanced features of the GaNPX™ package and it provides a comparative analysis of various different PCB thermal design choices. 1. Device Thermal characteristics The GaNP package, shown in Figure 1, is the first implementation of a discrete GaN power device to be embedded within a laminate construction. A series of galvanic processes [1] replace conventional packaging techniques such as clips, wire bonds and molding compounds. The GaN die is protected within the laminate construction. Figure 1 provides a cross sectional view, showing how a series of printed circuit board plating steps form source and drain bus bars that significantly augment the current carrying capacity of the conventional die metallization. This greatly reduces the critical loop inductance and hence the difficulties of driving the high speed, high current switch. When carefully implemented, the new embedded power GaN devices provide a small volume, low resistance and low inductance package. The embedding technique has been implemented in three package sizes. provides the package size, die and pad size. GS66508P was selected for this thermal analysis. Part Number Package Size (mm) Package Area (mm 2 ) Die Pad Size (mm) Die Pad Area (mm 2 ) GS66504P 6.4/8.63/0.45 55.23 2.13/3.9 8.31 GS66506P 7.9/8.63/0.45 68.18 2.13/5.4 11.48 GS66508P 9.2/8.63/0.45 79.4 2.13/6.7 14.27 Table 1: GaNPX package geometrical characteristics Figure 1: GaNPX package cross section view

Upload: hoangtram

Post on 28-May-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 1

 

Thermal Analysis and PCB Design Guidelines for GaN Enhancement Mode Power Switching Transistors

 

This  application  note  sets  out  thermal  design  guidelines  and  PCB  layout  considerations  for  GaN  Systems  enhancement  mode  power  switching  transistors.  It  introduces  the  advanced  features  of  the  GaNPX™  package  and  it  provides  a  comparative  analysis  of  various  different  PCB  thermal  design  choices.  

1. Device Thermal characteristics The  GaNP  package,  shown  in  Figure  1,  is  the  first  implementation  of  a  discrete  GaN  power  device  to  be  embedded  within  a  laminate  construction.  A  series  of  galvanic  processes  [1]  replace  conventional  packaging  techniques  such  as  clips,  wire  bonds  and  molding  compounds.  The  GaN  die  is  protected  within  the  laminate  construction.  Figure  1  provides  a  cross  sectional  view,  showing  how  a  series  of  printed  circuit  board  plating  steps  form  source  and  drain  bus  bars  that  significantly  augment  the  current  carrying  capacity  of  the  conventional  die  metallization.  This  greatly  reduces  the  critical  loop  inductance  and  hence  the  difficulties  of  driving  the  high  speed,  high  current  switch.  When  carefully  implemented,  the  new  embedded  power  GaN  devices  provide  a  small  volume,  low  resistance  and  low  inductance  package.  

The  embedding  technique  has  been  implemented  in  three  package  sizes.    provides  the  package  size,  die  and  pad  size.  GS66508P  was  selected  for  this  thermal  analysis.  

Part Number Package Size (mm)

Package Area (mm2)

Die Pad Size (mm)

Die Pad Area (mm2)

GS66504P 6.4/8.63/0.45 55.23 2.13/3.9 8.31

GS66506P 7.9/8.63/0.45 68.18 2.13/5.4 11.48

GS66508P 9.2/8.63/0.45 79.4 2.13/6.7 14.27

Table 1: GaNPX package geometrical characteristics

Figure 1: GaNPX package cross section view  

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 2

 

             

 Figure 2: GaNPX package thermal dissipation paths

   

This  GaNPX  design  has  the  thermal  pad  on  the  bottom  of  the  package  as  shown  in  Figure  2(a),  which  is  similar  to  other  exposed  pad  SMT  packages.  The  thermal  pad  is  directly  attached  to  the  die  substrate  and  enables  a  high  thermal  conductivity  path  for  cooling.  The  thermal  pad  (substrate)  must  be  electrically  connected  to  the  Source  on  the  PCB  for  optimum  device  performance.  The  bottom  side  cooling  with  a  heat  sink  via  the  PCB  is  the  most  effective  cooling  method  for  GaNPX.  

The  heat  dissipation  paths  of  the  GaNPX  package  mounted  on  the  PCB  are  illustrated  in  Figure  2(b).  The  majority  of  the  heat  generated  in  the  die  flows  down  to  the  thermal  pad  and  then  transfers  to  the  PCB.  The  copper  planes  in  the  PCB  are  used  as  heat  spreaders  and  thermal  vias  provide  a  low  thermal  resistance  path  from  the  top  copper  to  the  bottom  side  of  PCB.  A  heatsink  is  attached  to  the  bottom  copper  plane  via  a  Thermal  Interface  Material  (TIM)  and  dissipates  the  heat  to  the  ambient.    

The  drain  and  source  pads  as  well  as  the  top  side  of  package  also  conduct  small  amount  of  the  heat.  However  they  all  have  much  higher  thermal  resistance  compared  to  the  thermal  pad  (RθJC  =15°C/W  on  the  top  side  vs  0.5°C/W  from  junction  to  thermal  pad)  so  they  should  not  be  used  as  the  primary  cooling  method.    

 

Thermal  pad

Drain

Source

G

SS

(a)  Bottom  view

GaNPx

DieSource Thermal  Pad Drain

PCB  top  copper  layer

PCB  bottom  copper  layerThermal  interface  material

Heat  Sink

 PCB

Thermal  vias

(b)  Cross  section  view  of  package  thermal  path  using  PCB  cooling  

FR4  CoreInternal  copper  layer

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 3

 

2. PCB design considerations Appropriate  PCB  design  is  essential  for  the  thermal  management  of  GaNPX  package  and  the  PCB  thermal  resistance  is  the  primary  consideration  for  overall  system  thermal  performance.  There  are  several  key  factors  that  impact  the  PCB  thermal  performance:  

Heat spreading copper pad The  top  copper  pad  plays  the  important  role  of  conducting  the  heat  from  the  small  area  under  the  device  to  a  larger  area  on  the  PCB.  As  such,  the  top  copper  layer  must  have  sufficient  thickness  to  provide  enough  heat  spreading.  The  internal  and  bottom  layers  also  improve  heat  spreading  if  thermal  vias  are  used.  The  bottom  copper  pad  serves  as  the  contact  surface  to  the  heatsink  or  Thermal  Interface  Material  (TIM)  and  it  should  have  sufficient  coverage  to  allow  optimum  heat  transfer  to  the  heatsink.  

Thermal vias The  most  effective  way  to  improve  vertical  heat  transfer  for  an  FR-­‐‑4  PCB  is  to  add  plated  through-­‐‑hole  thermal  vias  between  conductive  layers.  Since  FR-­‐‑4  material  has  very  low  thermal  conductivity,  thermal  via  design  is  one  of  the  dominating  factors  for  total  PCB  thermal  resistance.    

Below  are  some  considerations  for  the  design  of  thermal  vias:  

• Adding  open  plated  through  vias  to  the  SMT  pad  (“Via  In  Pad”)  is  not  commonly  done  because  it  may  create  a  solder-­‐‑wicking  issue:  the  solder  tends  to  be  wicked  down  into  the  vias  during  the  reflow  process  and  generates  solder  voids  on  the  pad.  The  following  steps  can  be  taken  to  limit  this  problem:  

o Use  small  via  diameter.  The  surface  tension  of  solder  limits  the  amount  of  solder  wicking  on  smaller  vias.  With  0.3mm  or  smaller  via  diameter,  the  solder  wicking  can  be  reduced.  

o Fill  the  vias  with  thermally  conductive  materials.  It  eliminates  the  solder  wicking  but  adds  cost  and  an  extra  manufacturing  step.  

• 8mil  (0.2mm)  is  the  typical  minimum  mechanical  drilling  size.  12mil  (0.3mm)  is  more  common  and  lower  cost.  

• IPC-­‐‑6012  specifies  a  minimum  20µμm  (0.8mil)  copper  plating  thickness  for  a  Class  2  PCB.  The  standard  via  plating  thickness  is  25µμm  (1mil),  which  will  be  used  for  this  analysis.    

• PCB  thickness  has  an  impact  on  the  thermal  via  performance.  The  thermal  resistance  decreases  if  a  thinner  PCB  is  used.  

     

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 4

 

3. PCB Thermal Analysis Figure  3  shows  a  simplified  thermal  model  for  the  GaNPX  package  mounted  on  a  PCB,  where  RθJC  =  junction-­‐‑to-­‐‑case  thermal  resistance  (package  thermal  resistance);  RθPCB  =  PCB  thermal  resistance;  RθTIM  =  thermal  interface  material  (TIM)  thermal  resistance,  and  RθHSA  =  heat  sink  to  ambient  thermal  resistance.  The  PCB  thermal  resistance  RθPCB  is  of  interest  for  this  thermal  analysis.    

ElectroFlo®  thermal  analysis  software  was  used  for  the  simulation.  All  thermal  simulations  were  conducted  at  a  power  dissipation  of  10  W.  An  assumption  was  made  that  the  surface  temperature  of  the  heatsink  was  constant  and  equal  to  25  °C.  GAP3000S30R  (0.01”  thickness)  from  Bergquist™[2]  has  a  thermal  conductivity  of  3W/m·∙K  and  was  selected  for  this  thermal  analysis.  

PCB Setup This  thermal  analysis  was  based  on  following  PCB  setup:  

• Single  GS66508P  650V  enhancement  mode  HEMT

• Device  is  placed  at  a  30mm  by  30mm  square  PCB  with  thermal  pad  center  located  at  the  center  of  PCB.  

• Standard  1.6mm  (0.063”)  FR-­‐‑4  PCB  (2  to  8  layers)  

• 1oz  or  2oz  copper  thickness  for  all  layers  

• Assume  all  copper  layers  are  evenly  distributed  

 Thermal  vias:  

• 12mil  (0.3mm)  diameter  placed  on  25mil  (0.64mm)  grid  spacing  • Standard  1mil  (25µμm)  copper  plating  thickness  • No  via  filling  

30.00

30.00

Thermal  Pad

Figure 4: PCB Thermal analysis setup

GaNPxDie

Thermal  Pad

Junction

Ambient

RθJC

PCB

TIM

Heat  Sink

RθPCB

RθTIM

RθHSA

Figure 3: Junction-ambient thermal model

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 5

 

PCB layout: copper area analysis To  examine  the  impact  of  the  copper  area,  3  different  PCB  layouts  were  chosen  for  the  thermal  analysis:  

PCB Layout #1:

Square  copper  pads  (7mm  by  7mm)  are  added  on  all  internal  and  bottom  layers,  which  is  the  minimum  size  to  cover  the  thermal  pad.  Copper  on  the  top  layer  connects  the  thermal  pad  to  the  source  and  its  outline  is  limited  by  the  clearance  between  the  drain  and  source  as  well  as  the  G/SS  pads.  12mil  (0.3mm)  diameter  vias  are  placed  on  a  25mil  (0.64mm)  grid  and  vias  are  only  placed  within  a  7x7mm  area,  and  kept  out  2.7mm  from  the  drain  pad.  

 

 Figure 5: PCB Layout #1 (7mm x 7mm)

 PCB Layout #2:

For  this  analysis  the  copper  area  is  increased  to  15mm  by  15mm  with  a  total  of  284  vias  with  the  same  pattern  as  PCB#1.  The  top  copper  area  is  increased  by  about  2  times.    

 Figure 6: PCB Layout #2 (15mm x 15mm)

 

6.00

10.00

7.00

7.00

Gate  Driver

2.70

Thermal  Vias  Pattern

Ø0.3mm  (12mil)

0.64(25mil)

0.64

 (25m

il)

Top  Layer Internal/Bottom  Layer(s)

(77  vias)

15.00

Gate  Driver

15.0015.00

15.00

(284  vias)

Top  Layer Internal/Bottom  Layer(s)

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 6

 

PCB Layout #3:

This  layout  has  largest  copper  area  (30mm  x  30mm).  The  top  copper  layer  only  extends  to  the  right  and  bottom  as  the  left  side  of  the  device  is  reserved  for  the  gate  driver  circuit  and  the  top  is  limited  by  the  clearance.    

 

 Figure 7: PCB Layout #2 (30mm x 30mm)

 

 

The  table  below  summarizes  and  compares  the  copper  areas  of  all  3  PCB  layouts.  

Top Cu layer (mm)

Approx. area (mm 2)

Internal & bottom Cu (mm)

Area (mm 2)

Total vias

PCB #1 10x6 60 7x7 49 77

PCB #2 15x8.6 129 15x15 225 284

PCB #3 22.5x8.6 193 30x30 900 680

Table 2: Copper area comparison of 3 PCB layouts    

30.00

Gate  Driver

30.0030.00

(860  vias)

22.50

16.50

Top  Layer Internal/Bottom  Layer(s)

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 7

 

Three  PCB  layouts  with  different  copper  layer  and  thickness  were  analyzed.  Figure  8  shows  one  example  of  thermal  analysis  results.  The  PCB  thermal  resistance  RθPCB  is  defined  by:  

𝑹𝜽𝑷𝑪𝑩 =𝑻𝑻𝑶𝑷𝑴𝑨𝑿!𝑻𝑩𝑶𝑻𝑴𝑨𝑿

𝟏𝟎𝑾    (Eq.3)      

Where  TTOPMAX  and  TBOTMAX  are  the  maximum  temperatures  on  the  top  and  bottom  copper  layers,  which  are  located  approximately  at  the  center  of  the  die.  

 Figure 8: Example of thermal simulation results (PCB#2 15mm x 15mm, 2oz copper, 4-layer)

 

Table 3: PCB thermal resistance RθPCB (°C/W)

# Cu Layers

PCB#1 1 oz

PCB#2 1 oz

PCB#3 1 oz

PCB#1 2 oz

PCB#2 2 oz

PCB#3 2 oz

2 6.38 5.45 5.44 6.00 4.68 4.65

4 6.17 4.95 4.86 5.69 4.17 4.04

6 5.98 4.58 4.44 5.38 3.8 3.61

8 5.8 4.27 4.07 5.07 3.45 3.22

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 8

 

Figure 9: PCB thermal resistance for 3 PCB layouts (standard 1.6mm PCB and 0.3mm vias)  The  thermal  analysis  results  are  shown  in  Figure  9  and  PCB#1  has  the  highest  thermal  resistance  as  expected.  However  PCB#3  provides  very  limited  improvement  on  the  thermal  resistance  compared  to  PCB#2  despite  having  a  copper  area  4  times  bigger.  With  2-­‐‑4  layers,  the  thermal  resistance  of  PCB#3  is  almost  same  as  PCB#2  and  only  7%  better  with  8  layers  and  2oz  copper.  This  is  due  to  the  limited  heat  spreading  on  the  top  copper  layer,  as  can  be  seen  on  the  top  view  with  vias  in  Figure  8.  The  copper  and  thermal  vias  become  less  effective  when  they  are  located  further  away  from  the  heat  source.    

For  all  PCB  layouts  the  thermal  resistance  decreases  proportionally  to  the  number  of  PCB  layers.  For  PCB#3  with  2oz  copper  a  30%  improvement  on  thermal  resistance  can  be  achieved  by  using  an  8-­‐‑Layer  PCB,  compared  to  a  2-­‐‑layer  design.  Copper  thickness  is  critical  for  horizontal  heat  conduction  and  thicker  copper  improves  the  heat  spreading.  2oz  copper  provides  about  20-­‐‑25%  improvement  on  the  thermal  resistance  compared  to  1oz  copper.  

Generally  PCB#2  is  the  optimum  layout  among  the  3  analysis  cases.  2oz  copper  is  recommended  and,  if  the  design  allows,  4  or  more  PCB  layers  are  recommended.  For  example  a  2oz  copper  6  layer  PCB  with  copper  features  similar  to  PCB#2  will  have  a  PCB  thermal  resistance  close  to  4˚C/W  or  about  5˚C/W  for  total  junction  to  heatsink  thermal  resistance  including  the  package  and  TIM.      

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 9

 

PCB thermal resistance improvement The  thermal  analysis  above  is  based  on  a  standard  PCB  structure.  If  the  design  needs  to  push  for  higher  power  output,  the  PCB  thermal  resistance  can  be  further  reduced  by  using  the  techniques  below:  

Smaller vias

Vias  smaller  than  0.3mm  can  be  used.    Figure  10  shows  one  example  of  a  higher  density  via  design  with  0.2mm  diameter.  Smaller  vias  also  reduce  the  solder  wicking  during  the  reflow  process.  

Thinner PCB

While  1.6mm  (0.063”)  is  the  standard  thickness  for  an  FR-­‐‑4  PCB,  thinner  material  such  as  1mm  is  also  common  and  can  be  used  to  further  improve  the  PCB  thermal  resistance.  

 

 Figure 11: PCB Thermal resistance improvement (1.6mm vs 1mm PCB, 0.3mm vs 0.2mm vias)

 

0.45mm

0.35

mm

Ø0.2mm  (8mil)

Figure 10: Example of higher density via design (0.2mm diameter, x = 0.45mm, y = 0.35)

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 10

 

Figure  11  shows  the  thermal  resistance  results  with  different  PCB  thicknesses  and  via  designs.  A  25%  reduction  of  PCB  thermal  resistance  can  be  achieved  by  using  0.2mm  via  design.  1mm  PCB  thickness  also  improves  the  thermal  resistance  by  30%.    By  combining  the  smaller  vias  with  a  1mm  PCB,  a  thermal  resistance  of  2°C/W  can  be  achieved  on  a  6-­‐‑layer  PCB  with  2oz  copper.  However,  not  all  PCB  manufacturers  are  capable  of  producing  reliable  1mm  6-­‐‑layer  PCB  with  2oz  copper.  It  is  recommended  to  always  confirm  with  your  PCB  manufacturer  before  using  any  PCB  design  discussed  in  this  application  note.  

 

4. Maximum power capability  Junction-to-Ambient Thermal Resistance The  total  junction  to  ambient  thermal  resistance  RθJA  of  the  power  device  is  essential  information  for  the  designer  to  estimate  the  maximum  power  capacity  of  the  system.  It  can  be  calculated  using  following  equation:  

RθJA  =  RθJC  +  RθPCB  +  RθTIM  +  RθHSA      (Eq.4)  

where  RθPCB  has  been  discussed  in  previous  sections  and  RθJC  is  a  fixed  value  that  can  be  obtained  from  the  device  datasheet  (0.5˚C/W  for  GS66508P).  The  heatsink  to  ambient  RθHSA  is  largely  dependent  on  the  heatsink  design  and  airflow.    

Estimation of RθTIM The  thermal  resistance  across  the  TIM,  RθTIM,  can  be  estimated  using  the  following  equation:  

𝑹𝜽𝑻𝑰𝑴 = 𝑳/(𝑨 ∙𝑲)    (Eq.5)  

where  L  is  the  TIM    thickness  in  m;  A  is  the  effective  contact  area  (m2)  and  K  is  the  thermal  conductivity  of  the  TIM  in  W/m·∙K,  which  can  be  obtained  from  the  TIM  datasheet.  Note  that  A  in  the  Eq.5  is  not  necessarily  the  total  contact  copper  area  at  the  bottom  layer.  Instead  it  is  defined  as  the  “effective”  contact  area  depending  on  the  PCB  heat  spreading.  The  effective  contact  area  increases  when  thicker  or  more  layers  of  copper  are  used.  Figure  12  illustrates  the  thermal  resistance  breakdown  for  PCB#2  and  shows  that  RθTIM  ranges  from  less  than  1  to  2˚C/W  depending  on  the  copper  thickness  and  number  of  layers.  

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 11

 

 Figure 12: Thermal Resistance Breakdown (PCB #2 15mm x 15mm) showing the variation of RθTIM

caused by the changing effective contact area  

For  a  rule  of  thumb  approximation,  A  =  50mm2    (about  4x  the  thermal  pad  area  for  the  GS66508P,  with  a  standard  PCB  structure  using  Cu  pads  and  thermal  vias)  can  be  used  to  provide  a  reasonable  estimation  in  the  absense  of  detailed  thermal  simulation  results.  

The  total  junction  to  heatsink  thermal  resistances  including  the  packaging  and  TIM  for  each  PCB  design  are  listed  in  Appendix  A.1.  

 Power calculation Once  the  junction  to  ambient  thermal  resistance  is  determined,  the  maximum  power  dissipation  allowed  can  be  calculated  using:  

𝑷𝑫𝑴𝑨𝑿 = 𝜟𝑻𝑴𝑨𝑿/𝑹𝜽𝑱𝑨  (Eq.6)  

where  ΔTMAX  is  the  maximum  allowed  temperature  rising  above  ambient.  Figure  14  shows  the  calculated  maximum  power  dissipation  vs  heatsink-­‐‑ambient  thermal  resistance  (PCB#2,  4-­‐‑6  layers  and  ΔTMAX  =  50°C),  which  can  be  used  to  quickly  evaluate  system  thermal  performance.  For  example,  a  system  design  with  heatsink-­‐‑ambient  thermal  resistance  of  about  5°C/W  and  ΔTMAX  =  50°C,  would  give  a  maximum  allowed  power  loss  of  5W  per  single  device,  using  a  6-­‐‑layer  PCB#2  with  2oz  copper  and  0.3mm  vias.  

Figure 13: Approximate effective contact area for TIM (red dashed

line) for PCB#2

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 12

 

 Figure 14: Maximum power dissipation, GS66508P (PCB#2 15x15mm, 4-6 layers, 2oz Cu, ΔTMAX = 50°C)

 

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 13

 

Appendix A.1 Thermal analysis results

* - Junction to heatsink RθJHS = RθJC + RθPCB + RθTIM

** - Maximum 6-Layer for 1mm PCB with 2oz copper

Table 4: Summary of thermal simulation results (°C/W) A.2 Impact of the number of thermal vias So  far  the  maximum  number  of  vias  have  been  used  for  all  the  thermal  analysis.  As  discussed  before,  the  effectiveness  of  thermal  vias  degrades  with  increasing  distance  from  the  thermal  pad.  To  further  investigate  this,  the  PCB  thermal  resistances  were  simulated  with  different  numbers  of  vias.  The  PCB#2  with  2oz  copper  and  4  to  6  layers  were  selected  for  this  analysis.  Figure  15  depicts  the  relationship  between  the  simulated  thermal  resistance  and  the  number  of  vias.  It  can  be  seen  that  after  a  certain  point,  adding  additional  vias  becomes  a  matter  of  diminishing  returns.  For  example,  a  15x8  (120)  via  matrix  covering  49mm2  achieves  90%  of  the  total  thermal  reduction  obtained  by  284  vias.  

Therefore  if  the  total  number  of  vias  must  be  reduced  due  to  layout  or  cost  constraints,  it  is  recommended  to  cover  at  a  minimum  the  50mm2  area  under  the  thermal  pad  with  vias  for  optimum  thermal  performance.    

 

RθPCB RθJHS* RθPCB RθJHS RθPCB RθJHS RθPCB RθJHS

1oz 1.6mm 6.38 9.44 6.17 8.93 5.98 8.64 5.8 8.42

1.6mm 6 8.45 5.69 7.99 5.38 7.65 5.07 7.34

1.0mm** 4.17 6.82 3.88 6.33 3.57 5.96

1oz 1.6mm 5.45 7.99 4.95 6.85 4.58 6.22 4.27 5.76

1.6mm 4.68 6.54 4.17 5.59 3.8 5.06 3.45 4.64

1.0mm 3.5 5.54 3.08 4.64 2.75 4.12

1.6mm 3.16 4.91 2.87 4.47

1.0mm 2.49 4.07 1.98 3.57

1oz 1.6mm 5.44 7.98 4.86 6.70 4.44 5.97 4.07 5.42

2oz 1.6mm 4.65 6.49 4.04 5.36 3.61 4.73 3.22 4.24

6-­‐Layer 8-­‐LayerPCB  Layout Copper

PCB  thickness Via  Size

0.2mm

2-­‐Layer 4-­‐Layer

0.3mm

0.3mm

2ozPCB#1

PCB#2

PCB#3

2oz

                                                                                                                                               

APPLICATION NOTE  

GN005 Rev 2014-11-04 © 2009 - 2014 GaN Systems Inc. 14

 

 

Figure 15: Diminishing return for thermal vias Summary This note has outlined PCB thermal design and layout considerations for using GaNPX devices in real applications. References

1) J.  Roberts,  T.  MacElwee,  and  L.  Yushyna,  "ʺThe  Thermal  Integrity  of  Integrated  GaN  Power  Modules"ʺ,  IMAPS  Conference  &  Exhibition  on  High  Temperature  Electronics  Network  (HiTEN  2013),  pp.61-­‐‑68,  July  8-­‐‑10,  2013,  Oxford,  UK.  

2)  http://www.bergquistcompany.com/thermal_materials/gap-­‐‑pad.htm        

   

 

 

www.gansystems.com North America � Europe � Asia

Important Notice – Unless expressly approved in writing by an authorized representative of GaN Systems, GaN Systems components are not designed, authorized or warranted for use in lifesaving, life sustaining, military, aircraft, or space applications, nor in products or systems where failure or malfunction may result in personal injury, death, or property or environmental damage. The information given in this document shall not in any event be regarded as a guarantee of performance. GaN Systems hereby disclaims any or all warranties and liabilities of any kind, including but not limited to warranties of non-infringement of intellectual property rights. All other brand and product names are trademarks or registered trademarks of their respective owners. Information provided herein is intended as a guide only and is subject to change without notice. The information contained herein or any use of such information does not grant, explicitly, or implicitly, to any party any patent rights, licenses, or any other intellectual property rights. GaN Systems standard terms and conditions apply. © 2009-2014 GaN Systems Inc. All rights reserved.